Gauge Higgs Unification Phenomenology in Warped Dimensions

Phys. Rev. D76:095010, 2007 [arXiv:0706.1281[hep-ph]]

Nausheen R. Shah

Enrico Fermi Institute University of Chicago

In Collaboration with: Anibal Medina and Carlos E. M. Wagner

Warped Extra Dimensions

- Warped Extra Dimensions (RS1): Naturally solves hierarchy problem (kL~30)
- Branes at $x_5 = 0$ (UV) and $x_5 = L$ (IR):

Gauge fields live in the bulk.
Break SO(5) via boundary conditions (BC):

$$\partial_5 A^{a_{\rm L},Y}_{\mu} = A^{a_{\rm R},\hat{a}}_{\mu} = A^{a_{\rm L},Y}_{5} = 0, \qquad x_5 = 0$$
$$\partial_5 A^{a_{\rm L},a_{\rm R},Y}_{\mu} = A^{\hat{a}}_{\mu} = A^{a_{\rm L},a_{\rm R},Y}_{5} = 0, \qquad x_5 = L.$$

Leads to A₅ acquiring a vacuum expectation value (vev) at one loop.

$$\rightarrow$$
 HIGGS $H \propto (h^{\hat{1}} + ih^{\hat{2}}, h^{\hat{4}} - ih^{\hat{3}})$

- To get proper EWSB: $\ < h^{\hat{4}} > = h_{+}$
- Equations of motion in presence of vev for *h* mix Neumann and Dirichlet modes.
- Can use following gauge transformation, which relates the solutions with *h*=0 to the ones with *h*≠ 0:

$$f^{\alpha}(x_5,h)T^{\alpha} = \Omega^{-1}(x_5,h)f^{\alpha}(x_5,0)T^{\alpha}\Omega(x_5,h),$$

$$\Omega(x_5, h) = \exp\left[-iC_h hT^4 \int_0^{x_5} dy \, a^{-2}(y)\right].$$

 Basis functions (warped generalization of sine and cosine functions) satisfy initial conditions:

$$C(0,z) = 1, C'(0,z) = 0, S(0,z) = 0 \text{ and } S'(0,z) = z.$$

Since Ω = 1 at x₅ = 0, KK profiles satisfying UV BC can be written as:

$$f_n^{a_{\rm L}}(x_5,0) = C_{n,a_{\rm L}}C(x_5,m_n), \qquad f_n^{\hat{a}}(x_5,0) = C_{n,\hat{a}}S(x_5,m_n)$$
$$f_n^{Y}(x_5,0) = C_{n,Y}C(x_5,m_n), \qquad f_n^{a_{\rm R}}(x_5,0) = C_{n,a_{\rm R}}S(x_5,m_n)$$

Imposing BC on IR brane and demanding a non-trivial solution (determinant=0), we arrive at the quantization equations for the gauge masses:

$$1 + F_{W,Z}(m_n^2) \sin^2\left(\frac{\lambda_G h}{f_h}\right) = 0, \qquad F_W(z^2) = \frac{z}{2a_L^2 C'(L,z)S(L,z)}$$
$$s_{\phi}^2 \simeq \tan^2 \theta_W \simeq (0.23/0.77) \simeq 0.2987, \qquad F_Z(z^2) = \frac{(1 + s_{\phi}^2)z}{2a_L^2 C'(L,z)S(L,z)}.$$

Fermion Fields

Realistic model requires 3 vector-like fermion multiplets living in the bulk:

$$\xi_{1L}^{i} \sim Q_{1L}^{i} = \begin{pmatrix} \chi_{1L}^{u_{i}}(-,+)_{5/3} & q_{L}^{u_{i}}(+,+)_{2/3} \\ \chi_{1L}^{d_{i}}(-,+)_{2/3} & q_{L}^{d_{i}}(+,+)_{-1/3} \end{pmatrix} \oplus u_{L}^{\prime i}(-,+)_{2/3} ,$$

$$\xi_{2R}^{i} \sim Q_{2R}^{i} = \begin{pmatrix} \chi_{2R}^{u_{i}}(-,+)_{5/3} & q_{R}^{\prime u_{i}}(-,+)_{2/3} \\ \chi_{2R}^{d_{i}}(-,+)_{2/3} & q_{R}^{\prime d_{i}}(-,+)_{-1/3} \end{pmatrix} \oplus u_{R}^{i}(+,+)_{2/3} ,$$

 $\xi^i_{3R} \sim$

$$T_{1R}^{i} = \begin{pmatrix} \psi_{R}^{\prime i}(-,+)_{5/3} \\ U_{R}^{\prime i}(-,+)_{2/3} \\ D_{R}^{\prime i}(-,+)_{-1/3} \end{pmatrix} \oplus T_{2R}^{i} = \begin{pmatrix} \psi_{R}^{\prime \prime i}(-,+)_{5/3} \\ U_{R}^{\prime \prime i}(-,+)_{2/3} \\ D_{R}^{i}(+,+)_{-1/3} \end{pmatrix} \oplus Q_{3R}^{i} = \begin{pmatrix} \chi_{3R}^{u_{i}}(-,+)_{5/3} & q_{R}^{\prime \prime u_{i}}(-,+)_{2/3} \\ \chi_{3R}^{d_{i}}(-,+)_{2/3} & q_{R}^{\prime \prime d_{i}}(-,+)_{-1/3} \end{pmatrix}$$

Fermion Fields

Also allowed boundary mass terms:

$$\mathcal{L}_m = 2\delta(x_5 - L) \Big[\bar{u}'_L M_{B_1} u_R + \bar{Q}_{1L} M_{B_2} Q_{3R} + \bar{Q}_{1L} M_{B_3} Q_{2R} + \text{h.c.} \Big]$$

Similar procedure as for the gauge bosons:

$$1 + F_b(m_n^2) \sin^2\left(\frac{\lambda h}{f_h}\right) = 0,$$

$$1 + F_{t_1}(m_n^2) \sin^2\left(\frac{\lambda h}{f_h}\right) + F_{t_2}(m_n^2) \sin^4\left(\frac{\lambda h}{f_h}\right) = 0$$

Effective Potential

 At tree level due to its gauge origin, the Higgs potential is 0. The 1-loop Coleman-Weinberg Potential is given by:

$$V(h) = \sum_{r} \pm \frac{N_r}{(4\pi)^2} \int_0^\infty dp p^3 \log[\rho(-p^2)].$$

Spectral functions (f_h ~ k e^{-kL}, λ² = 1/2):

$$\rho_W(z^2) = 1 + F_W(z^2) \sin^2\left(\frac{\lambda h}{f_h}\right) \qquad \rho_Z(z^2) = 1 + F_Z(z^2) \sin^2\left(\frac{\lambda h}{f_h}\right),$$
$$\rho_b(z^2) = 1 + F_b(z^2) \sin^2\left(\frac{\lambda h}{f_h}\right) \qquad \rho_t(z^2) = 1 + F_{t_1}(z^2) \sin^2\left(\frac{\lambda h}{f_h}\right) + F_{t_2}(z^2) \sin^4\left(\frac{\lambda h}{f_h}\right)$$

Effective Potential

- Numerical investigation showed V(*h*) to be a smooth function of all parameters.
- Minimum symmetric with c₁ and skew symmetric with c₂ and c₃. Independent for B₁, B₂~>5, |c₁|, |c₂|, |c₃| > 1.
- h = 0 min ignored since no symmetry breaking.
- λ/f_h = π/2 min ignored since the Higgs coupling to gauge bosons goes to 0.

Effective Potential

- $f_h \sim k e^{-kL} \rightarrow As \lambda h/f_h^{\uparrow}$, KK scale \checkmark .
- Simultaneously, linear couplings of the Higgs to the gauge bosons are suppressed compared to the SM.
- Correct W, Z, Top and Bottom masses marked by blue and red.
- We will denote values of λ h/f_h less than or greater then 0.3, as linear (blue) and nonlinear (red) approximations.

Masses in the phenomenological range only when c_1 , c_2 in the range allowed by EWPT.

Nausheen R. Shah Pheno 08

Conclusion

- Higgs constructed from gauge fields.
- Higgs potential generated at one loop with SM consistent matter and gauge content.
- **Found conditions for breaking symmetry.**
- Light Higgs [110-160 GeV].
- KK modes with masses ~ TeV.
- Exotic fermions with masses ~ TeV
- Interesting possibilities for the LHC.