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Road map toward new discoveries at the LHC

¥ Re-discovery (re-learning) of the Standard Model

I detector calibration, luminosity measurement, “standard
candle” cross sections, PDF’s,...

¥ First observed signatures of new physics

I new resonances, excessive event rates...

¥ Discrimination between new physics models based on
detailed results from LHC and other experiments

I SUSY vs. extra dimensions vs. strong dynamics vs. ...
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Road map toward new discoveries at the LHC

Quite likely, these stages will be concurrent rather than
consecutive; they will involve stepwise improvements in

¥ precise NxLO perturbative calculations+resummations
(C. Oleari’s talk)

¥ implementation of all relevant pert. and nonpert. effects in
the analysis of parton distributions (PDF’s) and other
nonperturbative functions

¥ Rapid inclusion of new, more sensitive, experimental data

¥ Resolution of new mysteries and tensions arising between
theory and experiment
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Tevatron Run-2: surprises in high-statistics data
¥ pp̄ → ZX: significant excess in event rate at high pT

[D0 Coll., PRL 100, 102002 (2008)], not observed in Run-1
data

theory at O(α2
s)
∼ 1.3 at pT ≈ MW

¥ pp̄ → ZX: -7% (+9%) disagreement of dσ/dy with NNLO (NLO)
predictions [CDF public note, Feb. 2008, 2.1 fb−1]

¥ 2σ difference between W mass measured in W → eν and
W → µν decay modes [CDF, PRL 99, 115801 (2007))

MW (eν) = 80.477± 0.062 GeV/c2

MW (µν) = 80.352± 0.060 GeV/c2

The probability for the combined (“single most precise”)
measurement MW = 80.413± 0.048 GeV/c2 is low (7%)

¥ Substantial differences between the Run-1 and Run-2
inclusive jet data

See figures in C. Gerber’s talk
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Inclusive jet production in Tevatron Run-1

¥ CDF, 1993: excess in
high-ET jet data over NLO
theory based on
contemporary “central-fit”
PDFs (CTEQ3M, 4M, 5M)

¥ 2001: Supported by D0
data in separate
pseudorapidity regions (cf.
figure)

¥ Accommodated by assuming a larger gluon PDF g(x) at
x & 0.1 (CTEQ4HJ, 5HJ, 6xM)
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Inclusive jet production in Tevatron Run-2
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D0 Coll., arXiv:0802:2400
(700 pb−1); similar tendency in
CDF results (1.13 fb−1)

¥ (Almost) negligible statistical error

¥ MidCone/kT algorithm samples, corrected to parton level

¥ Cross sections are now smaller at high ET !
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Introduction Tolerance Jets W and Z Strangeness Summary

Impact of Run II jet data on high-x gluon distribution
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• Run II jet data prefer smaller gluon distribution at high x .

Graeme Watt Recent progress in global PDF analysis 16/26



Inclusive jet production in Tevatron Run-2
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D0 Coll., arXiv:0802:2400
(700 pb−1); similar tendency in
CDF results (1.13 fb−1)

¥ Impact on the PDF’s? Harder gluons disfavored?

¥ Agreement with Run-1 measurements?

¥ Experimental correlated/uncorrelated and theoretical
(NLO) systematics are well-understood?

¥ MSTW’08 PDF’s agree with those jet data sets that have larger
experimental errors
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Gluon PDF’s and LHC predictions
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In gluon scattering processes
(gg → tt̄X, gg → HX, etc.),
differences due to the choice of
the PDF set may exceed
nominally quoted PDF
uncertainties, reflecting

¥ choice of the data sets
constraining g(x) (especially
whether the jet data is
included)

¥ treatment of correlated
systematic errors in jet data

¥ choice of running αs, fitted
x−Q region of DIS data
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Approximations and uncertainties
in the PDF analysis
<1> Many factors determine the form of the PDF’s, including

¥ theoretical approximations introduced in each fitted process

I order of PQCD and EW contributions

I factorization scheme for heavy flavors, values of SM
parameters (αs, αEM , etc.)

I PDF parametrization

I treatment of nuclear effects, higher twists

¥ Experimental errors propagated into PDF parametrizations

¥ Numerical accuracy in PDF fits, computation of tabulated
PDF’s by end-user programs
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Theoretical aspects of W, Z boson production
Targeted theoretical accuracy: 2− 3%, needed for calibrations
and benchmark tests, real-time measurement of the LHC
luminosity (Dittmar, Pauss, Zurcher; Khoze, Martin, Orava, Ryskin; Giele, Keller’;...)

Predictions for W, Z cross sections (including PDF dependence)
were recently explored as a part of CTEQ6.6 PDF analysis
(arXiv:0802.0007)

¥ CTEQ6.6M standard set and 44 extreme eigenvector sets are
available in the LHAPDF-5.4 library and at www.cteq.org

¥ several improvements w.r.t. CTEQ6.5 PDF’s (late 2006)

¥ revised numerical programs with NNLO evolution; public fits
still done at NLO

The MSTW group confirms our main findings
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W and Z rapidity distributions at NNLO
(Anastasiou, Dixon, Melnikov, Petriello, 2003)

¥ Tiny scale dependence (∼ 1%)
¥ For |y| < 2, NNLO leads to a uniform rescaling

σNNLO ≈ KNNLO · σNLO; KLHC
NNLO ≈ 0.98

¥ Larger corrections at forward rapidities
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LHC cross sections
General-mass CTEQ6.6, CTEQ6.6C vs. zero-mass CTEQ6.1
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¥ At the LHC, σW,Z(CTEQ6.6M)≈ 1.06σW,Z(CTEQ6.1M)

I reflects a 6% increase in light quark luminosities
Lqiq̄j (x1, x2, Q) = qi(x1, Q)q̄j(x2, Q) at relevant x and Q
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LHC cross sections
General-mass CTEQ6.6, CTEQ6.6C vs. zero-mass CTEQ6.1
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¥ Such changes in σZ,W exceed NNLO corrections or
anticipated experimental error of ∼ 1%

¥ MRST’04 (MSTW’06) predictions are incompatible
(compatible) with the CTEQ6.6 result
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CTEQ6.5 and CTEQ6.6: advanced treatment of heavy quarks

1. full implementation of
the general-mass “SACOT-χ” scheme

I differences in predictions for c, b scattering
(F c,b

2 (x,Q2), etc.), EW precision cross sections,
as compared to the zero-mass CTEQ6.1

2. exploration of free strange PDF’s and/or
asymmetric strange sea

s+(x) 6= r
(
ū(x) + d̄(x)

)
, s−(x) 6= 0,

where s±(x) ≡ s(x)± s̄(x)

3. PDF’s with nonperturbative charm

I c(x, µ0 = mc) 6= 0 due to low-energy charm
excitations (as opposed to g → cc̄ radiative
production)

Tung et al., JHEP 0702,

053 (2007); CTEQ6.5

Lai et al., JHEP 0704,

089 (2007); CTEQ6.5S

Pumplin et al., PRD 75,

054029 (2007);

CTEQ6.5C
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General-mass (ACOT-χ) factorization scheme

Threshold

suppression

x=0.05 µ
2
=Q

2
+4 m

2

F
2
c

Q
2
 / GeV

2

χ=x(1+4 m
2
 / Q

2
 )

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 10 10
2

10
3

NLO 3-flv






LO 3-flv : GF
(1)








Naive LO 4-flv
 : c

(x)

L
O

 4
-f

lv
 A

C
O

T
(c)

 : 
c(
c)







¥ Charm Wilson coefficient function is suppressed at Q → mc

¥ To keep agreement with DIS F2 data, u, d, ū, d̄ PDF’s are
enhanced at small x, as compared to the zero-mass
(ZM-VFN) scheme
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CTEQ6.6 PDF’s

dashes: CTEQ6.1M (zero-mass scheme)

¥ CTEQ6.6 u, d are above CTEQ6.1 at x . 10−2

I The result of suppressed charm contribution to F2(x,Q) at
HERA in the GM-VFN scheme

¥ very different strange PDF’s
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Special PDF’s with nonperturbative charm
(Pumplin et al., 2007; updated in CTEQ6.6C)

Three models responsible for intrinsic charm generation
(light-cone, meson-cloud, and phenomenological sea-like), with
〈x〉c+c̄ up to 3.5% at scale Q0

The enhancement in c(x,Q) persists at all practical Q, can be
observed at the Tevatron and LHC
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cs̄ + cb̄ → H+ in 2-Higgs doublet model at the LHC
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Approximations and uncertainties
in the PDF analysis
<1> Many factors determine the form of the PDF’s, including

¥ theoretical approximations introduced in each fitted process

I order of PQCD and EW contributions

I factorization scheme for heavy flavors, values of SM
parameters (αs, αEM , etc.)

I PDF parametrization

I treatment of nuclear effects, higher twists

¥ Experimental errors propagated into PDF parametrizations

¥ Numerical accuracy in PDF fits, computation of tabulated
PDF’s by end-user programs
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Experimental PDF errors:
which measurements can reduce them?

Knowing what to measure and how to measure it makes a
complicated world much less so.

The conventional wisdom is often wrong.

S. D. Levitt, S. J. Dubner, Freakonomics
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PDF dependence of collider processes

¥ Naive views about the PDF
dependence tend to be
misleading

¥ Substantial PDF-induced
(anti)correlations exist
between large classes of
collider cross sections

¥ These correlations can be
explored as a part of the
global analysis

⇒ implications for parton and
collider luminosity
measurements, determination
of new physics parameters
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PDF-induced correlations in W, Z, tt̄ production

W − Z: correlated dependence

Range of PDF uncertainties (CTEQ6.1)
σ
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The PDF dependence of a cross section ratio σ1/σ2 is reduced
(enhanced) if σ1 and σ2 are correlated (anticorrelated)
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Z production at the LHC

Choose all that apply and select the x range

The PDF uncertainty in σZ is mostly due to...

1. u, d, ū, d̄ PDF’s
at x < 10−2 (x > 10−2)

2. gluon PDF
at x < 10−2 (x > 10−2)

3. s, c, b PDF’s
at x < 10−2 (x > 10−2)

Leading order

Z0
q̄

q e

ē

Next-to-leading order
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An inefficient application of the error analysis

Ì Compute σZ for 40 (now 44)
extreme PDF eigensets

Ì Find eigenparameter(s)
producing largest variation(s),
such as #9, 10, 30 0 2 4 6 8 10121416182022242628303234363840

PDF set number
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Σ
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s=14 TeV; 40 CTEQ6.1 extreme PDF sets

Î It is not obvious how to relate abstract eigenparameters to
physical PDF’s u(x), d(x), etc.
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Correlation analysis for collider observables
(J. Pumplin et al., PRD 65, 014013 (2002); P.N. and Z. Sullivan, hep-ph/0110378)

A technique based on the Hessian method to relate the PDF
uncertainty in physical cross sections to PDF’s of specific flavors
at known (x, µ)

For 2N PDF eigensets and two cross sections X and Y :

∆X =
1

2

√√√√
N∑

i=1

(
X

(+)
i −X

(−)
i

)
2

cosϕ =
1

4∆X ∆Y

N∑
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X

(+)
i −X

(−)
i

) (
Y

(+)
i − Y

(−)
i

)

X
(±)
i are maximal (minimal) values of Xi tolerated along the i-th PDF

eigenvector direction; N = 22 for the CTEQ6.6 set
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Correlation angle ϕ

Determines the parametric form of the X − Y correlation ellipse

X = X0 + ∆X cos θ

Y = Y0 + ∆Y cos(θ + ϕ)

δX

δY

δX

δY

δX

δY

cos ϕ ≈ 1 cos ϕ ≈ 0 cos ϕ ≈ −1

X0, Y 0: best-fit
values

∆X, ∆Y : PDF errors

cosϕ ≈ ±1 :
cosϕ ≈ 0 :

Measurement of X imposes
tight
loose

constraints onY
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Types of correlations

X and Y can be

¥ two PDFs f1(x1, Q1) and f2(x2, Q2)
(plotted as cosϕ vs x1 & x2)

¥ a physical cross section σ and PDF
f(x,Q) (plotted as cosϕ vs x)

¥ two cross sections σ1 and σ2
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Correlations between f(x1, Q) and f(x2, Q) at Q = 85 GeV

u(x1, Q) vs. u(x2, Q)
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¥ Momentum sum rule (affects g(x,Q)):

∫ 1

0
xg(x)dx +

Nf∑

i=1

∫ 1

0
x [qi(x) + q̄i(x)] dx = 1
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Correlations between f(x1, Q) and f(x2, Q) at Q = 85 GeV

u(x1, Q) vs. u(x2, Q)
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Correlation patterns look similar for g, c, b PDF’s
(no intrinsic charm here!)

c vs. c
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b vs. b
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Correlations cosϕ between W, Z cross sections and PDF’s

Tevatron Run-2
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Similar correlations for W production
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Correlations cosϕ between W, Z cross sections and PDF’s

LHC
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Correlations of Z and tt̄ cross sections with PDF’s

LHC Z, W cross sections are
strongly correlated with g(x), c(x),
b(x) at x ∼ 0.005

∴ they are strongly anticorrelated
with processes sensitive to g(x) at
x ∼ 0.1
(tt̄, gg → H for MH > 300 GeV)
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tt̄ vs Z cross sections at the LHC
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Z0 vs tt
-

production at the LHC at NLO

mt=Μ=171 GeV

CTEQ6.6

Measurements of σtt̄ and σZ probe the same (gluon) PDF
degrees of freedom at different x values
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Correlations between σ(gg → H0), σZ , σtt̄

As MH increases:

¥ cosϕ(σH , σZ)
decreases

¥ cosϕ(σH , σtt̄)
increases
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cos ϕ for various NLO Higgs production
cross sections in SM and MSSM
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s̄c + b̄c → h+LHC X-se
tion:Correlation with pp → ZX (solid), pp → tt̄ (dashes), pp̄ → ZX (dots)

gg → h0 b̄b → h0 W+h0 h0 via WW fusion
t-
hannel single top:Z

tt̄ : Z

W+ : W− : Z

Z (Tev-2): Z (LHC)
t-
hannel single top: tt̄
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tt̄ production as a standard candle process
Uncertainties in σtt̄ for mt = 171 GeV

Type Current Projected Assumptions

Scale 11% ∼ 3− 5%? mt/2 ≤ µ ≤ 2mt

dependence (NLO) (NNLO+resum.)
PDF 2% 1%? 1σ c.l.

dependence
mt 5% < 3%

dependence δmt = 2 GeV δmt = 1 GeV

Total (theory) 12% ∼ 5%

Experiment 8% (CDF) 5%?

¥Measurements of σtt̄ with accuracy ∼ 5% may be within reach;
useful for monitoring of LLHC in the first years, normalization of
cross sections sensitive to large-x glue scattering, as well as for
new physics searches [reviewed by T. Han in arXiv:0804.3178]

Updated theory estimates in Cacciari et al., arXiv:0804.2800; Moch, Uwer, arXiv:0804.1476
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Global connections in QCD

Other experiments:
HERA, Tevatron,
fixed target, ...

mass effects
Charm and bottom

Stability of
perturbation theory

composition
Parton flavor

Multi−scale
regimes

Resummations

saturation?...
DGLAP? BFKL?

Combined with
electroweak 
corrections

Fragmentation
functions

Power−
suppressed
contributions

Predictions for
 LHC observablesperturbative X−sections

Hard scattering:

Universality

Renormalization
group invariance

(N)NLO radiative
corrections

nonperturbative input
Soft scattering:

Parton
distributions

(PDFs)

Global
analysis

to LHC data
Comparison

Parton showering
models

freedom
Asymptotic Confinement

Factorization

observables
Proof for individual

Small−x
effects

A relevant, yet incomplete, picture
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Global connections in QCD

nonperturbative input
Soft scattering:

freedom
Asymptotic Confinement

Factorization

Other experiments:
HERA, Tevatron,
fixed target, ...

Global
analysis

Small−x
effects

mass effects
Charm and bottom

Stability of
perturbation theory

(N)NLO radiative
corrections

composition
Parton flavor

observables
Proof for individual

to LHC data
Comparison

Multi−scale
regimes

Parton showering
models

Resummations

saturation?...
DGLAP? BFKL?

Combined with
electroweak 
corrections

Parton
distributions

(PDFs)

Fragmentation
functions

Power−
suppressed
contributions

Predictions for
 LHC observablesperturbative X−sections

Hard scattering:

Universality

Renormalization
group invariance

Global interconnections can be as important as (N)NLO
perturbative contributions; are different at the LHC and Tevatron
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Global connections in QCD

nonperturbative input
Soft scattering:

freedom
Asymptotic Confinement

Factorization

Other experiments:
HERA, Tevatron,
fixed target, ...

Global
analysis

Small−x
effects

mass effects
Charm and bottom

Stability of
perturbation theory

(N)NLO radiative
corrections

composition
Parton flavor

observables
Proof for individual

to LHC data
Comparison

Multi−scale
regimes

Parton showering
models

Resummations

saturation?...
DGLAP? BFKL?

Combined with
electroweak 
corrections

Parton
distributions

(PDFs)

Fragmentation
functions

Power−
suppressed
contributions

Predictions for
 LHC observablesperturbative X−sections

Hard scattering:

Universality

Renormalization
group invariance

Exploration of all vastness of global QCD interconnections will
greatly enrich and empower the LHC discovery program
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Backup slides
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Tolerance hypersphere in the PDF space

(a)


Original parameter basis

(b)


Orthonormal eigenvector basis

zk

T
diagonalization and


rescaling by


the iterative method

ul

ai

2-dim (i,j) rendition of N-dim (22) PDF parameter space

Hessian eigenvector basis sets



aj
ul

p(i)

s0
s0

contours of constant c2
global 

ul: eigenvector in the l-direction

 p(i): point of largest ai with tolerance T

s0: global minimum
p(i)

zl

A hyperellipse ∆χ2 ≤ T 2 in space of N physical PDF parameters
{ai} is mapped onto a hypersphere of radius T in space of N
orthonormal PDF parameters {zi}
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Tolerance hypersphere in the PDF space

(b)


Orthonormal eigenvector basis

2-dim (i,j) rendition of N-dim (22) PDF parameter space

~∇X

~zm

PDF error for a physical observable X is given by

∆X = ~∇X · ~zm =
∣∣∣~∇X

∣∣∣ = 1
2

√∑N
i=1

(
X

(+)
i −X

(−)
i

)
2
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Tolerance hypersphere in the PDF space

(b)


Orthonormal eigenvector basis

2-dim (i,j) rendition of N-dim (22) PDF parameter space

~∇X

~∇Y

ϕ

Correlation cosine for observables X and Y :

cosϕ =
~∇X·~∇Y
∆X∆Y = 1

4∆X ∆Y

∑N
i=1

(
X

(+)
i −X

(−)
i

)(
Y

(+)
i − Y

(−)
i

)
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Z, W , tt̄ cross sections and correlations

Table: Total cross sections σ, PDF-induced errors ∆σ, and correlation
cosines cos ϕ for Z0, W±, and tt̄ production at the Tevatron Run-2 (Tev2)
and LHC, computed with CTEQ6.6 PDFs.

√
s Scattering σ, ∆σ Correlation cos ϕ with

(TeV) process (pb) Z0 (Tev2) W±(Tev2) Z0 (LHC) W± (LHC)

pp̄ → (Z0 → `+`−)X 241(8) 1 0.987 0.23 0.33

1.96 pp̄ → (W± → `ν`)X 2560(40) 0.987 1 0.27 0.37

pp̄ → tt̄X 7.2(5) -0.03 -0.09 -0.52 -0.52

pp → (Z0 → `+`−)X 2080(70) 0.23 0.27 1 0.956

pp → (W± → `ν)X 20880(740) 0.33 0.37 0.956 1

14 pp → (W + → `+ν`)X 12070(410) 0.32 0.36 0.928 0.988

pp → (W− → `−ν̄`)X 8810(330) 0.33 0.38 0.960 0.981

pp → tt̄X 860(30) -0.14 -0.13 -0.80 -0.74
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Correlations with single-top cross sections

Table: Correlation cosines cosϕ between single-top, W, Z, and tt̄ cross
sections at the Tevatron Run-2 (Tev2) and LHC, computed with
CTEQ6.6 PDFs.

Single-top Correlation cos ϕ with

production channel Z0 (Tev2) W±(Tev2) tt̄ (Tev2) Z0 (LHC) W± (LHC) tt̄ (LHC)

t−channel (Tev2) -0.18 -0.22 0.81 -0.82 -0.79 0.56

t−channel (LHC) 0.09 0.14 -0.64 0.56 0.53 -0.42

s−channel (Tev2) 0.83 0.79 0.18 0.22 0.27 -0.3

s−channel (LHC) 0.81 0.85 -0.42 0.6 0.68 -0.33
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Correlations and ratio of W and Z cross sections
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W± & Z cross sections at the LHC

CTEQ6.6

CTEQ6.1

NNLL-NLO ResBos

Free s=s
-

HsolidL,

fixed s=s
-

HdashesL

A. Cooper-Sarkar, 2007

σ(Z)/(σ(W+) + σ(W-))

PDF error band

Radiative contributions, PDF dependence have similar structure
in W, Z, and alike cross sections; cancel well in Xsection ratios
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σZ/σW at the LHC
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The remaining PDF uncertainty in σZ/σW is mostly driven by s(x);
increases by a factor of 3 compared to CTEQ6.1 as a result of
free strangeness in CTEQ6.6
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Tevatron Run-2: precise tests of SM physics

¥ Measurements constraining the nucleon structure (PDF’s)

I W boson charge asymmetry

I dσ/dy for pp̄
γ∗,Z−→ `+`−X (` = e, ν)

I pp̄ → jet + X cross sections

I Z-boson dσ/dpT

¥ Measurements affected by PDF uncertainties

I collider luminosity

I MW , ΓW , AFB(pp̄ → ZX), mt, σ(pp̄ → tt̄X), single-top,...

Combined with HERA-2, fixed-target data, Run-2 results bring the
PDF’s to a qualitatively new level of understanding

Talks by C. Gerber, J. Zhu; CDF and D0 web pages
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σ(W+)/σ(W−)
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ΣW+ �ΣW- at the LHC

uVHx,Q=85. GeVL
dVHx,Q=85. GeVL

σ(W+)/σ(W−) = 1.36 + 0.016 (CTEQ6.6), 1.36 (MSTW’06NNLO),
1.35 (MRST’04NLO)
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An example of a small correlation with the gluon
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pp®t± X Hs-channelL
�!!!!

s=14 TeV, mt=171 GeV

Single-top production (NLO)

W
b

tq

q̄′

¥ typical x ∼ 0.01

¥ mostly correlated with u, d
PDF’s

PDF uncertainties in W, Z total cross sections are irrelevant for
some quark scattering processes (single-top, Z ′, ...)
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dσ/dpT in pp̄ → (Z → `+`−)X

Tevatron Run-1
[D0 Coll., PRD D61, 032004 (1999)] Tevatron Run-2

[D0 Coll., PRL 100, 1020002 (2008)]
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dσ/dy in pp̄ → `+`−X from CDF (2.1 fb−1)
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