

Ryan Gavin Univ. of Wisconsin - Madison

with P Fileviez Pérez, T McElmurry, F Petriello

Pheno 2008 April 29, 2008

- single charged color octet scalar production at LHC
- motivation & background
- 1 TeV colored octet scalar
 - Iarge S/√B
 - scalar/top/bottom Yukawa measurement
 - probe of GUT physics
 - analysis
- 1.5 TeV colored octet scalar
 - analysis

Motivation

- absence of flavor-changing neutral currents new physics should obey principle of minimal flavor violation (MFV)
 - MFV: flavor structure of physics beyond SM should be completely determined by SM Yukawa structure
- bottom up & top down approaches
- extended scalar sector (A Manohar & M Wise)
 - $(1,2)_{1/2} \& (8,2)_{1/2}$
 - has SM Yukawa structure preserves MFV
 - SM higgs and color octet scalar, respectively
- SU(5) Adjoint GUT (P Fileviez Pérez, H Iminniyaz, G Rodrigo)
 - predicts color octet scalar with SM flavor structure
 - octet scalar probes GUT properties
 - b τ unification, proton decay

Color octet interactions with fermions

$$\begin{split} &-\sqrt{2}\eta_{U}\bar{u}_{R}^{i}\frac{m_{U}^{i}}{v}T^{A}u_{L}^{i}S^{A0}+\text{h.c.}\\ &+\sqrt{2}\eta_{U}\bar{u}_{R}^{i}\frac{m_{U}^{i}}{v}T^{A}V_{ij}d_{L}^{j}S^{A+}+\text{h.c.}\\ &-\sqrt{2}\eta_{D}\bar{d}_{R}^{i}\frac{m_{D}^{i}}{v}T^{A}d_{L}^{i}S^{A0\dagger}+\text{h.c.}\\ &-\sqrt{2}\eta_{D}\bar{d}_{R}^{i}\frac{m_{D}^{i}}{v}V_{ij}^{\dagger}T^{A}u_{L}^{j}S^{A-}+\text{h.c.} \end{split}$$

(A Manohar & M Wise)

- new color octet states: S_R , S_I , S^+ , S^-
- $\eta_U \& \eta_D$ parameterize strength of coupling to matter
 - direct probe to GUTs

single charged octet production $g b \rightarrow S^- t \& g \overline{b} \rightarrow S^+ \overline{t}$ assume η_U , $\eta_D \sim 1$ • m_U coupling dominates $\sqrt{2}\eta_U \bar{u}_R^i \frac{m_U^i}{m} T^A V_{ij} d_L^j S^{A+} + h.c.$ • $S^+ \rightarrow W^+ S^0$, scalar cascade 10^{4} CTEQ6L1 decay unlikely 102 (fb) (M Gerbush, et al) 100 $S^{+}\overline{t}+S^{-}t$ ■ BR: $S^+ \rightarrow t\bar{b} \sim 100\%$ 10^{-2} $S^{+}S^{-}$ 10^{-4} 2 3 M_s (TeV)

- LO events
 - $pp \to S^{\pm} t \to t \bar{t} b$
 - σ_{LO} ≈ 93 fb
 - backgrounds: tt+jet, W+jets, QCD
 - $pp \rightarrow t\overline{t}j$
 - σ_{LO} ≈ 526 pb
- generated using MadEvent to parton level
 - standard acceptance cuts

Detector 'Simulation'

- Gaussian smearing of *E* or p_T
 - jet-like objects (b-quark, light quarks, gluons)

$$\frac{\delta E}{E} = rac{0.8}{\sqrt{E/\,{
m GeV}}} \oplus 0.03$$

electrons

$$rac{\delta E}{E} = rac{0.1}{\sqrt{E/\,{
m GeV}}} \oplus 0.007$$

muons

$$rac{\delta p_T}{p_T} = 0.15 \, rac{p_T}{\mathrm{TeV}} \oplus 0.005$$

• missing E_T defined by momentum balancing

Detector 'Simulation'

- 'jet' algorithm
 - iteratively combine final state partons with $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.4$
 - combined objects tagged as jet
- *b*-jet tagging
 - b-tag eff = 60%
 - fake rate = 3%
 - study quite sensitive to fake rate

Top Reconstruction

- only keep pure hadronic or single lepton (e or μ) events
- expect final state partons to be highly boosted
 - decay of tops highly collimated
- semi-leptonic top decay
 - find jet with smallest $\Delta R_{jet,lep} < \Delta R_{max} = 0.6$
 - combine lepton and missing energy
 - W mass constraint to find longitudinal component
 - solve ambiguity by picking solution which gives smaller ∆R_{jet,W}
 - tag as top-jet if m_{top} falls within 171±50 GeV

Top Reconstruction

- hadronic top decay
 - find two jets with smallest $\Delta R_{jet,jet} < \Delta R_{max} = 0.8$
 - if m_{jet,jet} falls within m_{top} window, tag as top
 - if m_{jet,jet} falls within m_W window, 40-121 GeV temporarily tag as W
 - find jet with smallest $\Delta R_{W_{temp,jet}} < \Delta R_{max} = 0.8$
 - if m_{W_temp,jet} falls within m_{top}, tag as top
- algorithm continues until no further tops found

	Analysis							
	 cuts kinematic & 'shape' (Mercedes 	t t s b						
-	Cut	S/S_0	B/B_0	S/\sqrt{B}	S/B			
	$H_T > 1000 { m ~GeV}$	0.483	0.0131	5.41	0.007			
	$p_{T_{t_1}}, p_{T_{b_1}} > 300 \; {\rm GeV}$	0.0710	$1.29 imes 10^{-4}$	8.01	0.097			
	$M_{b_1t_1} > 900 \; {\rm GeV}$	0.0679	$1.10 imes 10^{-4}$	8.30	0.109			
	$\Delta R_{b_1 t_1} < 3.0$	0.0347	$1.80 imes 10^{-5}$	10.49	0.341			
	$45^{\circ} < \theta_{t_1b_1} < 135^{\circ}, \ \theta_{(t_1+b_1)b_2} > 90^{\circ}$	0.0183	$4.50 imes 10^{-5}$	11.06	0.719			

Pheno 08 - 4/29/08

Analysis

- Estimate of error on measurement
 - error on $|\eta_U|^2$ connection to GUTs

$$\frac{\delta S}{S} = \frac{\sqrt{S+B} \oplus F_S S \oplus F_B B}{S}$$

- F_S , F_B theoretical errors for signal and background
 - LO variation in $\sigma_{\rm S}$ & $\sigma_{\rm B}$ by scale variation 0.5 μ & 2 μ -

F_S	F_B	$rac{\delta S}{S} \left(100 { m fb}^{-1} ight)$	$rac{\delta S}{S} \left(1 ext{ ab}^{-1} ight)$
0	0	0.119	0.037
0.10	0.15	0.260	0.234
0.10	0.30	0.445	0.431
0.15	0.40	0.588	0.577
	F_S 0 0.10 0.10 0.15	$\begin{array}{c cc} F_S & F_B \\ \hline 0 & 0 \\ 0.10 & 0.15 \\ 0.10 & 0.30 \\ 0.15 & 0.40 \end{array}$	$\begin{array}{c cccc} F_S & F_B & \frac{\delta S}{S} \left(100 \ {\rm fb}^{-1}\right) \\ \hline 0 & 0 & 0.119 \\ 0.10 & 0.15 & 0.260 \\ 0.10 & 0.30 & 0.445 \\ 0.15 & 0.40 & 0.588 \end{array}$

1.5 TeV Octet Scalar

 10^{4} single production CTEQ6L1 provides further reach 102 for discovery of r (fb) 100 $S^{+}\overline{t}+S^{-}t$ heavier octet scalar • LO $\sigma \approx 10$ fb 10^{-2} $S^+S^ 10^{-4}$ 2 3

M_s (TeV)

- similar generation, simulation as 1 TeV octet
 - hadronic $\Delta R_{max} = 0.6$
- b-tag eff = 50%
- fake rate = 5%
 - very sensitive to fake rate

1.5 TeV Analysis

cuts

Cut	S/S_0	B/B_0	$S/\sqrt{B} \left(100 { m fb}^{-1} ight)$	$S/\sqrt{B}(1{ m ab}^{-1})$
$H_T > 1500 \text{ GeV}$	0.402	$1.3 imes 10^{-3}$	1.51	4.78
$p_{T_{t_1}} > 400, p_{T_{b_1}} > 500 { m GeV}$	0.0521	1.71×10^{-5}	1.71	5.40
$M_{b_1t_1}>1300~{\rm GeV}$	0.0507	1.54×10^{-5}	1.75	5.55
$\Delta R_{b_1 t_1} < \pi$	0.0409	7.74×10^{-6}	1.99	6.31

discovery possible with 1 ab⁻¹ of integrated luminosity

Summary

- single charged colored octet scalar production at m_S ≈ 1 TeV
 - S/√B ≈ 11
- direct probe of scalar/top/bottom Yukawa coupling (GUT probe)
 - $\Delta S/S \approx \pm 25-45\%$
 - need to understand $pp \rightarrow t\overline{t}j$ uncertainties
- single production dominates at $m_S \approx 1.5 \text{ TeV}$
 - discovery at 1 ab⁻¹ of integrated luminosity possible