The search for neutrinoless double beta decay with the CUORE experiment

Samuele Sangiorgio on behalf of the CUORE collaboration

$\beta\beta0\nu$ decay for neutrino physics

- Neutrinos' open questions:
 - absolute neutrino mass scale
 - neutrino mass hierarchy
 - DIRAC $\nu_e
 eq \bar{
 u}_e$ or MAJORANA $\nu_e = \bar{
 u}_e$ nature
- Neutrinoless double beta decay could address these questions

- $\beta\beta0\nu$ observation would imply:
 - Lepton number non conservation
 - Majorana nature of the neutrinos

Strumia, Vissani ar Xiv:hep-ph/0606054v2

The rules of the game

Sensitivity F^{0v}: Lifetime corresponding to the minimum number of detectable events above background at a given C.L.

Experimental signature: peak at the transition Q value, enlarged by detector resolution, over the unavoidable background due to $\beta\beta 2\nu$

CUORE:

 $Q_{\beta\beta0\nu}(^{130}\text{Te}) = 2530.3 \pm 2.0 \text{ keV}$

TeO₂ bolometers

Absorber crystal

The absorber is a $5 \times 5 \times 5 \text{ cm}^3$ (790 g) crystal of TeO₂ which contains the $\beta\beta0\nu$ candidate ¹³⁰Te

Temperature sensor The thermal signal is measured by means of an NTD Ge Thermistor

$$R(T) = R_0 e^{\sqrt{\frac{T_0}{T}}}$$

The Cuoricino experiment

- 62 TeO₂ bolometers
- Total detector mass:
 M ~ II kg ¹³⁰Te ~ 5x10^{25 130}Te nuclides
- Deep underground in the Gran Sasso Laboratory (Italy) (3500 m.w.e.)

• Started in 2003, currently the largest operated bolometric experiment

Cuoricino results

(*) using NME from Rodin et al, Nucl. Phys.A 776 (2006) and erratum arXiv::nucl-th/0706.4304

• Cuoricino demonstrates the feasibility of a large scale bolometric detector with good energy resolution and background

CUORE

CUORE: Cryogenic Underground Observatory for **R**are **Events** will be a tightly packed array of 988 bolometers - M \sim 200 kg of ¹³⁰Te

CUORE

CUORE challenges

- Background reduction
 - contribution from environmental gammas, neutrons and muons
 is negligible due to improved shielding, coincidence and veto
 - surface radioactivity from materials close to the detectors seems to be the limiting factor
 - improved cleaning procedure
 - "zero-contact" assembly
- Improve resolution
 - increase thermistors uniformity
 - standard assembly procedure
 - reduce temperature instabilities
 - improved frame design
- Cryogenics
 - improve reliability for long measurement
 - accommodate the required shielding inside
- Calibration system

Cuoricino

The CUORE detector calibration system

- Goal: uniform energy calibration of the γ region of the energy spectrum for all the 988 CUORE bolometers
- CUORICINO: monthly calibration with γs from ²³²Th sources placed outside the cryostat

• CUORE:

- need to move a γ emitter in between the towers and then remove it
- avoid radioactive contamination of the detector
- minimize thermal load on the cryostat
- minimize calibration (loss in detector live time)

CUORE DCS

The CUORE detector calibration system

R&D ongoing at University of Wisconsin - Current conceptual design

Samuele Sangiorgio – UW Madison

Projected sensitivity for CUORE

CUORE Status and schedule

- Hut construction started at LNGS
- Copper procured
- Crystals production started
- Dilution refrigerator is being built

- CUORE Schedule
 - summer 2008: Cuoricino decommissioning
 - fall 2008: start construction of the first CUORE tower
 - spring 2009: start data-taking of the first CUORE tower
 - 2009-2010: CUORE assembly and commissioning
 - early 2011: CUORE data taking

Conclusions

- CUORE searches for $0\nu\beta\beta$ to investigate the Majorana nature of neutrinos and to probe the inverted hierarchy region of neutrino masses.
- CUORE detector technology is based on the outstanding experience and knowledge gained with the Cuoricino experiment.
- To achieve its goal, CUORE has to face some challenges, especially in the reduction of the background.
- CUORE is not simply a larger version of Cuoricino and developing the calibration system is extremely challenging.
- The solution to these challenges is almost at hand and the construction of CUORE is already started.

CUORE collaboration

University of California at Berkeley

A. Bryant², M.P. Decowski² , M.J. Dolinski³ , S.J. Freedman², E.E. Haller², L. Kogler², Yu.G. Kolomensky²

University of South Carolina

F.T. Avignone III, I. Bandac, R. J. Creswick, H.A. Farach, C. Martinez, L. Mizouni, C. Rosenfeld

Lawrence Berkeley National Laboratory J. Beeman, E. Guardincerri, R.W. Kadel, A.R. Smith, N. Xu

Lawrence Livermore National Laboratory K. Kazkaz, E.B. Norman⁴, N. Scielzo

University of California, Los Angeles H. Z. Huang, S. Trentalange, C. Whitten Jr.

University of Wisconsin, Madison L.M. Ejzak, K.M. Heeger, R.H. Maruyama, S. Sangiorgio

California Polytechnic State University T.D. Gutierrez

²also LBNL ³also LLNL ⁴also UC Berkeley

Universita' di Milano-Bicocca⁵

C. Arnaboldi, C. Brofferio, S. Capelli, M. Carrettoni, M. Clemenza, E. Fiorini, S. Kraft, C. Maiano, C. Nones, A. Nucciotti, M. Pavan, D. Schaeffer, M. Sisti, L. Zanotti

Sezione di Milano dell'INFN F. Alessandria, L. Carbone, O. Cremonesi, L. Gironi, G. Pessina, S. Pirro, E. Previtali Politecnico di Milano

R. Ardito, G. Maier

Laboratori Nazionali del Gran Sasso

M. Balata, C. Bucci, P. Gorla, S. Nisi, E. L. Tatananni, C. Tomei, C. Zarra

Universita' di Firenze and Sezione di Firenze dell'INFN

M. Barucci, L. Risegari, G. Ventura Universita' dell'Insubria⁵

E. Andreotti, L. Foggetta, A. Giuliani, M. Pedretti, C. Salvioni

Universita di Genova S. Didomizio⁶, A. Giachero⁷, P. Ottonello⁶, M. Pallavicini⁶

Laboratori Nazionali di Legnaro G. Keppel, P. Menegatti, V. Palmieri, V. Rampazzo

Universita di Roma La Sapienza and Sezione di Roma dell'INFN

F. Bellini, C. Cosmelli, I. Dafinei, R. Faccini, F. Ferroni, C. Gargiulo, E. Longo, S. Morganti, M. Olcese, M. Vignati

Universita' di Bologna and Sezione di Bologna dell'INFN

M. M. Deninno, N. Moggi, F. Rimondi, S. Zucchelli

University of Zaragoza M. Martinez

Kammerling Onnes Laboratory, Leiden University A. de Waard, G. Frossati

Shanghai Institute of Applied Physics (Chinese Academy of Sciences)

X. Cai, D. Fang, Y. Ma, W. Tian, H. Wang

⁵also Sezione di Milano dell'INFN ⁶also Sezione di Genova dell'INFN ⁷also LNGS