Gauge Higgs Unification Phenomenology in Warped Dimensions
 Phys. Rev. D76:095010, 2007 [arXiv:0706.1281[hep-ph]]

Nausheen R. Shah

Enrico Fermi Institute
University of Chicago

In Collaboration with: Anibal Medina and Carlos E M. Wagner

Warped Extra Dimensions

- Warped Extra Dimensions (RS1): Naturally solves hierarchy problem (kL~30)
- Branes at $x_{5}=0(U V)$ and $x_{5}=L(I R):$
- UV

IR $\quad S O(5) \times U(1)_{x}$

Gauge Fields

- Gauge fields live in the bulk.
- Break SO(5) via boundary conditions (BC):
$\partial_{5} A_{\mu}^{a_{\mathrm{L}}, Y}=A_{\mu}^{a_{\mathrm{R}}, \hat{a}}=A_{5}^{a_{\mathrm{L}}, Y}=0, \quad x_{5}=0$
$\partial_{5} A_{\mu}^{a_{\mathrm{L}}, a_{\mathrm{R}}, Y}=A_{\mu}^{\hat{a}}=A_{5}^{a_{\mathrm{L}}, a_{\mathrm{R}}, Y}=0, \quad x_{5}=L$.
- Leads to A_{5} acquiring a vacuum expectation value (vev) at one loop.

$$
\longrightarrow \text { HIGGS } H \propto\left(h^{\hat{1}}+i h^{\hat{2}}, h^{\hat{4}}-i h^{\hat{3}}\right)
$$

Gauge Fields

- To get proper EWSB: $<h^{\hat{4}}>=h$.
- Equations of motion in presence of vev for h mix Neumann and Dirichlet modes.
- Can use following gauge transformation, which relates the solutions with $h=0$ to the ones with $h \neq 0$:

$$
\begin{aligned}
f^{\alpha}\left(x_{5}, h\right) T^{\alpha} & =\Omega^{-1}\left(x_{5}, h\right) f^{\alpha}\left(x_{5}, 0\right) T^{\alpha} \Omega\left(x_{5}, h\right) \\
\Omega\left(x_{5}, h\right) & =\exp \left[-i C_{h} h T^{4} \int_{0}^{x_{5}} d y a^{-2}(y)\right]
\end{aligned}
$$

Gauge Fields

- Basis functions (warped generalization of sine and cosine functions) satisfy initial conditions:

$$
C(0, z)=1, C^{\prime}(0, z)=0, S(0, z)=0 \text { and } S^{\prime}(0, z)=z
$$

- Since $\Omega=1$ at $x_{5}=0$, KK profiles satisfying UV BC can be written as:

$$
\begin{aligned}
f_{n}^{a_{\mathrm{L}}}\left(x_{5}, 0\right) & =C_{n, a_{\mathrm{L}}} C\left(x_{5}, m_{n}\right), & f_{n}^{\hat{a}}\left(x_{5}, 0\right)=C_{n, \hat{a}} S\left(x_{5}, m_{n}\right) \\
f_{n}^{Y}\left(x_{5}, 0\right) & =C_{n, Y} C\left(x_{5}, m_{n}\right), & f_{n}^{a_{\mathrm{R}}}\left(x_{5}, 0\right)=C_{n, a_{\mathrm{R}}} S\left(x_{5}, m_{n}\right)
\end{aligned}
$$

Gauge Fields

- Imposing BC on IR brane and demanding a non-trivial solution (determinant=0), we arrive at the quantization equations for the gauge masses:

$$
\begin{array}{ll}
1+F_{W, Z}\left(m_{n}^{2}\right) \sin ^{2}\left(\frac{\lambda_{G} h}{f_{h}}\right)=0, & F_{W}\left(z^{2}\right)=\frac{z}{2 a_{L}^{2} C^{\prime}(L, z) S(L, z)} \\
s_{\phi}^{2} \simeq \tan ^{2} \theta_{W} \simeq(0.23 / 0.77) \simeq 0.2987, & F_{Z}\left(z^{2}\right)=\frac{\left(1+s_{\phi}^{2}\right) z}{2 a_{L}^{2} C^{\prime}(L, z) S(L, z)} .
\end{array}
$$

Fermion Fields

- Realistic model requires 3 vector-like fermion multiplets living in the bulk:

$$
\begin{aligned}
& \xi_{1 L}^{i} \sim Q_{1 L}^{i}=\left(\begin{array}{ll}
\chi_{1 L}^{u_{i}}(-,+)_{5 / 3} & q_{L}^{u_{i}}(+,+)_{2 / 3} \\
\chi_{1 L}^{d_{i}}(-,+)_{2 / 3} & q_{L}^{d_{i}}(+,+)_{-1 / 3}
\end{array}\right) \oplus u_{L}^{i i}(-,+)_{2 / 3}, \\
& \xi_{2 R}^{i} \sim Q_{2 R}^{i}=\left(\begin{array}{cc}
\chi_{2 R}^{u_{i}}(-,+)_{5 / 3} & q_{R}^{\prime u_{i}}(-,+)_{2 / 3} \\
\chi_{2 R}^{d_{i}}(-,+)_{2 / 3} & q_{R}^{d_{i}}(-,+)_{-1 / 3}
\end{array}\right) \oplus u_{R}^{i}(+,+)_{2 / 3},
\end{aligned}
$$

$\xi_{3 R}^{i} \sim$

$$
T_{1 R}^{i}=\left(\begin{array}{c}
\psi_{R}^{\prime i}(-,+)_{5 / 3} \\
U_{R}^{\prime \prime}(-,+)_{2 / 3} \\
D_{R}^{\prime i}(-,+)_{-1 / 3}
\end{array}\right) \oplus T_{2 R}^{i}=\left(\begin{array}{c}
\psi_{R}^{\prime \prime i}(-,+)_{5 / 3} \\
U_{R}^{\prime \prime i}(-,+)_{2 / 3} \\
D_{R}^{i}(+,+)_{-1 / 3}
\end{array}\right) \oplus Q_{3 R}^{i}=\left(\begin{array}{cc}
\chi_{3 R}^{u_{i}}(-,+)_{5 / 3} & q_{R}^{\prime \prime u_{i}}(-,+)_{2 / 3} \\
\chi_{3 R}^{d_{i}}(-,+)_{2 / 3} & q_{R}^{\prime \prime \prime}(-,+)_{-1 / 3}
\end{array}\right)
$$

Fermion Fields

- Also allowed boundary mass terms:
$\mathcal{L}_{m}=2 \delta\left(x_{5}-L\right)\left[\bar{u}_{L}^{\prime} M_{B_{1}} u_{R}+\bar{Q}_{1 L} M_{B_{2}} Q_{3 R}+\bar{Q}_{1 L} M_{B_{3}} Q_{2 R}+\right.$ h.c. $]$
- Similar procedure as for the gauge bosons:

$$
\begin{aligned}
& 1+F_{b}\left(m_{n}^{2}\right) \sin ^{2}\left(\frac{\lambda h}{f_{h}}\right)=0, \\
& 1+F_{t_{1}}\left(m_{n}^{2}\right) \sin ^{2}\left(\frac{\lambda h}{f_{h}}\right)+F_{t_{2}}\left(m_{n}^{2}\right) \sin ^{4}\left(\frac{\lambda h}{f_{h}}\right)=0
\end{aligned}
$$

Effective Potential

- At tree level due to its gauge origin, the Higgs potential is 0 . The 1 -loop ColemanWeinberg Potential is given by:

$$
V(h)=\sum_{r} \pm \frac{N_{r}}{(4 \pi)^{2}} \int_{0}^{\infty} d p p^{3} \log \left[\rho\left(-p^{2}\right)\right] .
$$

- Spectral functions ($f_{h} \sim k e^{-k L}, \lambda^{2}=1 / 2$):

$$
\begin{array}{ll}
\rho_{W}\left(z^{2}\right)=1+F_{W}\left(z^{2}\right) \sin ^{2}\left(\frac{\lambda h}{f_{h}}\right) & \rho_{Z}\left(z^{2}\right)=1+F_{Z}\left(z^{2}\right) \sin ^{2}\left(\frac{\lambda h}{f_{h}}\right), \\
\rho_{b}\left(z^{2}\right)=1+F_{b}\left(z^{2}\right) \sin ^{2}\left(\frac{\lambda h}{f_{h}}\right) & \rho_{t}\left(z^{2}\right)=1+F_{t_{1}}\left(z^{2}\right) \sin ^{2}\left(\frac{\lambda h}{f_{h}}\right)+F_{t_{2}}\left(z^{2}\right) \sin ^{4}\left(\frac{\lambda h}{f_{h}}\right)
\end{array}
$$

Effective Potential

- Numerical investigation showed $\mathrm{V}(h)$ to be a smooth function of all parameters.
- Minimum symmetric with c_{1} and skew symmetric with c_{2} and c_{3}. Independent for $B_{1}, B_{2} \sim>5,\left|c_{1}\right|,\left|c_{2}\right|,\left|c_{3}\right|>1$.
- $h=0 \mathrm{~min}$ ignored since no symmetry breaking.
- $\lambda h / f_{h}=\pi / 2 \mathrm{~min}$ ignored since the Higgs coupling to gauge bosons goes to 0 .

Effective Potential

- $f_{h} \sim k e^{-k L} \rightarrow$ As $\lambda h / f_{h} \uparrow, K K$ scale \downarrow.
- Simultaneously, linear couplings of the Higgs to the gauge bosons are suppressed compared to the SM.
- Correct W, Z, Top and Bottom masses marked by blue and red.
- We will denote values of $\lambda h / f_{h}$ less than or greater then 0.3, as linear (blue) and nonlinear (red) approximations.

Masses in the phenomenological range only when c_{1},
c_{2} in the range allowed by EWPT.

C V VS. $_{3}$

B_{1} vs. min.

Nausheen R. Shah Pheno 08

$k e^{-k L}$ vs. min.

Nausheen R. Shah Pheno 08

Top mass vs. Higgs Mass

Higgs mass vs. $k e^{-k L}$

First few KK mode of the Top vs. $m_{w 1}$

Nausheen R. Shah Pheno 08

Mass of the lightest exotic fermion vs. mass of W ${ }^{1}$

Conclusion

- Higgs constructed from gauge fields.
- Higgs potential generated at one loop with SM consistent matter and gauge content.
- Found conditions for breaking symmetry.
- Light Higgs [110-160 GeV].
- KK modes with masses ~ TeV.
- Exotic fermions with masses $\sim \mathrm{TeV}$
- Interesting possibilities for the LHC.

