<u>Collider phenomenology of Gauge-Higgs</u> <u>unification scenarios in warped extra</u> <u>dimensions</u>

Anibal D. Medina

Department of Astronomy and Astrophysics

The University of Chicago and Argonne National Lab

Phys. Rev.D76:095010,2007 and Phys. Rev.D77:076003, 2008.

Co-authors: Marcela Carena, Boris Panes, Nausheen Shah

and Carlos Wagner.

Holographic Higgs

- Bulk gauge symm.: $SU(3)_c \times SO(5) \times U(1)_{\chi} \longrightarrow SO(5) \supset SU(2)_R \times SU(2)_L$.
- UV: $SU(2)_L \times U(1)_Y$ IR: $SO(4) \times U(1)_X$.

Extra gauge bosons have the quantum numbers of the Higgs

SO(5)/SO(4) $\rightarrow A^{1...4}_{\mu}(\text{-,-}) \qquad A^{1...4}_{5}(\text{+,+}) \leftarrow \text{Identify with H.}$

No tree level Higgs potential \rightarrow Induced at one-loop (calculable).

• Coleman-Weinberg Potential has been computed for the model under consideration [A.M, N. Shah and C. Wagner].

- 1. EWSB minima in large regions of parameter space consistent with EWPT.
- Consistent with Z, W, bottom quark, top quark masses and Higgs LEP bound.
- EW fit easier in regions Higgs couplings are linear (similar to those of the SM).

• Decays of excited state of gluons G¹ into pairs of excited tops t¹, mostly singlets under SM gauge group. Improve reach to probe t¹-masses further than direct QCD production. The pairs of t¹ decay into either W⁺b, Ht or Zt.

• Example of important couplings to consider:

$$g_{G^1\bar{t}t} = g_{5s}N_{G^1} \int_0^L \left(\sum_i f_{F,i,m_t}^{2/3*}(x_5,h) \cdot f_{F,i,m_t}^{2/3}(x_5,h) \right) C[x_5,m_{G^1}] dx_5$$

t¹ decay branching ratios,

for large m_{t^1} .

Figure 4: Branching ratios for the decay of t^1 vs Figure 5: Branching ratios for the decay of G^1 vs m_{t^1} (GeV). Notice that the 2:1:1 relations holds m_{G^1} (GeV). Notice that G^1 decays mostly to t^1 pairs.

• t¹ production cross section through QCD alone and through QCD+G¹ for M_{G1} =4 TeV.

Figure 5: Cross section for $M_{G^1} = 4.0$ TeV with couplings $g_{G^1 t^{\bar{1}}_L t^1_L}/g_s(\tilde{k}) = -5.18$ and $g_{G^1 t^{\bar{1}}_R t^1_R}/g_s(\tilde{k}) = -2.77$.

Notice that for $M_{t1} \approx 1.5$ TeV, G¹-induced production contributes in a significant amount to the t¹ production cross section.

• From the Goldstone Equivalence Theorem \rightarrow 50 % of times, t¹ decays in W⁺b. We shall therefore concentrate on the channel:

 $pp \rightarrow (g + G^1) \rightarrow t^1 \bar{t^1} \rightarrow W^+ b W^- \bar{b} \rightarrow l^- \bar{\nu} b \bar{b} j j, \quad (l = e, \mu)$

• Backgrounds for this signal: top quark pair production induced by G¹ in addition to QCD (main background), W+jets and Z+jets (last two backgrounds are reducible to negligible levels by requiring 2 b-tags and lepton+MET).

• Points chosen to analyze:

c_1	c_2	c_3	M_{B_1}	M_{B_2}	$h/(\sqrt{2}f_h)$	m_{G^1}	m_{t^1}	$g_{G^1 \bar{t} t_R}$	$g_{G^1 \bar{t} t_L}$	$g_{G^1 \bar{t^1} t^1_R}$	$g_{G^1 \bar{t^1} t^1_L}$
0.26	-0.41	-0.57	2.2	0.4	0.278	3915.8	1470.2	-2.09	-2.28	-2.73	-5.22
0.24	-0.41	-0.58	2.3	0.5	0.318	3439.6	1250.5	-2.12	-2.50	-2.67	-5.20

Table 1: Points of parameter space chosen for t^1 detection. All masses are given in GeV and the couplings are in units of $g_s(\tilde{k})$.

•We set cone reconstruction algorithm to $\Delta R = (\Delta \eta^2 + \Delta \phi^2)^{1/2} = 0.6$ for W invariant mass reconstruction.

Event Selection: First selection cut on hadronized events:

- 1. Isolated lepton with p_t >20 GeV and $|\eta|$ <2.5 plus missing energy with p_t >20 GeV.
- 2. At least three jets with $p_t>20$ GeV and $|\eta|<2.5$, with exactly 2 bottom-tags.

Isolated lepton+MET reduces backgrounds from QCD jets.

		Point	1	Point 2			
Process	σ [fb]	N^0 Events	N^0 after cuts	σ [fb]	N^0 Events	N^0 after cuts	
$G^1 \rightarrow t\bar{t}$	4.12	1236	1	4.43	443	0	
$g \rightarrow t^1 \bar{t^1}$	0.23	70	6	0.687	69	5	
$g + G^1 \rightarrow t\bar{t}$	3025	907527	7	3085	308509	6	
$g+G^1 \to t^1 t^{\bar 1}$	0.88	266	24	2.015	201	14	

Big top background which must be reduced to manageable levels \rightarrow Cuts $p_{t,bottom}$ and H_t .

W-mass reconstruction through two methods:

- $W \rightarrow 2$ jets. Works well for t¹ masses less than 1 TeV. Uses $\Delta R=0.4$. 1.
- 2. $W \rightarrow 1$ jet. Works well for t¹ masses bigger than 1 TeV. Increases signal and decreases background. Uses $\Delta R=0.6$. Figures in the case of point 1.

to 200 events.

Figure 9: Invariant reconstructed W mass using Figure 10: Invariant reconstructed W mass using the method of two jets. Distribution normalized the method of only one jet. Distribution normalized to 200 events.

• Final set of cuts for reconstruction of t¹ mass distribution:

• Reconstructed t¹ invariant mass distribution choosing bottom with biggest ΔR w.r.t W,

Point 1

Point 2

Results

We estimate statistical significance as $S/(S+B)^{1/2}$.

With the inclusion of K factors, K~1.5, presence of these particles may be found already at 100 fb⁻¹ for Point 1 (60 fb⁻¹ point 2) and discovery at 300 fb⁻¹ for point 1 (200 fb⁻¹ for point 2).

• Constant cross-section curves in (m_{G1}, m_{t1}) plane to estimate LHC reach at 300 fb⁻¹.

Figure 20: Curves of constant cross section for QCD in addition of G^1 decay, in (m_{G^1}, m_{t^1}) plane.

Conclusions

• First KK excitation of the top quark t¹ light enough to be produced from decays of first excited KK state of the gluon.

• Rich collider phenomenology: G¹ decays into t¹ expand the reach of t¹ detection to masses around 1.5 TeV.

• Consistent phenomenological model which will be tested at the LHC.

References:

[1] "Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions", A. Medina, N. Shah, C. Wagner. **arXiv:0706.1281**. Phys. Rev.D76:095010,2007.

[2] "Collider phenomenology of Gauge-Higgs unification scenarios in warped extra dimensions",

M. Carena, A. Medina, B. Panes, N. Shah, C. Wagner. **arXiv:0712.0095**. Phys. Rev.D77:076003, 2008.