Search for W' boson resonances decaying to a top quark and a bottom quark

Tulika Bose Brown University (for the DØ Collaboration) PHENO 2008 April 29th, 2008

Motivation

- Heavy gauge bosons (W', Z') are predicted by many extensions to the SM
 - Composite and Little Higgs models, Left-right symmetric models, GUTs, UED, Technicolor...
- The single top quark decay channel is a promising searching ground for a W' that interacts hadronically
 - Relatively small multijet background in comparison to light jet channels

Production Mechanism

- Three different channels possible:
 - s-channel, t-channel, associated tW channel
 - Only s-channel is interesting (resonance)

• The effective Lagrangian for W' interactions with SM fermions f (generation indices i,j) can be written in a model independent form:

$$L = \frac{V_{ij}}{2\sqrt{2}} g_W \overline{f}_i \gamma^{\mu} \Big[a_{ij}^R (1 + \gamma^5) + a_{ij}^L (1 - \gamma^5) \Big] W' f_j + h.c.$$
Right and left couplings of W' to quarks

Three of a kind

$$|M|^{2} = SM + 2 \cdot a_{ud}^{L} \cdot a_{tb}^{L} \cdot (W - W' \text{ Interference}) + [(a_{ud}^{L})^{2} (a_{tb}^{L})^{2} + (a_{ud}^{R})^{2} (a_{td}^{R})^{2}](W') + [(a_{ud}^{L})^{2} (a_{tb}^{R})^{2} + (a_{ud}^{R})^{2} (a_{td}^{L})^{2}](W')$$

- Three different cases arise:
 - Purely left handed W'
 - Purely right handed W'
 - Left-Right mixed

$$a_{ud}^{L} = a_{tb}^{L} = 1, \ a_{ud}^{R} = a_{tb}^{R} = 0$$
$$a_{ud}^{R} = a_{tb}^{R} = 1, \ a_{ud}^{L} = a_{tb}^{L} = 0$$
$$a_{ud}^{L} = a_{tb}^{R} = a_{tb}^{L} = a_{ud}^{R} = 1$$

W-W' interference term is proportional to the left couplings only

 4

Analysis Strategy

Look at purely left-handed and right-handed W'

- L-handed W' bosons that interfere with the SM W->tb process
- R-handed W' bosons that do not have the SM interference

Case a) $M_{vR} < M_W'$

- Leptonic decay channels are open (1,q)
- Same cross-section as $W_{\rm L}^\prime$ with no interference

Case b) $M_{vR} > M_W'$

- Only decays to quarks are allowed (qq)
- W'_R cross section x B(W'->tb) larger than that of Case (a)

Interference contribution is important and should be taken into account in simulation (Phys. Lett. B 655, 245, 2007)

May reduce the total rate by as much as (16-33)%

(depends on W' mass and its couplings)

Event Selection

- 1 isolated lepton
 - Electron: $p_T > 15$ GeV, $|\eta| < 1.1$
 - Muon: p_T > 18 GeV, $|\eta|$ < 2.0
- Missing transverse energy > 15 GeV
- At least one b-tagged jet and at least one more jet
 - 2-3 jets with $p_{\rm T}$ > 15 GeV, $|\eta|$ < 3.4
 - Leading jet p_{T} > 25 GeV, $|\eta|$ < 2.5
 - Second leading jet p_T > 20 GeV
- High efficiency of b-tagging using a neural net tagger

Analysis Method

Four-vectors of all final state objects are added to obtain the invariant mass of the W' boson ("s-hat" or \sqrt{s}):

"s-hat" is used to separate W' from background

Background Modeling

Event Yields

Observe no significant excess of events in the final-state invariant mass distribution

Process	Events	
	$SM+W'_L$ search	W'_R search
Single top	6.4 ± 1.4	10.2 ± 2.2
$t\bar{t}$ production	59.1 ± 14.4	
W+jets	91.0 ± 1	18.8
Multijets	$29.7 \pm$	5.9
Total background	186.1 ± 40.4	190.0 ± 41.2
Data	182	

TABLE I: Data and SM background event yields.

Use the $\sqrt{\hat{s}}$ distribution to set limits...

Results: W'L

11

Results: W'_R

Coupling Strength

- Can convert the measured limits to limits on the coupling strength:
- The leading order s-channel production process has two W'qq' vertices
 - Thus $\sigma(p \bar{p} \rightarrow W') \times B(W' \rightarrow t\bar{b})$ is proportional to g'^4
 - g' depends on the model being used and is either g_R or g_L .
 - In models with non-SM couplings ($g' \neq g_W$) the reconstructed W invariant mass distribution could be identical to the $g' = g_W$ case but with a normalization that would differ by a factor of g'^4/g^4_W .
- W' coupling strength limit is calculated from the fourth root of the ratio of the experimentally excluded W' cross-section and the cross-section with SM couplings.

Coupling Strength

Exclude gauge couplings above 0.68 (0.72) $g_W @ M_{W'} = 600 \text{ GeV}$

14

Conclusions & Outlook

- We have performed a search for W' bosons in the single top decay channel
- We have no evidence for a W' boson
- 95% C.L. confidence limits have been set
 - Both masses and couplings
- DØ (0.9 fb⁻¹):
 - W' mass > 731 GeV [Left-handed; with interference]
 - W' mass > 739 GeV [Right handed; W' \rightarrow Iv and W' \rightarrow qq']
 - W' mass > 768 GeV [Right handed; W' \rightarrow qq' only]
 - Also set limits on the coupling of W' to fermions as a function of W' mass
- For more information: arXiv.org:0803.3256, submitted to PRL
- Looking forward to adding more data...