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Introduction

• Conventional Seesaw mechanism:  High (GUT) scale physics

• With SM particle content:

• ∃ gauge singlet fermions νR

• Can small neutrino masses due to low (TeV) scale physics?

• new EW models (littel Higgs, Higgsless models, etc):  Λ ~ TeV

• can be tested at colliders 
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An Alternative

• gauge symmetry SM x non-anomalous U(1)ν   +  N   νR  

• SM particles &  νR :   all charged under U(1)

• U(1) forbids dim-4, dim-5 operators

• To get 

• non-anomalous U(1)ν

• anomaly cancellation conditions ⇒ constraints on U(1) charges

• generation dependent charges ⇒ U(1) flavor symmetry
                                             ⇒ mixing pattern & mass hierarchy (FN)

• light sterile neutrinos: DM candidate
• TeV scale Z’: probing flavor sector at colliders

• c.f. anomalous U(1): mixed anomaly cancelled by Green-Schwarz mechanism 

• U(1) broken at fundamental string scale
• [U(1)]3 anomaly cancelled by other exotics
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Fig. 3. Schematic diagrams for Froggatt-Nielsen mechanism. Here a and b are the family indices.
(χ, χ) are the vector-like Froggatt-Nielsen fields. Figure (a): The tree level diagram generating
the mass of the third family is given; (b): The mass of the lighter matter fields generated by this
diagram is ∼ O((<θ>

M
)2); (c): Higher order diagrams generate mass ∼ O((<θ>

M
)n).

lighter matter fields are produced by higher dimensional interactions involving, in
addition to the regular Higgs fields, exotic vector-like pairs of matter fields and the
so-called flavons (flavor Higgs fields). Schematic diagrams for these interactions are
shown in Fig.3. After integrating out superheavy vector-like matter fields of mass
M , the mass terms of the light matter fields get suppressed by a factor of <θ>

M ,
where < θ > is the VEVs of the flavons and M is the UV-cutoff of the effective
theory above which the flavor symmetry is exact. When the family symmetry is
exact, only the (33) entry is non-zero. When the family symmetry is spontaneously
broken, the zero entries will be filled in at some order O(<θ>

M ). Suppose the family
symmetry allows only the (23) and (32) elements at order O(<θ>

M ),




0 0 0
0 0 0
0 0 1



 SSB

−→




0 0 0
0 0 <θ>

M

0 <θ>
M 1



 . (15)

Then a second fermion mass is generated at order O((<θ>
M )2) after the family

symmetry is spontaneous broken. The fermion mass hierarchy thus arises.
To illustrate how the Froggatt-Nielsen mechanism works, suppose there is a

vector-like pair of matter fields (χ⊕χ) with mass M and carrying the same quantum
numbers as ψR under the vertical gauge group (e.g. SM or SO(10)), but different
quantum numbers under the family symmetry. It is therefore possible to have a
Yukawa coupling yχψLH where H is the SM doublet Higgs if the family symmetry
permits such a coupling. In addition, there is a gauge singlet θ which transforms
non-trivially under the family symmetry. Suppose the coupling y

′

ψRχθ is allowed
by the family symmetry, we then obtain the following seesaw mass matrix, upon H

Λ ~ TeV!



The Model

SM x U(1)ν +  N   νR  

• generation independent quark charges ⇒ no FCNC in quark sector

• generation dependent lepton charges ⇒ neutrino mixing 

• scalar charges:  

• N = 1, 2:  always terms allowed at dime-4
                 ⇒ high seesaw scale

• lowest value for N to get TeV scale seesaw:  N=3                 

• with N=3:   (9+N) charges 
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Anomaly Cancellation

SU(3) x SU(2)L x U(1)Y x U(1)ν 
• 4 mixed anomalies not involving νR 

• 2 anomaly conditions involving νR 

• additional constraints:
• top mass generated at dim-4: 

(all quark masses allowed at dim-4)
• diagonal elements in Me allowed at dim-4

• charged fermion sector: 4 independent charges
• neutrino sector:  (N-2) independent charges
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3

all standard model Yukawa couplings involving quarks
are allowed by all gauge symmetries.

We further require that the “diagonal” Yukawa inter-
actions involving the tau and the muon,

λii
e "

i
Lei

RH , i = 2, 3, (II.7)

are gauge invariant. The entries of the 3 × 3 matrix λe

are dimensionless Yukawa couplings. Using Eqs. (II.6)
and (II.1), we find that these two conditions are satisfied
if

ze2
= z!2 − zu + zq ,

ze3
= − (8zq + zu + z!1 + z!2) . (II.8)

Consequently, the [U(1)Y ]2U(1)ν anomaly cancellation
condition given in Eq. (II.2) implies

ze1
= z!1 − zu + zq , (II.9)

so that the diagonal electron Yukawa interaction is au-
tomatically gauge invariant. It is interesting that the
conditions z!i

− zei
= zq − zu for i = 1, 2, 3 reduce

the quadratic equation Eq. (II.3) to a linear one, which
is automatically satisfied once the [SU(2)L]2U(1)ν and
[U(1)Y ]2U(1)ν anomaly cancellation conditions given in
Eq. (II.1) and (II.2) are satisfied. Note that off-diagonal,
renormalizable charged-lepton Yukawa couplings may be
forbidden by U(1)ν invariance. Similar to the quark sec-
tor, the hierarchy of masses for the electrically-charged
leptons is generically dictated by the entries of λe, which
do not depend on the existence of U(1)ν . On the other
hand, lepton mixing can be quite sensitive to the choices
of the z!i

and zei
charges, as discussed in more detail

below.
Altogether, the nine U(1)ν charges of the standard

model fermions may be expressed in terms of only four
of them, chosen in Eqs. (II.1), (II.8) and (II.9) to be zq,
zu, z!1 and z!2 . Furthermore, the U(1)ν charges of the N
right-handed neutrinos are not independent: one of them
may be eliminated using the U(1)ν anomaly cancellation
condition [see Eq. (II.4)], and the remaining N−1 charges
must satisfy the cubic equation (II.5).

All U(1) charges must be commensurate, i.e., their
ratios are rational numbers∗. This is necessary so that
low-energy theories containing U(1) gauge groups can be
embedded in theories which are well-behaved in the ultra-
violet. By changing the normalization of the gauge cou-
pling, the commensurate charges may always be taken
to be rational numbers or even integers. For the rest
of the paper we will treat all U(1)ν charges as rational
numbers. It follows that the cubic equation (II.5) has
solutions only for very special choices of the zq, zu, z!1 ,
z!2 and zni

charges.

∗ If the charges are not commensurate, then the U(1) group does
not have the topology of a circle, but rather that of an infinite
line.

It has been shown in Ref. [20] that by including a
sufficiently large number of right-handed neutrinos, the
anomaly conditions may always be solved. However, if
too many right-handed neutrinos were included, then
U(1)ν would become strongly coupled at a low energy
scale, and the model would be phenomenologically ruled
out. In this paper we tackle the inverse problem: fix-
ing the number of right-handed neutrinos, we seek ratio-
nal solutions to the anomaly cancellation conditions, and
then study the phenomenological consequences of the few
cases where we find solutions.

B. Neutrino mass terms

For random choices of the U(1)ν charges, the usual

neutrino mass terms, of the type "ci
L"j

LHH or "
i
Lnk

RH̃
(H̃ ≡ iσ2H∗), are likely to be forbidden by U(1)ν invari-
ance. However, higher-dimensional operators involving
the scalar φ may generate neutrino masses while being
U(1)ν invariant. The leading operators that yield neu-
trino masses are

∑

i,j

cij
!

Λ

(gφ

Λ
φ
)qij

"ci
L"j

LHH +
∑

i,k

λik
ν

(gφ

Λ
φ
)pik

"
i
Lnk

RH̃

+
∑

k,k′

ckk′

n Λ
(gφ

Λ
φ
)rkk′

nck
Rnk′

R + H.c. , (II.10)

where λν , c!, cn are dimensionless couplings, i, j = 1, 2, 3,
k, k′ = 1, . . . , N , and Λ > 〈φ〉 is the energy scale above
which the theory is no longer valid. The dimensionless
parameter gφ accounts for the fact that each φ field par-
ticipating in a higher-dimensional operator is presumably
associated in an underlying renormalizable theory with
a heavy fermion exchange, of typical mass Λ and typical
Yukawa coupling gφ. The expressions above are allowed
only for integer values of pik, qij , and rkk′ . If any of these
integers is negative, then φ needs to be replaced by φ†

in the corresponding operator, and the absolute value of
the exponent is to be used.

The exponents p, q and r can be expressed as a function
of the U(1)ν fermion charges as

pik = zu − zq + z!i
− znk

,

qij = 2(zq − zu) − z!i
− z!j

,

rkk′ = −znk
− znk′

, (II.11)

where we have normalized the gauge coupling such that
the φ charge is +1. The charges that determine the ex-
ponents above are not all independent, and there are cor-
relations among the different exponents.

Replacing the φ and H fields by their VEVs, we find
the following mass terms for the three active and N sterile

U(1)ν − graviton :
∑N

k=1 znk = −3(4zq − zu)

[U(1)ν ]3 :
∑3

i=1 z3
nk

= (2z3
"i
− z3

ei
)− 54zq(zq − zu)2

me ∼




λ11 ∗ ∗
∗ λ22 ∗
∗ ∗ λ33





zH = zu − zq

sij $= 0 for i $= j ⇒ tree-level FCNC mediated by Z ′

fV †γµ




z"1

z"2

z"3



 V f

µ → e, µ+ → e+e−e+, τ → $$′$′′

decay rate: Γ ∝
(

ε|sij |

〈φ〉2

)2

, ε|sij | < 1

zq, zu, z"1 , z"2 , 2znk

Λ ∼ 1 TeV

λ ∼ 10−4 − 10−5 : b = ±2

λ ∼ 1 : b = ±13

λ ∼ 10−5, ε ∼ 10−4, |b| = 3

⇒ light sterile mν4 ∼ Λε4|b|/3

(
λ2

ν

c"

)
∼ 10−9 eV

⇒ 2 heavy sterile mν5,6 ∼ Λε|b|/3cn ∼ 1 keV
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Neutrino Mass Terms

U(1)ν  forbids            ,                 ,                ; after its breaking:  

• LH Majorana mass terms: 

• Dirac mass terms:

• RH Majorana mass terms:

• resulting neutrino mass matrix:

• pure type-I seesaw unattainable 
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if
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[U(1)Y ]2U(1)ν anomaly cancellation conditions given in
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leptons is generically dictated by the entries of λe, which
do not depend on the existence of U(1)ν . On the other
hand, lepton mixing can be quite sensitive to the choices
of the z!i

and zei
charges, as discussed in more detail

below.
Altogether, the nine U(1)ν charges of the standard

model fermions may be expressed in terms of only four
of them, chosen in Eqs. (II.1), (II.8) and (II.9) to be zq,
zu, z!1 and z!2 . Furthermore, the U(1)ν charges of the N
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pling, the commensurate charges may always be taken
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It has been shown in Ref. [20] that by including a
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anomaly conditions may always be solved. However, if
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U(1)ν would become strongly coupled at a low energy
scale, and the model would be phenomenologically ruled
out. In this paper we tackle the inverse problem: fix-
ing the number of right-handed neutrinos, we seek ratio-
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where v ! 174 GeV is the magnitude of the Higgs VEV,
and

ε ≡ gφ
〈φ〉

Λ
, (II.13)

is a small parameter (ε % 1) that plays an important role
in what follows. We assume for simplicity that 〈φ〉 > v.
Lower values for 〈φ〉 are possible, but the limits are highly
model dependent.

Schematically, the (3 + N) × (3 + N) neutrino mass
matrix Mν is given by
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Mostly-active neutrino masses arise through a combina-
tion of the νc

LνL mass terms (sometimes referred to as
the Type-II seesaw contribution) and the (Type-I) see-
saw contribution, proportional to ε2|p|−|r| if the Dirac
masses are much smaller than the right-handed Majo-
rana masses.

It is curious that a pure Type-I seesaw (i.e., vanish-
ing ε|q| term) is not attainable, provided that all gauge
invariant operators are present. To see this, note that if
there is a Type-I seesaw contribution to the active neu-
trino mass, then there are integer values for pik and rkk′ ,
implying that the same is true for†

qij = −pik − pjk′ + rkk′ . (II.15)

In this case, assuming that the neutrino effective Dirac
masses are much smaller than the effective right-handed
neutrino Majorana masses, the effective 3×3 active neu-
trino mass matrix mν is proportional to, schematically,

mij =
v2

Λ

(

cij
" ε|qij | +

∑

k,k′

λik
ν (cnε|r|)−1

kk′ (λ!
ν )k′j

× ε|pik|+|pjk′ |
)

, (II.16)

where cnε|r| is a short-hand notation for a matrix whose
(k, k′) entry is ckk′

n ε|rkk′ |.

† The converse is not necessarily true: it is possible to choose
charges so that qij is an integer for some i, j pair, while there
are no integer pik, rkk′ for all values of k, k′ and i. In this case,
only the Type-II contribution is present.

As opposed to usual seesaw models where the small-
ness of the neutrino mass is due to Λ ) v, in our theory
the neutrinos are naturally light even when Λ ! 10 TeV,
provided ε is small enough, or its exponents are large
enough. In particular, if there are no integer values of qij

and rkk′ , then the neutrinos are purely Dirac fermions,
and their masses are naturally small if pik are large in-
tegers. Note also that for large values of rkk′ there are
light – sometimes very light – mostly-sterile neutrinos.
One should keep in mind, though, that if the exponents
are too large, then the operators shown in Eq. (II.10)
would have a high mass dimension, and embedding them
in a renormalizable model would require an extended set
of heavy vectorlike fermions [21].

The choice of U(1)ν charges also allows one to probe
natural explanations for the neutrino mass hierarchy, and
the pattern of the leptonic mixing matrix. The reason
for this is that the U(1)ν charges for the leptons can
be family dependent, in which case U(1)ν operates as a
family symmetry. In this particular approach to flavor,
it is natural to obtain a hierarchy among the elements
of the neutrino (and charged lepton) mass matrices (e.g.
M11 ) M12, etc). On the other hand, this approach does
not explain the relationship between different entries in
the mass matrices that have, naively, the same order of
magnitude. This is because all the dimensionless coeffi-
cients λν , c", and cn are undetermined free parameters
in our framework.

C. Charged leptons and flavor-changing neutral
currents

While we have imposed constraints on the charged-
lepton U(1)ν charges to guarantee that renormalizable
diagonal charged-lepton Yukawa interactions are allowed
by gauge invariance, the presence of off-diagonal Yukawa
interactions will depend on specific choices for z"i

and zei
.

If these are not allowed by gauge invariance at the renor-
malizable level, there remains the possibility that, similar
to the neutrino mass operators discussed in the previ-
ous subsection, higher-dimensional operators will gener-
ate them:

∑

ij

λij
e

(gφ

Λ
φ
)sij

#
i
Lej

RH + H.c. . (II.17)

After the constraints discussed earlier are taken into ac-
count, the exponents sij are given by

sij = z"i
− z"j

. (II.18)

As with the neutrinos, it is understood that only terms
corresponding to integer values of sij are present. Note
that sij ≡ 0 for i = j, so Eq. (II.17) includes Eq. (II.7).

Off-diagonal charged lepton Yukawa interactions will
lead to tree-level, charged-lepton flavor violating cou-
plings of the Z ′ gauge boson if the charged-lepton U(1)ν

charges are flavor dependent (z"i
*= z"j

or zei
*= zej
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• charged lepton masses: 
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• flavor changing processes
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As with the neutrinos, it is understood that only terms
corresponding to integer values of sij are present. Note
that sij ≡ 0 for i = j, so Eq. (II.17) includes Eq. (II.7).

Off-diagonal charged lepton Yukawa interactions will
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Leptocratic Models

• with N=3:  5  independent charges     

• Cubic equation:  rational solutions non-trivial [Fermat’s Last Theorem]

• [U(1)ν]3  : general class of rational solutions 

U(1)ν − graviton :
∑N

k=1 znk = −3(4zq − zu)

[U(1)ν ]3 :
∑3

i=1 z3
nk

(2z3
"i
− z3

ei
)− 54zq(zq − zu)2

me ∼




λ11 ∗ ∗
∗ λ22 ∗
∗ ∗ λ33





zH = zu − zq

sij $= 0 for i $= j ⇒ tree-level FCNC mediated by Z ′

fV †γµ




z"1

z"2

z"3



 V f

µ → e, µ+ → e+e−e+, τ → $$′$′′

decay rate: Γ ∝
(

ε|sij |

〈φ〉2

)2

, ε|sij | < 1

zq, zu, z"1 , z"2 , 2znk

2
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for some i != j). These, in turn, will mediate charged-
lepton flavor violating processes such as µ+ → e+e−e+,
µ → e conversion in nuclei, τ → ""′"′′, and τ →
"+hadron(s). The rates of such processes will be, naively,
Γ ∝ (ε|sij |/〈φ〉2)2. Current limits on charged-lepton fla-
vor violation require ε|sij | & 1 or 〈φ〉 ' v. Note that if
U(1)ν charges are such that there are no integer sij with
i != j, then Z ′ exchange will not mediate charged-lepton
flavor violating processes at tree level, regardless of the
relative values of the the charged-lepton U(1)ν charges.
The reason for this is the fact that both the Z ′ coupling
and the Yukawa coupling charged-lepton eigenbases are
the same (i.e., both matrices are diagonal) in this case.

Similar to what happens with the charged leptons,
off-diagonal neutral lepton interactions will also lead to
flavor-changing processes in the neutrino sector. Unlike
processes involving charged leptons, however, neutrino
flavor-changing neutral currents are not very severely
constrained [22]. This means that these are not likely to
be cause for concern as long as 〈φ〉 is only slightly larger
than the electroweak scale, regardless of the relative
strength of the off-diagonal neutrino–Z ′ coupling. On
the other hand, phenomenologically interesting choices
for the lepton U(1)ν charges often predict large neutrino
flavor-changing processes, which will be significantly bet-
ter constrained in the next round of neutrino oscillation
experiments [23].

III. LEPTOCRATIC MODEL

In order to construct a viable theory for physics be-
yond the standard model using the framework presented
in Sec. II, one has to identify a set of commensurate
charges for the right-handed neutrinos which cancel the
[U(1)ν ]3 anomaly, as shown in Eq. (II.5). This is a highly
nontrivial problem: cubic equations do not have integer
solutions except for very special cases. In this section we
show that in the case of N = 3 right-handed neutrinos the
cubic equation can be solved for arbitrary lepton charges
consistent with the restrictions imposed in Sec. II A.

We have mentioned at the end of Sec. II A that alto-
gether there are two quark charges, two lepton-doublet
charges and N − 1 right-handed neutrino charges that
remain independent once all standard model mass terms
are allowed, and all anomaly cancellation conditions
other than the [U(1)ν ]3 are imposed. The cubic equa-
tion Eq. (II.5) in these six rational variables (for N = 3)
appears daunting at first sight. However, we found a sim-
ple parametrization of the charges that greatly simplifies
its solution. The lepton-doublet charges may be written
in terms of zq and two rational numbers, a and a′:

z"1 ≡ −3zq − 2a ,

z"2 ≡ −3zq + a + a′ ,

z"3 = −3zq + a − a′ , (III.1)

so that the second sum rule of Eq. (II.1) is automatically

satisfied. The charges of the right-handed quarks are
conveniently parametrized as

zu ≡ 4zq −
c

2
,

zd = −2zq +
c

2
, (III.2)

where c is a rational number. The Higgs doublet has
U(1)ν charge

zH = 3zq −
c

2
. (III.3)

The U(1)ν charges of the SU(2)L-singlet standard model
leptons are then fixed by requiring renormalizable mass
terms for the charged leptons [see Eqs. (II.8) and (II.9)]:

ze1
≡ −6zq +

c

2
− 2a ,

ze2
≡ −6zq +

c

2
+ a + a′ ,

ze3
= −6zq +

c

2
+ a − a′ . (III.4)

Finally, the right-handed neutrinos have charges

zn1
≡ −

c

2
− 2b ,

zn2
≡ −

c

2
+ b + b′ ,

zn3
= −

c

2
+ b − b′ , (III.5)

which automatically satisfy the sum rule given in
Eq. (II.4) for any rational numbers b and b′. With this
parametrization, all the terms involving zq from the cu-
bic equation drop out, such that the [U(1)ν ]3 anomaly
cancellation condition (II.5) takes a rather simple form:

c

2

(

3a2 + a′2 − 3b2 − b′2
)

= −a
(

a2 − a′2
)

+ b
(

b2 − b′2
)

.

(III.6)
Remarkably, only terms linear in c or independent of c
are present, so that for any rational numbers a, a′, b and
b′ there is a rational solution for c.

Given that only the lepton charges in this model are
allowed to be generation dependent, we will refer to the
charge assignment described by Eqs. (III.1)-(III.6) as the
“Leptocratic Model”.

The exponents that determine the orders of magnitude
of the various Dirac neutrino masses are given by

p =









−2(a− b) − (2a + b + b′) − (2a + b − b′)

a + a′ + 2b a + a′ − b − b′ a + a′ − b + b′

a − a′ + 2b a − a′ − b − b′ a − a′ − b + b′









.

(III.7)

The orders of magnitude of the left-handed Majorana
neutrino masses are determined by the following expo-
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for some i != j). These, in turn, will mediate charged-
lepton flavor violating processes such as µ+ → e+e−e+,
µ → e conversion in nuclei, τ → ""′"′′, and τ →
"+hadron(s). The rates of such processes will be, naively,
Γ ∝ (ε|sij |/〈φ〉2)2. Current limits on charged-lepton fla-
vor violation require ε|sij | & 1 or 〈φ〉 ' v. Note that if
U(1)ν charges are such that there are no integer sij with
i != j, then Z ′ exchange will not mediate charged-lepton
flavor violating processes at tree level, regardless of the
relative values of the the charged-lepton U(1)ν charges.
The reason for this is the fact that both the Z ′ coupling
and the Yukawa coupling charged-lepton eigenbases are
the same (i.e., both matrices are diagonal) in this case.

Similar to what happens with the charged leptons,
off-diagonal neutral lepton interactions will also lead to
flavor-changing processes in the neutrino sector. Unlike
processes involving charged leptons, however, neutrino
flavor-changing neutral currents are not very severely
constrained [22]. This means that these are not likely to
be cause for concern as long as 〈φ〉 is only slightly larger
than the electroweak scale, regardless of the relative
strength of the off-diagonal neutrino–Z ′ coupling. On
the other hand, phenomenologically interesting choices
for the lepton U(1)ν charges often predict large neutrino
flavor-changing processes, which will be significantly bet-
ter constrained in the next round of neutrino oscillation
experiments [23].
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In order to construct a viable theory for physics be-
yond the standard model using the framework presented
in Sec. II, one has to identify a set of commensurate
charges for the right-handed neutrinos which cancel the
[U(1)ν ]3 anomaly, as shown in Eq. (II.5). This is a highly
nontrivial problem: cubic equations do not have integer
solutions except for very special cases. In this section we
show that in the case of N = 3 right-handed neutrinos the
cubic equation can be solved for arbitrary lepton charges
consistent with the restrictions imposed in Sec. II A.

We have mentioned at the end of Sec. II A that alto-
gether there are two quark charges, two lepton-doublet
charges and N − 1 right-handed neutrino charges that
remain independent once all standard model mass terms
are allowed, and all anomaly cancellation conditions
other than the [U(1)ν ]3 are imposed. The cubic equa-
tion Eq. (II.5) in these six rational variables (for N = 3)
appears daunting at first sight. However, we found a sim-
ple parametrization of the charges that greatly simplifies
its solution. The lepton-doublet charges may be written
in terms of zq and two rational numbers, a and a′:

z"1 ≡ −3zq − 2a ,

z"2 ≡ −3zq + a + a′ ,

z"3 = −3zq + a − a′ , (III.1)

so that the second sum rule of Eq. (II.1) is automatically

satisfied. The charges of the right-handed quarks are
conveniently parametrized as

zu ≡ 4zq −
c

2
,

zd = −2zq +
c

2
, (III.2)

where c is a rational number. The Higgs doublet has
U(1)ν charge

zH = 3zq −
c

2
. (III.3)

The U(1)ν charges of the SU(2)L-singlet standard model
leptons are then fixed by requiring renormalizable mass
terms for the charged leptons [see Eqs. (II.8) and (II.9)]:

ze1
≡ −6zq +
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2
− 2a ,

ze2
≡ −6zq +
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2
+ a + a′ ,
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= −6zq +
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2
+ a − a′ . (III.4)

Finally, the right-handed neutrinos have charges

zn1
≡ −
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2
− 2b ,
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≡ −
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2
+ b + b′ ,
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= −
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2
+ b − b′ , (III.5)

which automatically satisfy the sum rule given in
Eq. (II.4) for any rational numbers b and b′. With this
parametrization, all the terms involving zq from the cu-
bic equation drop out, such that the [U(1)ν ]3 anomaly
cancellation condition (II.5) takes a rather simple form:
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2

(

3a2 + a′2 − 3b2 − b′2
)

= −a
(

a2 − a′2
)

+ b
(

b2 − b′2
)

.

(III.6)
Remarkably, only terms linear in c or independent of c
are present, so that for any rational numbers a, a′, b and
b′ there is a rational solution for c.

Given that only the lepton charges in this model are
allowed to be generation dependent, we will refer to the
charge assignment described by Eqs. (III.1)-(III.6) as the
“Leptocratic Model”.

The exponents that determine the orders of magnitude
of the various Dirac neutrino masses are given by

p =


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The orders of magnitude of the left-handed Majorana
neutrino masses are determined by the following expo-
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for some i != j). These, in turn, will mediate charged-
lepton flavor violating processes such as µ+ → e+e−e+,
µ → e conversion in nuclei, τ → ""′"′′, and τ →
"+hadron(s). The rates of such processes will be, naively,
Γ ∝ (ε|sij |/〈φ〉2)2. Current limits on charged-lepton fla-
vor violation require ε|sij | & 1 or 〈φ〉 ' v. Note that if
U(1)ν charges are such that there are no integer sij with
i != j, then Z ′ exchange will not mediate charged-lepton
flavor violating processes at tree level, regardless of the
relative values of the the charged-lepton U(1)ν charges.
The reason for this is the fact that both the Z ′ coupling
and the Yukawa coupling charged-lepton eigenbases are
the same (i.e., both matrices are diagonal) in this case.

Similar to what happens with the charged leptons,
off-diagonal neutral lepton interactions will also lead to
flavor-changing processes in the neutrino sector. Unlike
processes involving charged leptons, however, neutrino
flavor-changing neutral currents are not very severely
constrained [22]. This means that these are not likely to
be cause for concern as long as 〈φ〉 is only slightly larger
than the electroweak scale, regardless of the relative
strength of the off-diagonal neutrino–Z ′ coupling. On
the other hand, phenomenologically interesting choices
for the lepton U(1)ν charges often predict large neutrino
flavor-changing processes, which will be significantly bet-
ter constrained in the next round of neutrino oscillation
experiments [23].

III. LEPTOCRATIC MODEL

In order to construct a viable theory for physics be-
yond the standard model using the framework presented
in Sec. II, one has to identify a set of commensurate
charges for the right-handed neutrinos which cancel the
[U(1)ν ]3 anomaly, as shown in Eq. (II.5). This is a highly
nontrivial problem: cubic equations do not have integer
solutions except for very special cases. In this section we
show that in the case of N = 3 right-handed neutrinos the
cubic equation can be solved for arbitrary lepton charges
consistent with the restrictions imposed in Sec. II A.

We have mentioned at the end of Sec. II A that alto-
gether there are two quark charges, two lepton-doublet
charges and N − 1 right-handed neutrino charges that
remain independent once all standard model mass terms
are allowed, and all anomaly cancellation conditions
other than the [U(1)ν ]3 are imposed. The cubic equa-
tion Eq. (II.5) in these six rational variables (for N = 3)
appears daunting at first sight. However, we found a sim-
ple parametrization of the charges that greatly simplifies
its solution. The lepton-doublet charges may be written
in terms of zq and two rational numbers, a and a′:

z"1 ≡ −3zq − 2a ,

z"2 ≡ −3zq + a + a′ ,

z"3 = −3zq + a − a′ , (III.1)

so that the second sum rule of Eq. (II.1) is automatically

satisfied. The charges of the right-handed quarks are
conveniently parametrized as

zu ≡ 4zq −
c

2
,

zd = −2zq +
c

2
, (III.2)

where c is a rational number. The Higgs doublet has
U(1)ν charge

zH = 3zq −
c

2
. (III.3)

The U(1)ν charges of the SU(2)L-singlet standard model
leptons are then fixed by requiring renormalizable mass
terms for the charged leptons [see Eqs. (II.8) and (II.9)]:

ze1
≡ −6zq +

c

2
− 2a ,

ze2
≡ −6zq +

c

2
+ a + a′ ,

ze3
= −6zq +

c

2
+ a − a′ . (III.4)

Finally, the right-handed neutrinos have charges

zn1
≡ −

c

2
− 2b ,

zn2
≡ −

c

2
+ b + b′ ,

zn3
= −

c

2
+ b − b′ , (III.5)

which automatically satisfy the sum rule given in
Eq. (II.4) for any rational numbers b and b′. With this
parametrization, all the terms involving zq from the cu-
bic equation drop out, such that the [U(1)ν ]3 anomaly
cancellation condition (II.5) takes a rather simple form:

c

2

(

3a2 + a′2 − 3b2 − b′2
)

= −a
(

a2 − a′2
)

+ b
(

b2 − b′2
)

.

(III.6)
Remarkably, only terms linear in c or independent of c
are present, so that for any rational numbers a, a′, b and
b′ there is a rational solution for c.

Given that only the lepton charges in this model are
allowed to be generation dependent, we will refer to the
charge assignment described by Eqs. (III.1)-(III.6) as the
“Leptocratic Model”.

The exponents that determine the orders of magnitude
of the various Dirac neutrino masses are given by

p =









−2(a− b) − (2a + b + b′) − (2a + b − b′)

a + a′ + 2b a + a′ − b − b′ a + a′ − b + b′

a − a′ + 2b a − a′ − b − b′ a − a′ − b + b′









.
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The orders of magnitude of the left-handed Majorana
neutrino masses are determined by the following expo-
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nents:

q =









c + 4a c + a − a′ c + a + a′

c + a − a′ c − 2 (a + a′) c − 2a

c + a + a′ c − 2a c − 2 (a − a′)









.

(III.8)

For right-handed Majorana neutrino masses, the expo-
nents are given by

r =









c + 4b c + b − b′ c + b + b′

c + b − b′ c − 2 (b + b′) c − 2b

c + b + b′ c − 2b c − 2 (b − b′)









.

(III.9)

The exponents in the charged lepton mass matrix are

s =









0 −3a − a′ −3a + a′

3a + a′ 0 2a′

3a − a′ −2a′ 0









.

(III.10)

If the factor multiplying c in Eq. (III.6) vanishes, then
one can show that some of the pij exponents vanish.
Given that we want to avoid dimension-4 Dirac neutrino
mass terms, we assume

3a2 + a′2 "= 3b2 + b′2 , (III.11)

which implies

c = −2
a

(

a2 − a′2
)

− b
(

b2 − b′2
)

3a2 + a′2 − 3b2 − b′2
. (III.12)

The orders of magnitude of various neutrino mass
terms are set by the exponents pij , qij and rij , where it
is understood that nonzero entries exist only if the cor-
responding exponent is an integer. The parameter space
that includes these exponents has four arbitrary ratio-
nal parameters a, a′, b, b′. For most choices of these pa-
rameters, the neutrino phenomenology is not consistent
with the observations. However, there are cases where all
phenomenological constraints are satisfied. We do not at-
tempt here to search for all such cases, but rather give
some interesting examples.

A. “Orwellian” Leptocratic Model

Let us first consider the case where the U(1)ν

charges of the standard model fermions are generation-
independent, and the charges of the second and third
right-handed neutrinos are equal but different from the
charge of the first right-handed neutrino:

a = a′ = b′ = 0 . (III.13)

field U(1)ν charge

qL zq

uR 4zq +
b

3

dR −2zq −
b

3

!L −3zq

eR −6zq −
b

3

n1

R −
5b

3

n2

R, n3

R

4b

3

H 3zq +
b

3
φ +1

TABLE I: U(1)ν charges of the quarks, leptons and scalars,
for the Leptocratic Model with a = a′ = b′ = 0.

In this case, there are no charged-lepton flavor violating
processes mediated by Z ′ exchange at the tree level. The
U(1)ν charges are shown in Table I. We will refer to this
particular type of Leptocratic Model as Orwellian [24],
given that one of the right-handed neutrinos has a U(1)ν

charge different from the other two. Note that we do
not consider the case b = 0 because that would allow
Dirac masses from dimension-4 operators. Under these
circumstances, Eq. (III.12) implies

c = −
2

3
b . (III.14)

Depending on the values of b, there are three viable
cases with different phenomenology. First, if b is an in-
teger but not a multiple of 3, then all Dirac mass terms
are allowed,

MD = v ε|b|







λ11
ν ε|b| λ12

ν λ13
ν

λ21
ν ε|b| λ22

ν λ23
ν

λ31
ν ε|b| λ32

ν λ33
ν






, (III.15)

while all Majorana masses are forbidden by gauge in-
variance. Assuming that all Yukawa-like couplings λij

ν
are of the same order of magnitude, the above Dirac
mass matrix provides a good fit to all existing neutrino
data (except for those from LSND). This is an interesting
case because it shows that the neutrinos may be Dirac
fermions with naturally small masses. For example, if all
λij

ν are in the range of 10−5−10−4 (i.e., somewhat larger
than the electron Yukawa coupling), and ε ∼ 10−4, then
for b = ±2 one can easily obtain a neutrino mass spec-
trum with normal hierarchy: mν3

∼ 0.05 eV, mν2
∼ 0.01

eV (to accommodate the atmospheric and solar mass-
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for some i != j). These, in turn, will mediate charged-
lepton flavor violating processes such as µ+ → e+e−e+,
µ → e conversion in nuclei, τ → ""′"′′, and τ →
"+hadron(s). The rates of such processes will be, naively,
Γ ∝ (ε|sij |/〈φ〉2)2. Current limits on charged-lepton fla-
vor violation require ε|sij | & 1 or 〈φ〉 ' v. Note that if
U(1)ν charges are such that there are no integer sij with
i != j, then Z ′ exchange will not mediate charged-lepton
flavor violating processes at tree level, regardless of the
relative values of the the charged-lepton U(1)ν charges.
The reason for this is the fact that both the Z ′ coupling
and the Yukawa coupling charged-lepton eigenbases are
the same (i.e., both matrices are diagonal) in this case.

Similar to what happens with the charged leptons,
off-diagonal neutral lepton interactions will also lead to
flavor-changing processes in the neutrino sector. Unlike
processes involving charged leptons, however, neutrino
flavor-changing neutral currents are not very severely
constrained [22]. This means that these are not likely to
be cause for concern as long as 〈φ〉 is only slightly larger
than the electroweak scale, regardless of the relative
strength of the off-diagonal neutrino–Z ′ coupling. On
the other hand, phenomenologically interesting choices
for the lepton U(1)ν charges often predict large neutrino
flavor-changing processes, which will be significantly bet-
ter constrained in the next round of neutrino oscillation
experiments [23].

III. LEPTOCRATIC MODEL

In order to construct a viable theory for physics be-
yond the standard model using the framework presented
in Sec. II, one has to identify a set of commensurate
charges for the right-handed neutrinos which cancel the
[U(1)ν ]3 anomaly, as shown in Eq. (II.5). This is a highly
nontrivial problem: cubic equations do not have integer
solutions except for very special cases. In this section we
show that in the case of N = 3 right-handed neutrinos the
cubic equation can be solved for arbitrary lepton charges
consistent with the restrictions imposed in Sec. II A.

We have mentioned at the end of Sec. II A that alto-
gether there are two quark charges, two lepton-doublet
charges and N − 1 right-handed neutrino charges that
remain independent once all standard model mass terms
are allowed, and all anomaly cancellation conditions
other than the [U(1)ν ]3 are imposed. The cubic equa-
tion Eq. (II.5) in these six rational variables (for N = 3)
appears daunting at first sight. However, we found a sim-
ple parametrization of the charges that greatly simplifies
its solution. The lepton-doublet charges may be written
in terms of zq and two rational numbers, a and a′:

z"1 ≡ −3zq − 2a ,

z"2 ≡ −3zq + a + a′ ,

z"3 = −3zq + a − a′ , (III.1)

so that the second sum rule of Eq. (II.1) is automatically

satisfied. The charges of the right-handed quarks are
conveniently parametrized as

zu ≡ 4zq −
c

2
,

zd = −2zq +
c

2
, (III.2)

where c is a rational number. The Higgs doublet has
U(1)ν charge

zH = 3zq −
c

2
. (III.3)

The U(1)ν charges of the SU(2)L-singlet standard model
leptons are then fixed by requiring renormalizable mass
terms for the charged leptons [see Eqs. (II.8) and (II.9)]:

ze1
≡ −6zq +

c

2
− 2a ,

ze2
≡ −6zq +

c

2
+ a + a′ ,

ze3
= −6zq +

c

2
+ a − a′ . (III.4)

Finally, the right-handed neutrinos have charges

zn1
≡ −

c

2
− 2b ,

zn2
≡ −

c

2
+ b + b′ ,

zn3
= −

c

2
+ b − b′ , (III.5)

which automatically satisfy the sum rule given in
Eq. (II.4) for any rational numbers b and b′. With this
parametrization, all the terms involving zq from the cu-
bic equation drop out, such that the [U(1)ν ]3 anomaly
cancellation condition (II.5) takes a rather simple form:

c

2

(

3a2 + a′2 − 3b2 − b′2
)

= −a
(

a2 − a′2
)

+ b
(

b2 − b′2
)

.

(III.6)
Remarkably, only terms linear in c or independent of c
are present, so that for any rational numbers a, a′, b and
b′ there is a rational solution for c.

Given that only the lepton charges in this model are
allowed to be generation dependent, we will refer to the
charge assignment described by Eqs. (III.1)-(III.6) as the
“Leptocratic Model”.

The exponents that determine the orders of magnitude
of the various Dirac neutrino masses are given by

p =









−2(a− b) − (2a + b + b′) − (2a + b − b′)

a + a′ + 2b a + a′ − b − b′ a + a′ − b + b′

a − a′ + 2b a − a′ − b − b′ a − a′ − b + b′









.

(III.7)

The orders of magnitude of the left-handed Majorana
neutrino masses are determined by the following expo-
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nents:

q =









c + 4a c + a − a′ c + a + a′

c + a − a′ c − 2 (a + a′) c − 2a

c + a + a′ c − 2a c − 2 (a − a′)









.

(III.8)

For right-handed Majorana neutrino masses, the expo-
nents are given by

r =









c + 4b c + b − b′ c + b + b′

c + b − b′ c − 2 (b + b′) c − 2b

c + b + b′ c − 2b c − 2 (b − b′)
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If the factor multiplying c in Eq. (III.6) vanishes, then
one can show that some of the pij exponents vanish.
Given that we want to avoid dimension-4 Dirac neutrino
mass terms, we assume

3a2 + a′2 "= 3b2 + b′2 , (III.11)

which implies

c = −2
a

(

a2 − a′2
)

− b
(

b2 − b′2
)

3a2 + a′2 − 3b2 − b′2
. (III.12)

The orders of magnitude of various neutrino mass
terms are set by the exponents pij , qij and rij , where it
is understood that nonzero entries exist only if the cor-
responding exponent is an integer. The parameter space
that includes these exponents has four arbitrary ratio-
nal parameters a, a′, b, b′. For most choices of these pa-
rameters, the neutrino phenomenology is not consistent
with the observations. However, there are cases where all
phenomenological constraints are satisfied. We do not at-
tempt here to search for all such cases, but rather give
some interesting examples.

A. “Orwellian” Leptocratic Model

Let us first consider the case where the U(1)ν

charges of the standard model fermions are generation-
independent, and the charges of the second and third
right-handed neutrinos are equal but different from the
charge of the first right-handed neutrino:
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In this case, there are no charged-lepton flavor violating
processes mediated by Z ′ exchange at the tree level. The
U(1)ν charges are shown in Table I. We will refer to this
particular type of Leptocratic Model as Orwellian [24],
given that one of the right-handed neutrinos has a U(1)ν

charge different from the other two. Note that we do
not consider the case b = 0 because that would allow
Dirac masses from dimension-4 operators. Under these
circumstances, Eq. (III.12) implies

c = −
2

3
b . (III.14)

Depending on the values of b, there are three viable
cases with different phenomenology. First, if b is an in-
teger but not a multiple of 3, then all Dirac mass terms
are allowed,
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while all Majorana masses are forbidden by gauge in-
variance. Assuming that all Yukawa-like couplings λij

ν
are of the same order of magnitude, the above Dirac
mass matrix provides a good fit to all existing neutrino
data (except for those from LSND). This is an interesting
case because it shows that the neutrinos may be Dirac
fermions with naturally small masses. For example, if all
λij

ν are in the range of 10−5−10−4 (i.e., somewhat larger
than the electron Yukawa coupling), and ε ∼ 10−4, then
for b = ±2 one can easily obtain a neutrino mass spec-
trum with normal hierarchy: mν3
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eV (to accommodate the atmospheric and solar mass-
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terms are set by the exponents pij , qij and rij , where it
is understood that nonzero entries exist only if the cor-
responding exponent is an integer. The parameter space
that includes these exponents has four arbitrary ratio-
nal parameters a, a′, b, b′. For most choices of these pa-
rameters, the neutrino phenomenology is not consistent
with the observations. However, there are cases where all
phenomenological constraints are satisfied. We do not at-
tempt here to search for all such cases, but rather give
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The orders of magnitude of various neutrino mass
terms are set by the exponents pij , qij and rij , where it
is understood that nonzero entries exist only if the cor-
responding exponent is an integer. The parameter space
that includes these exponents has four arbitrary ratio-
nal parameters a, a′, b, b′. For most choices of these pa-
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with the observations. However, there are cases where all
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tempt here to search for all such cases, but rather give
some interesting examples.
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cases with different phenomenology. First, if b is an in-
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while all Majorana masses are forbidden by gauge in-
variance. Assuming that all Yukawa-like couplings λij

ν
are of the same order of magnitude, the above Dirac
mass matrix provides a good fit to all existing neutrino
data (except for those from LSND). This is an interesting
case because it shows that the neutrinos may be Dirac
fermions with naturally small masses. For example, if all
λij

ν are in the range of 10−5−10−4 (i.e., somewhat larger
than the electron Yukawa coupling), and ε ∼ 10−4, then
for b = ±2 one can easily obtain a neutrino mass spec-
trum with normal hierarchy: mν3
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eV (to accommodate the atmospheric and solar mass-



Orwellian Leptocratic Model
‣ all U(1)NA charges for SM fermions are generation independent: 
‣ a = a’ = b’= 0;    c = -2b/3
‣ no charged lepton flavor violating FCNC mediated by Z’ at tree level
‣ Q(N2) = Q(N3) ≠ Q(N1) 
‣ bi-large mixing through anarchy

‣ three active neutrinos: can either be Dirac or Majorana fermions

(I) Dirac neutrinos:   b = integer, but not (3n) ⇒ c = non-int, only MD allowed
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while all Majorana masses are forbidden by gauge in-
variance. Assuming that all Yukawa-like couplings λij

ν
are of the same order of magnitude, the above Dirac
mass matrix provides a good fit to all existing neutrino
data (except for those from LSND). This is an interesting
case because it shows that the neutrinos may be Dirac
fermions with naturally small masses. For example, if all
λij

ν are in the range of 10−5−10−4 (i.e., somewhat larger
than the electron Yukawa coupling), and ε ∼ 10−4, then
for b = ±2 one can easily obtain a neutrino mass spec-
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Orwellian Leptocratic Model
‣ (II) Majorana neutrinos: b = (3n) ⇒  MD, MLL, MRR all allowed

• if λ ~ c:      MLL > MD  ⇒ inverted seesaw 

• for

• for 
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squared differences), and mν1
∼ 10−9 eV.∗ The extra

factor of ε|b| in the first column of the mass matrix MD

implies that one of the neutrinos is many orders of mag-
nitude lighter than the other two. Lepton mixing, on the
other hand, is anarchical, in good agreement with the
current oscillation data [25]. This particular approach to
flavor generically leads to a normal neutrino mass hier-
archy if the neutrinos are Dirac fermions. The reason for
this – as discussed in Sec. II – is that while the order of
magnitude of the ratios of the different entries in the mass
matrices are predicted, there are still “order one” coef-
ficients that lead to order one differences among matrix
elements that correspond to the same suppression factor.
This means that while we can choose charges so that two
neutrino masses are of the same order of magnitude, there
is no ingredient within the formalism pursued here that
guarantees that these two masses are quasi-degenerate
(which is required if the inverted neutrino mass hierar-
chy is realized). A very similar situation is encountered
in “fat-brane” models [26].

The second viable case is that where b is a multiple of
3. As a result, c is an integer so that all Majorana and
Dirac mass terms are allowed. The left-handed Majorana
masses are given by

ML =
v2

Λ
ε2|b|/3 c" , (III.16)

the Dirac masses are given by Eq. (III.15), and the right-
handed Majorana masses are given by

MR = Λ ε|b|/3







c11
n ε3|b| c12

n c13
n

c12
n c22

n ε7|b|/3 c23
n ε7|b|/3

c13
n c23

n ε7|b|/3 c33
n ε7|b|/3






.

(III.17)

Assuming that all coefficients of the higher-dimensional
operators in Eq. (II.10), cij

" , cij
n , λij

ν , are of the same order
of magnitude, then for Λ ∼ O(1 TeV) and ε " 1 we find
that the left-handed Majorana masses are larger than
the Dirac ones, two of the eigenvalues of MR are sub-
stantially larger, and the third one is very small. There-
fore the three active neutrinos are Majorana fermions
with masses of approximately the same order of mag-
nitude. The solar and atmospheric oscillation data are
well accommodated for a significant range of coefficients
cij
" , as established for “anarchical” left-handed Majorana

masses [25]. Besides the three active neutrinos there are
two heavy sterile neutrinos which have small mixing with
the active ones, and a light sterile neutrino whose mixing
with the active neutrinos may be phenomenologically rel-
evant. We relegate the detailed derivation of their mixing
to the Appendix, and summarize the results below.

∗ Another possibility is to choose λ
ij
ν ∼ 1, ε ∼ 0.1 and |b| = 13. In

this case, the lightest neutrino mass is 10−13 times the mass of
the two heaviest states.

The lightest sterile neutrino has a mass given by an
“inverted” seesaw mechanism:

mν4
= O

(

(λij
ν )2

cij
"

)

Λ ε4|b|/3 , (III.18)

while the masses of the two heavier sterile neutrinos are

mν5,6
= O(cij

n )Λε|b|/3 . (III.19)

If one assumes all coefficients from Eq. (II.10) to be of
the order of 10−5 and ε ∼ 10−4, for b = ±3 the neutrino
spectrum may naturally be given by mν3

∼ 0.05 eV and
mν2

∼ mν1
∼ 0.01 eV. The two heavy sterile neutrinos

have masses of order 1 keV, and the remaining sterile
neutrino has a mass of order 10−9 eV. The mixing be-
tween the active neutrinos and lightest sterile neutrino
is

Θactive−light ∼ ε
Λ

v
∼ 10−3 , (III.20)

and the mixing between the active neutrinos and the two
heavy sterile neutrinos is

Θactive−heavy ∼ ε2
v

Λ
∼ 10−9 . (III.21)

While very weakly coupled, these sterile neutrinos can
lead to interesting phenomenology. The lightest of the
sterile neutrinos, for example, can lead to observable con-
sequences in precision measurements of low energy solar
neutrino oscillations [27]. Other neutrino oscillation ex-
periments might be sensitive to these quasi-sterile neutri-
nos if a less constrained parameter space for λν , cn, c", ε
and Λ is considered.

Another possibility is to have all neutrino Yukawa cou-
plings, λν , c" and cn, of order O(1), while having ε ∼ 0.1
for b = ±18. The neutrino mass spectrum is then given
by, mν3

∼ 0.05 eV, mν1,2
∼ 0.01 eV, while the two heavy

sterile ones have masses around 1 MeV and the light-
est sterile neutrino weighs about 10−12 eV. The mixing
between the active and heavy sterile neutrinos is

Θactive−heavy ∼ ε12
v

Λ
∼ 10−13 , (III.22)

while the active-light sterile mixing is

Θactive−light ∼ ε6
Λ

v
∼ 10−5 . (III.23)

The third and last viable case is that where b is an
odd multiple of 3/2. The left-handed Majorana masses
are then all allowed as in the previous case, being given
by Eq. (III.16). The Dirac mass terms associated with
λij

ν are strictly forbidden by gauge invariance for j = 2
and j = 3, and equal to λi1

ν vε2|b| for j = 1 and any
i = 1, 2, 3. The right-handed Majorana masses are given
by

MR = Λ ε8|b|/3







c11
n ε2|b|/3 0 0

0 c22
n c23

n

0 c23
n c33

n






. (III.24)
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factor of ε|b| in the first column of the mass matrix MD

implies that one of the neutrinos is many orders of mag-
nitude lighter than the other two. Lepton mixing, on the
other hand, is anarchical, in good agreement with the
current oscillation data [25]. This particular approach to
flavor generically leads to a normal neutrino mass hier-
archy if the neutrinos are Dirac fermions. The reason for
this – as discussed in Sec. II – is that while the order of
magnitude of the ratios of the different entries in the mass
matrices are predicted, there are still “order one” coef-
ficients that lead to order one differences among matrix
elements that correspond to the same suppression factor.
This means that while we can choose charges so that two
neutrino masses are of the same order of magnitude, there
is no ingredient within the formalism pursued here that
guarantees that these two masses are quasi-degenerate
(which is required if the inverted neutrino mass hierar-
chy is realized). A very similar situation is encountered
in “fat-brane” models [26].

The second viable case is that where b is a multiple of
3. As a result, c is an integer so that all Majorana and
Dirac mass terms are allowed. The left-handed Majorana
masses are given by

ML =
v2

Λ
ε2|b|/3 c" , (III.16)

the Dirac masses are given by Eq. (III.15), and the right-
handed Majorana masses are given by

MR = Λ ε|b|/3
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(III.17)

Assuming that all coefficients of the higher-dimensional
operators in Eq. (II.10), cij

" , cij
n , λij

ν , are of the same order
of magnitude, then for Λ ∼ O(1 TeV) and ε " 1 we find
that the left-handed Majorana masses are larger than
the Dirac ones, two of the eigenvalues of MR are sub-
stantially larger, and the third one is very small. There-
fore the three active neutrinos are Majorana fermions
with masses of approximately the same order of mag-
nitude. The solar and atmospheric oscillation data are
well accommodated for a significant range of coefficients
cij
" , as established for “anarchical” left-handed Majorana

masses [25]. Besides the three active neutrinos there are
two heavy sterile neutrinos which have small mixing with
the active ones, and a light sterile neutrino whose mixing
with the active neutrinos may be phenomenologically rel-
evant. We relegate the detailed derivation of their mixing
to the Appendix, and summarize the results below.

∗ Another possibility is to choose λ
ij
ν ∼ 1, ε ∼ 0.1 and |b| = 13. In

this case, the lightest neutrino mass is 10−13 times the mass of
the two heaviest states.

The lightest sterile neutrino has a mass given by an
“inverted” seesaw mechanism:

mν4
= O

(

(λij
ν )2

cij
"

)

Λ ε4|b|/3 , (III.18)

while the masses of the two heavier sterile neutrinos are

mν5,6
= O(cij

n )Λε|b|/3 . (III.19)

If one assumes all coefficients from Eq. (II.10) to be of
the order of 10−5 and ε ∼ 10−4, for b = ±3 the neutrino
spectrum may naturally be given by mν3

∼ 0.05 eV and
mν2

∼ mν1
∼ 0.01 eV. The two heavy sterile neutrinos

have masses of order 1 keV, and the remaining sterile
neutrino has a mass of order 10−9 eV. The mixing be-
tween the active neutrinos and lightest sterile neutrino
is

Θactive−light ∼ ε
Λ

v
∼ 10−3 , (III.20)

and the mixing between the active neutrinos and the two
heavy sterile neutrinos is

Θactive−heavy ∼ ε2
v

Λ
∼ 10−9 . (III.21)

While very weakly coupled, these sterile neutrinos can
lead to interesting phenomenology. The lightest of the
sterile neutrinos, for example, can lead to observable con-
sequences in precision measurements of low energy solar
neutrino oscillations [27]. Other neutrino oscillation ex-
periments might be sensitive to these quasi-sterile neutri-
nos if a less constrained parameter space for λν , cn, c", ε
and Λ is considered.

Another possibility is to have all neutrino Yukawa cou-
plings, λν , c" and cn, of order O(1), while having ε ∼ 0.1
for b = ±18. The neutrino mass spectrum is then given
by, mν3

∼ 0.05 eV, mν1,2
∼ 0.01 eV, while the two heavy

sterile ones have masses around 1 MeV and the light-
est sterile neutrino weighs about 10−12 eV. The mixing
between the active and heavy sterile neutrinos is

Θactive−heavy ∼ ε12
v

Λ
∼ 10−13 , (III.22)

while the active-light sterile mixing is

Θactive−light ∼ ε6
Λ

v
∼ 10−5 . (III.23)

The third and last viable case is that where b is an
odd multiple of 3/2. The left-handed Majorana masses
are then all allowed as in the previous case, being given
by Eq. (III.16). The Dirac mass terms associated with
λij

ν are strictly forbidden by gauge invariance for j = 2
and j = 3, and equal to λi1

ν vε2|b| for j = 1 and any
i = 1, 2, 3. The right-handed Majorana masses are given
by

MR = Λ ε8|b|/3
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squared differences), and mν1
∼ 10−9 eV.∗ The extra

factor of ε|b| in the first column of the mass matrix MD

implies that one of the neutrinos is many orders of mag-
nitude lighter than the other two. Lepton mixing, on the
other hand, is anarchical, in good agreement with the
current oscillation data [25]. This particular approach to
flavor generically leads to a normal neutrino mass hier-
archy if the neutrinos are Dirac fermions. The reason for
this – as discussed in Sec. II – is that while the order of
magnitude of the ratios of the different entries in the mass
matrices are predicted, there are still “order one” coef-
ficients that lead to order one differences among matrix
elements that correspond to the same suppression factor.
This means that while we can choose charges so that two
neutrino masses are of the same order of magnitude, there
is no ingredient within the formalism pursued here that
guarantees that these two masses are quasi-degenerate
(which is required if the inverted neutrino mass hierar-
chy is realized). A very similar situation is encountered
in “fat-brane” models [26].

The second viable case is that where b is a multiple of
3. As a result, c is an integer so that all Majorana and
Dirac mass terms are allowed. The left-handed Majorana
masses are given by

ML =
v2

Λ
ε2|b|/3 c" , (III.16)

the Dirac masses are given by Eq. (III.15), and the right-
handed Majorana masses are given by

MR = Λ ε|b|/3


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
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Assuming that all coefficients of the higher-dimensional
operators in Eq. (II.10), cij

" , cij
n , λij

ν , are of the same order
of magnitude, then for Λ ∼ O(1 TeV) and ε " 1 we find
that the left-handed Majorana masses are larger than
the Dirac ones, two of the eigenvalues of MR are sub-
stantially larger, and the third one is very small. There-
fore the three active neutrinos are Majorana fermions
with masses of approximately the same order of mag-
nitude. The solar and atmospheric oscillation data are
well accommodated for a significant range of coefficients
cij
" , as established for “anarchical” left-handed Majorana

masses [25]. Besides the three active neutrinos there are
two heavy sterile neutrinos which have small mixing with
the active ones, and a light sterile neutrino whose mixing
with the active neutrinos may be phenomenologically rel-
evant. We relegate the detailed derivation of their mixing
to the Appendix, and summarize the results below.

∗ Another possibility is to choose λ
ij
ν ∼ 1, ε ∼ 0.1 and |b| = 13. In

this case, the lightest neutrino mass is 10−13 times the mass of
the two heaviest states.

The lightest sterile neutrino has a mass given by an
“inverted” seesaw mechanism:

mν4
= O

(

(λij
ν )2

cij
"

)

Λ ε4|b|/3 , (III.18)

while the masses of the two heavier sterile neutrinos are

mν5,6
= O(cij

n )Λε|b|/3 . (III.19)

If one assumes all coefficients from Eq. (II.10) to be of
the order of 10−5 and ε ∼ 10−4, for b = ±3 the neutrino
spectrum may naturally be given by mν3

∼ 0.05 eV and
mν2

∼ mν1
∼ 0.01 eV. The two heavy sterile neutrinos

have masses of order 1 keV, and the remaining sterile
neutrino has a mass of order 10−9 eV. The mixing be-
tween the active neutrinos and lightest sterile neutrino
is

Θactive−light ∼ ε
Λ

v
∼ 10−3 , (III.20)

and the mixing between the active neutrinos and the two
heavy sterile neutrinos is

Θactive−heavy ∼ ε2
v

Λ
∼ 10−9 . (III.21)

While very weakly coupled, these sterile neutrinos can
lead to interesting phenomenology. The lightest of the
sterile neutrinos, for example, can lead to observable con-
sequences in precision measurements of low energy solar
neutrino oscillations [27]. Other neutrino oscillation ex-
periments might be sensitive to these quasi-sterile neutri-
nos if a less constrained parameter space for λν , cn, c", ε
and Λ is considered.

Another possibility is to have all neutrino Yukawa cou-
plings, λν , c" and cn, of order O(1), while having ε ∼ 0.1
for b = ±18. The neutrino mass spectrum is then given
by, mν3

∼ 0.05 eV, mν1,2
∼ 0.01 eV, while the two heavy

sterile ones have masses around 1 MeV and the light-
est sterile neutrino weighs about 10−12 eV. The mixing
between the active and heavy sterile neutrinos is

Θactive−heavy ∼ ε12
v

Λ
∼ 10−13 , (III.22)

while the active-light sterile mixing is

Θactive−light ∼ ε6
Λ

v
∼ 10−5 . (III.23)

The third and last viable case is that where b is an
odd multiple of 3/2. The left-handed Majorana masses
are then all allowed as in the previous case, being given
by Eq. (III.16). The Dirac mass terms associated with
λij

ν are strictly forbidden by gauge invariance for j = 2
and j = 3, and equal to λi1

ν vε2|b| for j = 1 and any
i = 1, 2, 3. The right-handed Majorana masses are given
by

MR = Λ ε8|b|/3


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squared differences), and mν1
∼ 10−9 eV.∗ The extra

factor of ε|b| in the first column of the mass matrix MD

implies that one of the neutrinos is many orders of mag-
nitude lighter than the other two. Lepton mixing, on the
other hand, is anarchical, in good agreement with the
current oscillation data [25]. This particular approach to
flavor generically leads to a normal neutrino mass hier-
archy if the neutrinos are Dirac fermions. The reason for
this – as discussed in Sec. II – is that while the order of
magnitude of the ratios of the different entries in the mass
matrices are predicted, there are still “order one” coef-
ficients that lead to order one differences among matrix
elements that correspond to the same suppression factor.
This means that while we can choose charges so that two
neutrino masses are of the same order of magnitude, there
is no ingredient within the formalism pursued here that
guarantees that these two masses are quasi-degenerate
(which is required if the inverted neutrino mass hierar-
chy is realized). A very similar situation is encountered
in “fat-brane” models [26].

The second viable case is that where b is a multiple of
3. As a result, c is an integer so that all Majorana and
Dirac mass terms are allowed. The left-handed Majorana
masses are given by

ML =
v2

Λ
ε2|b|/3 c" , (III.16)

the Dirac masses are given by Eq. (III.15), and the right-
handed Majorana masses are given by

MR = Λ ε|b|/3
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Assuming that all coefficients of the higher-dimensional
operators in Eq. (II.10), cij

" , cij
n , λij

ν , are of the same order
of magnitude, then for Λ ∼ O(1 TeV) and ε " 1 we find
that the left-handed Majorana masses are larger than
the Dirac ones, two of the eigenvalues of MR are sub-
stantially larger, and the third one is very small. There-
fore the three active neutrinos are Majorana fermions
with masses of approximately the same order of mag-
nitude. The solar and atmospheric oscillation data are
well accommodated for a significant range of coefficients
cij
" , as established for “anarchical” left-handed Majorana

masses [25]. Besides the three active neutrinos there are
two heavy sterile neutrinos which have small mixing with
the active ones, and a light sterile neutrino whose mixing
with the active neutrinos may be phenomenologically rel-
evant. We relegate the detailed derivation of their mixing
to the Appendix, and summarize the results below.

∗ Another possibility is to choose λ
ij
ν ∼ 1, ε ∼ 0.1 and |b| = 13. In

this case, the lightest neutrino mass is 10−13 times the mass of
the two heaviest states.

The lightest sterile neutrino has a mass given by an
“inverted” seesaw mechanism:

mν4
= O

(

(λij
ν )2

cij
"

)

Λ ε4|b|/3 , (III.18)

while the masses of the two heavier sterile neutrinos are

mν5,6
= O(cij

n )Λε|b|/3 . (III.19)

If one assumes all coefficients from Eq. (II.10) to be of
the order of 10−5 and ε ∼ 10−4, for b = ±3 the neutrino
spectrum may naturally be given by mν3

∼ 0.05 eV and
mν2

∼ mν1
∼ 0.01 eV. The two heavy sterile neutrinos

have masses of order 1 keV, and the remaining sterile
neutrino has a mass of order 10−9 eV. The mixing be-
tween the active neutrinos and lightest sterile neutrino
is

Θactive−light ∼ ε
Λ

v
∼ 10−3 , (III.20)

and the mixing between the active neutrinos and the two
heavy sterile neutrinos is

Θactive−heavy ∼ ε2
v

Λ
∼ 10−9 . (III.21)

While very weakly coupled, these sterile neutrinos can
lead to interesting phenomenology. The lightest of the
sterile neutrinos, for example, can lead to observable con-
sequences in precision measurements of low energy solar
neutrino oscillations [27]. Other neutrino oscillation ex-
periments might be sensitive to these quasi-sterile neutri-
nos if a less constrained parameter space for λν , cn, c", ε
and Λ is considered.

Another possibility is to have all neutrino Yukawa cou-
plings, λν , c" and cn, of order O(1), while having ε ∼ 0.1
for b = ±18. The neutrino mass spectrum is then given
by, mν3

∼ 0.05 eV, mν1,2
∼ 0.01 eV, while the two heavy

sterile ones have masses around 1 MeV and the light-
est sterile neutrino weighs about 10−12 eV. The mixing
between the active and heavy sterile neutrinos is

Θactive−heavy ∼ ε12
v

Λ
∼ 10−13 , (III.22)

while the active-light sterile mixing is

Θactive−light ∼ ε6
Λ

v
∼ 10−5 . (III.23)

The third and last viable case is that where b is an
odd multiple of 3/2. The left-handed Majorana masses
are then all allowed as in the previous case, being given
by Eq. (III.16). The Dirac mass terms associated with
λij

ν are strictly forbidden by gauge invariance for j = 2
and j = 3, and equal to λi1

ν vε2|b| for j = 1 and any
i = 1, 2, 3. The right-handed Majorana masses are given
by

MR = Λ ε8|b|/3
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squared differences), and mν1
∼ 10−9 eV.∗ The extra

factor of ε|b| in the first column of the mass matrix MD

implies that one of the neutrinos is many orders of mag-
nitude lighter than the other two. Lepton mixing, on the
other hand, is anarchical, in good agreement with the
current oscillation data [25]. This particular approach to
flavor generically leads to a normal neutrino mass hier-
archy if the neutrinos are Dirac fermions. The reason for
this – as discussed in Sec. II – is that while the order of
magnitude of the ratios of the different entries in the mass
matrices are predicted, there are still “order one” coef-
ficients that lead to order one differences among matrix
elements that correspond to the same suppression factor.
This means that while we can choose charges so that two
neutrino masses are of the same order of magnitude, there
is no ingredient within the formalism pursued here that
guarantees that these two masses are quasi-degenerate
(which is required if the inverted neutrino mass hierar-
chy is realized). A very similar situation is encountered
in “fat-brane” models [26].

The second viable case is that where b is a multiple of
3. As a result, c is an integer so that all Majorana and
Dirac mass terms are allowed. The left-handed Majorana
masses are given by

ML =
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Λ
ε2|b|/3 c" , (III.16)

the Dirac masses are given by Eq. (III.15), and the right-
handed Majorana masses are given by
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Assuming that all coefficients of the higher-dimensional
operators in Eq. (II.10), cij

" , cij
n , λij

ν , are of the same order
of magnitude, then for Λ ∼ O(1 TeV) and ε " 1 we find
that the left-handed Majorana masses are larger than
the Dirac ones, two of the eigenvalues of MR are sub-
stantially larger, and the third one is very small. There-
fore the three active neutrinos are Majorana fermions
with masses of approximately the same order of mag-
nitude. The solar and atmospheric oscillation data are
well accommodated for a significant range of coefficients
cij
" , as established for “anarchical” left-handed Majorana

masses [25]. Besides the three active neutrinos there are
two heavy sterile neutrinos which have small mixing with
the active ones, and a light sterile neutrino whose mixing
with the active neutrinos may be phenomenologically rel-
evant. We relegate the detailed derivation of their mixing
to the Appendix, and summarize the results below.

∗ Another possibility is to choose λ
ij
ν ∼ 1, ε ∼ 0.1 and |b| = 13. In

this case, the lightest neutrino mass is 10−13 times the mass of
the two heaviest states.

The lightest sterile neutrino has a mass given by an
“inverted” seesaw mechanism:

mν4
= O

(

(λij
ν )2
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"

)

Λ ε4|b|/3 , (III.18)

while the masses of the two heavier sterile neutrinos are

mν5,6
= O(cij

n )Λε|b|/3 . (III.19)

If one assumes all coefficients from Eq. (II.10) to be of
the order of 10−5 and ε ∼ 10−4, for b = ±3 the neutrino
spectrum may naturally be given by mν3

∼ 0.05 eV and
mν2

∼ mν1
∼ 0.01 eV. The two heavy sterile neutrinos

have masses of order 1 keV, and the remaining sterile
neutrino has a mass of order 10−9 eV. The mixing be-
tween the active neutrinos and lightest sterile neutrino
is

Θactive−light ∼ ε
Λ

v
∼ 10−3 , (III.20)

and the mixing between the active neutrinos and the two
heavy sterile neutrinos is

Θactive−heavy ∼ ε2
v

Λ
∼ 10−9 . (III.21)

While very weakly coupled, these sterile neutrinos can
lead to interesting phenomenology. The lightest of the
sterile neutrinos, for example, can lead to observable con-
sequences in precision measurements of low energy solar
neutrino oscillations [27]. Other neutrino oscillation ex-
periments might be sensitive to these quasi-sterile neutri-
nos if a less constrained parameter space for λν , cn, c", ε
and Λ is considered.

Another possibility is to have all neutrino Yukawa cou-
plings, λν , c" and cn, of order O(1), while having ε ∼ 0.1
for b = ±18. The neutrino mass spectrum is then given
by, mν3

∼ 0.05 eV, mν1,2
∼ 0.01 eV, while the two heavy

sterile ones have masses around 1 MeV and the light-
est sterile neutrino weighs about 10−12 eV. The mixing
between the active and heavy sterile neutrinos is

Θactive−heavy ∼ ε12
v

Λ
∼ 10−13 , (III.22)

while the active-light sterile mixing is

Θactive−light ∼ ε6
Λ

v
∼ 10−5 . (III.23)

The third and last viable case is that where b is an
odd multiple of 3/2. The left-handed Majorana masses
are then all allowed as in the previous case, being given
by Eq. (III.16). The Dirac mass terms associated with
λij

ν are strictly forbidden by gauge invariance for j = 2
and j = 3, and equal to λi1

ν vε2|b| for j = 1 and any
i = 1, 2, 3. The right-handed Majorana masses are given
by

MR = Λ ε8|b|/3







c11
n ε2|b|/3 0 0

0 c22
n c23

n

0 c23
n c33

n






. (III.24)
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squared differences), and mν1
∼ 10−9 eV.∗ The extra

factor of ε|b| in the first column of the mass matrix MD

implies that one of the neutrinos is many orders of mag-
nitude lighter than the other two. Lepton mixing, on the
other hand, is anarchical, in good agreement with the
current oscillation data [25]. This particular approach to
flavor generically leads to a normal neutrino mass hier-
archy if the neutrinos are Dirac fermions. The reason for
this – as discussed in Sec. II – is that while the order of
magnitude of the ratios of the different entries in the mass
matrices are predicted, there are still “order one” coef-
ficients that lead to order one differences among matrix
elements that correspond to the same suppression factor.
This means that while we can choose charges so that two
neutrino masses are of the same order of magnitude, there
is no ingredient within the formalism pursued here that
guarantees that these two masses are quasi-degenerate
(which is required if the inverted neutrino mass hierar-
chy is realized). A very similar situation is encountered
in “fat-brane” models [26].

The second viable case is that where b is a multiple of
3. As a result, c is an integer so that all Majorana and
Dirac mass terms are allowed. The left-handed Majorana
masses are given by

ML =
v2

Λ
ε2|b|/3 c" , (III.16)

the Dirac masses are given by Eq. (III.15), and the right-
handed Majorana masses are given by

MR = Λ ε|b|/3







c11
n ε3|b| c12

n c13
n

c12
n c22

n ε7|b|/3 c23
n ε7|b|/3

c13
n c23

n ε7|b|/3 c33
n ε7|b|/3






.

(III.17)

Assuming that all coefficients of the higher-dimensional
operators in Eq. (II.10), cij

" , cij
n , λij

ν , are of the same order
of magnitude, then for Λ ∼ O(1 TeV) and ε " 1 we find
that the left-handed Majorana masses are larger than
the Dirac ones, two of the eigenvalues of MR are sub-
stantially larger, and the third one is very small. There-
fore the three active neutrinos are Majorana fermions
with masses of approximately the same order of mag-
nitude. The solar and atmospheric oscillation data are
well accommodated for a significant range of coefficients
cij
" , as established for “anarchical” left-handed Majorana

masses [25]. Besides the three active neutrinos there are
two heavy sterile neutrinos which have small mixing with
the active ones, and a light sterile neutrino whose mixing
with the active neutrinos may be phenomenologically rel-
evant. We relegate the detailed derivation of their mixing
to the Appendix, and summarize the results below.

∗ Another possibility is to choose λ
ij
ν ∼ 1, ε ∼ 0.1 and |b| = 13. In

this case, the lightest neutrino mass is 10−13 times the mass of
the two heaviest states.

The lightest sterile neutrino has a mass given by an
“inverted” seesaw mechanism:

mν4
= O

(

(λij
ν )2

cij
"

)

Λ ε4|b|/3 , (III.18)

while the masses of the two heavier sterile neutrinos are

mν5,6
= O(cij

n )Λε|b|/3 . (III.19)

If one assumes all coefficients from Eq. (II.10) to be of
the order of 10−5 and ε ∼ 10−4, for b = ±3 the neutrino
spectrum may naturally be given by mν3

∼ 0.05 eV and
mν2

∼ mν1
∼ 0.01 eV. The two heavy sterile neutrinos

have masses of order 1 keV, and the remaining sterile
neutrino has a mass of order 10−9 eV. The mixing be-
tween the active neutrinos and lightest sterile neutrino
is

Θactive−light ∼ ε
Λ

v
∼ 10−3 , (III.20)

and the mixing between the active neutrinos and the two
heavy sterile neutrinos is

Θactive−heavy ∼ ε2
v

Λ
∼ 10−9 . (III.21)

While very weakly coupled, these sterile neutrinos can
lead to interesting phenomenology. The lightest of the
sterile neutrinos, for example, can lead to observable con-
sequences in precision measurements of low energy solar
neutrino oscillations [27]. Other neutrino oscillation ex-
periments might be sensitive to these quasi-sterile neutri-
nos if a less constrained parameter space for λν , cn, c", ε
and Λ is considered.

Another possibility is to have all neutrino Yukawa cou-
plings, λν , c" and cn, of order O(1), while having ε ∼ 0.1
for b = ±18. The neutrino mass spectrum is then given
by, mν3

∼ 0.05 eV, mν1,2
∼ 0.01 eV, while the two heavy

sterile ones have masses around 1 MeV and the light-
est sterile neutrino weighs about 10−12 eV. The mixing
between the active and heavy sterile neutrinos is

Θactive−heavy ∼ ε12
v

Λ
∼ 10−13 , (III.22)

while the active-light sterile mixing is

Θactive−light ∼ ε6
Λ

v
∼ 10−5 . (III.23)

The third and last viable case is that where b is an
odd multiple of 3/2. The left-handed Majorana masses
are then all allowed as in the previous case, being given
by Eq. (III.16). The Dirac mass terms associated with
λij

ν are strictly forbidden by gauge invariance for j = 2
and j = 3, and equal to λi1

ν vε2|b| for j = 1 and any
i = 1, 2, 3. The right-handed Majorana masses are given
by

MR = Λ ε8|b|/3







c11
n ε2|b|/3 0 0

0 c22
n c23

n

0 c23
n c33

n






. (III.24)



(2+1) Leptocratic Model
‣ generation dependent charged lepton charges 

‣ a’ = b’ = 0;  a, b ≠ 0

‣ large neutrino mixing from U(1) symmetry
‣ a, b = integer,   c ≠ integer  
‣ a = 25/3,  b = -11/3,  ε ~ 0.1    ⇒ pure Dirac 

‣ LFV in charged lepton sector?
|s12| = |s23| = 3a = 25:  suppressed by 10-25  Safe!
                    :  no tree-level FCNC

λ ∼ 1, ε ∼ 0.1, |b| = 18

light sterile: mν4 ∼ 10−12 eV

heavy sterile: mν5,6 ∼ 1 MeV

z"1 "= z"2 = z"3

ze1 "= ze2 = ze3

zn1 "= zn2 = zn3

3
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If all cij
! , cij

n and λij
ν are of the same order of magnitude,

then for Λ ∼ O(1 TeV) and ε " 1 the left-handed Ma-
jorana masses dominate, so again the anarchical solution
works well. In this case the right-handed neutrinos are
ultra-light fermions that couple to the standard model
only via the Z ′ boson. For example, if all coefficients
are of the order of 10−5 and ε ∼ 10−2, we find that for
b = ±9/2 the three active neutrinos have masses in the
0.01 − 0.1 eV range, two sterile neutrinos have masses
of about 10−17 eV, and the remaining sterile neutrino is
even lighter, with a mass of 10−23 eV. There is no mixing
between the active neutrinos and the heavy sterile ones,
while the mixing between the active and the lightest ster-
ile neutrinos is of order 10−11. Another viable case is to
have all coefficients of order 1 and ε ∼ 0.1. Active neu-
trino masses ∼ 0.01− 0.1 eV can also be accommodated
with b = ±33/2. In this case, the heavy and light sterile
neutrinos have masses ∼ 10−32 and ∼ 10−43 eV, respec-
tively, while the mixing between the active and lightest
sterile neutrinos is of order 10−21.

B. 2 + 1 Leptocratic Model

One can further relax the assumption of having gener-
ation independent U(1)ν charges for the lepton doublets
by allowing a non-zero value for the parameter a. A
viable mixing pattern for the neutrinos can arise if the
U(1)ν charges for the second and third generations are
identical for the lepton doublets and for the right-handed
neutrinos, i.e. a′ = b′ = 0, while a and b are non-zero.
The Dirac neutrino mass matrix then becomes,

MD = v







λ11
ν ε|−2(a−b)| λ12

ν ε|−2a−b| λ13
ν ε|−2a−b|

λ21
ν ε|a+2b| λ22

ν ε|a−b| λ23
ν ε|a−b|

λ31
ν ε|a+2b| λ32

ν ε|a−b| λ33
ν ε|a−b|






.

(III.25)
In the Orwellian Leptocratic case with universal charges
for the lepton doublets, the coefficients λij

ν play a de-
termining role when it comes to “explaining” the large
mixing angles and the neutrino mass-squared splittings
required by the atmospheric and the solar neutrino data.
In the present case with non-universal charges for lepton
doublets, however, the structure that is needed for the bi-
large mixing pattern and the mass splittings is already
built-in due to the hierarchy among the exponents of ε
in the entries of the mass matrices. The right-handed
Majorana mass matrix in this case is given by,

MR = Λ







c11
n ε|c+4b| c12

n ε|c+b| c13
n ε|c+b|

c21
n ε|c+b| c22

n ε|c−2b| c23
n ε|c−2b|

c31
n ε|c+b| c32

n ε|c−2b| c33
n ε|c−2b|






, (III.26)

and the left-handed Majorana mass matrix is,

ML =
v2

Λ







c11
! ε|c| c12

! ε|c+a| c13
! ε|c+a|

c21
! ε|c+a| c22

! ε|c−2a| c23
! ε|c−2a|

c31
! ε|c+a| c32

! ε|c−2a| c33
! ε|c−2a|






, (III.27)

where the parameter c is now given in terms of a and b
as,

c = −
2

3

(

a2 + ab + b2

a + b

)

. (III.28)

If a and b are chosen such that the parameter c is
non-integer, then the Dirac mass matrix is allowed while
both the left-handed and right-handed Majorana mass
matrices are forbidden by gauge invariance. With α =
a − b, the neutrino Dirac mass matrix can be rewritten
as,

MD = v







λ11
ν ε|2α| λ12

ν ε|2α+3b| λ13
ν ε|2α+3b|

λ21
ν ε|2α−3a| λ22

ν ε|α| λ23
ν ε|α|

λ31
ν ε|2α−3a| λ32

ν ε|α| λ33
ν ε|α|






.

(III.29)
The ratio ∆m2

sol/∆m2
atm ∼ 10−2 indicates that the ratio

of the (1, 3) to the (2, 3) elements of the neutrino Dirac
mass matrix MD is of order ∼ 0.1. Because only expo-
nents that are integers are allowed in the mass matrix, the
parameter ε = gφ 〈φ〉 /Λ cannot be smaller than O(0.1),
given that the smallest possible value for the difference
between the exponents |2α + 3b| and |α| is 1. One viable
example is to have a = 25/3, b = −11/3 and ε ∼ 0.1
with all Yukawa couplings λij

ν of order one, leading to
the following Dirac mass matrix,

MD = v ε12







O(ε12) O(ε) O(ε)

O(ε13) O(1) O(1)

O(ε13) O(1) O(1)






, (III.30)

which naturally gives rise to a normal mass hierarchy as
well as bi-large mixing among neutrinos of the Dirac type.
The smallness of the neutrino masses is a consequence of
the large exponent |α| if Λ, 〈φ〉 ∼ O(1 TeV). As men-
tioned in Sec. II, such high dimensional operators pose a
challenge for constructing elegant underlying theories.

In this case, because zl1 &= zl2 = zl3 , we must check
whether Z ′ exchange mediates very fast charged-lepton
flavor violating processes. The (1,2) and (1,3) elements
in the charged lepton mass matrix are proportional to
ε|s12| and ε|s13| (see Eq. (II.17)), assuming the sij are
integers. While nonzero, s12 and s13 turn out to be huge:
|s12| = |s13| = 3a = 25, so that charged lepton flavor
violating phenomena are highly suppressed (by a factor
10−25). Because zl2 = zl3 , off-diagonal (2,3) elements
will not lead to tree-level flavor changing effects.

IV. OTHER MODELS

The Leptocratic Model described in Sec. III is based
on several assumptions that could in principle be relaxed.
For example, if the scalar sector is enlarged to include two
or more SU(2)L-singlet scalars carrying different U(1)ν

charges, then several elements of the neutrino mass ma-
trix may get larger contributions from gauge invariant
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If all cij
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n and λij
ν are of the same order of magnitude,

then for Λ ∼ O(1 TeV) and ε " 1 the left-handed Ma-
jorana masses dominate, so again the anarchical solution
works well. In this case the right-handed neutrinos are
ultra-light fermions that couple to the standard model
only via the Z ′ boson. For example, if all coefficients
are of the order of 10−5 and ε ∼ 10−2, we find that for
b = ±9/2 the three active neutrinos have masses in the
0.01 − 0.1 eV range, two sterile neutrinos have masses
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between the active neutrinos and the heavy sterile ones,
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ile neutrinos is of order 10−11. Another viable case is to
have all coefficients of order 1 and ε ∼ 0.1. Active neu-
trino masses ∼ 0.01− 0.1 eV can also be accommodated
with b = ±33/2. In this case, the heavy and light sterile
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One can further relax the assumption of having gener-
ation independent U(1)ν charges for the lepton doublets
by allowing a non-zero value for the parameter a. A
viable mixing pattern for the neutrinos can arise if the
U(1)ν charges for the second and third generations are
identical for the lepton doublets and for the right-handed
neutrinos, i.e. a′ = b′ = 0, while a and b are non-zero.
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In the Orwellian Leptocratic case with universal charges
for the lepton doublets, the coefficients λij

ν play a de-
termining role when it comes to “explaining” the large
mixing angles and the neutrino mass-squared splittings
required by the atmospheric and the solar neutrino data.
In the present case with non-universal charges for lepton
doublets, however, the structure that is needed for the bi-
large mixing pattern and the mass splittings is already
built-in due to the hierarchy among the exponents of ε
in the entries of the mass matrices. The right-handed
Majorana mass matrix in this case is given by,

MR = Λ
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If a and b are chosen such that the parameter c is
non-integer, then the Dirac mass matrix is allowed while
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The ratio ∆m2

sol/∆m2
atm ∼ 10−2 indicates that the ratio

of the (1, 3) to the (2, 3) elements of the neutrino Dirac
mass matrix MD is of order ∼ 0.1. Because only expo-
nents that are integers are allowed in the mass matrix, the
parameter ε = gφ 〈φ〉 /Λ cannot be smaller than O(0.1),
given that the smallest possible value for the difference
between the exponents |2α + 3b| and |α| is 1. One viable
example is to have a = 25/3, b = −11/3 and ε ∼ 0.1
with all Yukawa couplings λij

ν of order one, leading to
the following Dirac mass matrix,

MD = v ε12


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which naturally gives rise to a normal mass hierarchy as
well as bi-large mixing among neutrinos of the Dirac type.
The smallness of the neutrino masses is a consequence of
the large exponent |α| if Λ, 〈φ〉 ∼ O(1 TeV). As men-
tioned in Sec. II, such high dimensional operators pose a
challenge for constructing elegant underlying theories.

In this case, because zl1 &= zl2 = zl3 , we must check
whether Z ′ exchange mediates very fast charged-lepton
flavor violating processes. The (1,2) and (1,3) elements
in the charged lepton mass matrix are proportional to
ε|s12| and ε|s13| (see Eq. (II.17)), assuming the sij are
integers. While nonzero, s12 and s13 turn out to be huge:
|s12| = |s13| = 3a = 25, so that charged lepton flavor
violating phenomena are highly suppressed (by a factor
10−25). Because zl2 = zl3 , off-diagonal (2,3) elements
will not lead to tree-level flavor changing effects.

IV. OTHER MODELS

The Leptocratic Model described in Sec. III is based
on several assumptions that could in principle be relaxed.
For example, if the scalar sector is enlarged to include two
or more SU(2)L-singlet scalars carrying different U(1)ν

charges, then several elements of the neutrino mass ma-
trix may get larger contributions from gauge invariant

λ ∼ 1, ε ∼ 0.1, |b| = 18

light sterile: mν4 ∼ 10−12 eV

heavy sterile: mν5,6 ∼ 1 MeV

z"1 "= z"2 = z"3

ze1 "= ze2 = ze3

zn1 "= zn2 = zn3

z"2 = z"3
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TeV Scale Seesaw
• probing the flavor sector at the colliders

• (2+1) leptocratic models:

• invisible decays of Z’: distinguish different U(1)

• U(1)B-L: B(Z’ → invisible) = 3/8

• Orwellian Z’:  B(Z’ → invisible) = 6/7

[zn1 = 5, zn2 = zn3 = -4]

-4 -3 -2 -1 0 1 2 3 4 5 6

az
!

0

10

20

30

R
at

io
 o

f 
B

ra
n
ch

in
g
 F

ra
ct

io
n
s B(Z'->e

+
e

-
)/N(Z'->µ

+
µ

B(Z' -> e
+
e

-
)/B(Z'-> t

B(Z ′ → e+e−)/B(Z ′ → µ+µ−)
B(Z ′ → e+e−)/B(Z ′ → tt)

1

12

where the charge of the scalar field φ is given by

zφ = −
3(a + b)

a2 + ab + b2
. (VI.14)

Measuring this ratio would allow the extraction of the azφ

combination of parameters. If furthermore a resonance of
the same invariant mass is discovered in the tt channel at
the LHC or the Tevatron, then it will be straightforward
to test the 2+1 Leptocratic Model which predicts

B (Z ′ → e+e−)

B
(

Z ′ → tt
) = 3 (1 + 2azφ)2 . (VI.15)

Let us assume now that a resonance will be discovered
in dilepton channels, and that the ratio of branching frac-
tions into e+e− and µ+µ− turns out to be equal to one
within experimental errors. The Orwellian Leptocratic
Model (a = 0) will be favored over the more general 2+1
Leptocratic Model. The question is how to establish that
the resonance is indeed associated with our U(1)ν and
not some other extension of the standard model. Let us
assume that the ATLAS and CMS experiments at the
LHC will be able to determine precisely several proper-
ties of the Z ′ boson by measuring total rates, angular
distributions, and other observables in the e+e−, µ+µ−,
tt and perhaps a couple of other channels, such that all
the results are consistent with the Orwellian Leptocratic
Model. Will that be enough evidence that the neutrino
masses are generated at the TeV scale rather than some
very high seesaw scale? The answer is no, because in the
Orwellian Leptocratic Model all standard model fermions
have charges given by their B − L number if zH = 0. It
turns out that extending the electroweak gauge group to
SU(2)L × U(1)Y × U(1)B−L is a natural possibility for
TeV scale physics which does not lead to an explanation
for the smallness of the neutrino masses. The only way
to distinguish experimentally between the Z ′ from the
Orwellian Leptocratic Model and the ZB−L boson associ-
ated with the U(1)B−L gauge symmetry is by measuring
the branching fraction for invisible decays.

In the Orwellian Leptocratic Model we find

B (Z ′ → invisible ) =
6

7
, (VI.16)

where we ignored the top mass, and assumed that the
decay into the CP-even component of the φ scalar is
kinematically forbidden. This large invisible branching
fraction is a consequence of the large charges of the right-
handed neutrinos: zn1

= 5 and zn2
= zn3

= −4 in the
normalization where the quarks have charge 1/3 and the
leptons have charge −1. The branching fraction for in-
visible decays of the ZB−L boson is significantly smaller,
given by 6/16.

A measurement of the invisible decay of a Z ′ boson at
the LHC would be extremely hard. For triggering pur-
poses, the Z ′ would have to be produced in association
with some other particles, which would render the sig-
nal rates small. At the same time, the backgrounds are

likely to be large. The best hope for measuring the invis-
ible decay of a Z ′ boson is provided by the ILC, where
the total production cross section is well known [37], and
the backgrounds will be under control.

The scalar sector responsible for U(1)ν breaking may
also be accessible at colliders. Assuming that a single φ
scalar is charged under U(1)ν , its CP-even degree of free-
dom may be produced in association with the Z ′ boson.
Based on the structure of the operators responsible for
neutrino masses, its main decay mode would be into neu-
trinos. A more interesting channel, albeit with a phase-
space suppressed branching fraction, is into a charged
lepton, a longitudinal W boson and a sterile neutrino.
We point out, though, that besides the operators respon-
sible for neutrino masses, other higher-dimensional op-
erators may lead to large branching fractions of the φ
scalar into quarks and charged leptons, and possibly into
standard model Higgs bosons. For example, the gauge-
invariant dimension-six operator

1

Λ2
φ†φ (tL, bL)H̃tR (VI.17)

may lead to a dominant φ decay into top quarks. Hence,
the phenomenology of the U(1)ν -breaking sector is more
model-dependent than that of the Z ′ boson. An inter-
esting possibility is to check whether there are more φ
scalars coupled to the Z ′, which would further test the
operators responsible for neutrino masses.

VII. SUMMARY AND CONCLUSIONS

The most popular explanation for tiny neutrino masses
is to postulate that lepton number is a symmetry of the
standard model that is broken at an energy scale Λ, close
to the grand unification scale. Besides suppressing the
neutrino masses by v/Λ, the high energy versions of the
seesaw mechanism provide all necessary ingredients to
explain the matter-antimatter asymmetry of the universe
[39]. On the more sobering side, a very high energy origin
for neutrino masses cannot be verified experimentally;
one can at most envision accumulating indirect evidence
for the physics behind neutrinos masses [40].

Here, we have pursued a different approach. We in-
vestigated the generation of neutrino masses in a non-
anomalous U(1)ν-extended standard model. Its parti-
cle content includes N right-handed neutrinos, which are
neutral under SU(3)c × SU(2)L × U(1)Y , but have non-
trivial charges under the U(1)ν symmetry. Right-handed
neutrinos allow for non-trivial, non-anomalous extensions
of the gauge sector, while the U(1)ν provides a natu-
ral mechanism for generating small neutrino masses that
does not necessarily rely on physics at energy scales sig-
nificantly above the electroweak scale. Generically, U(1)ν

gauge invariance forbids the usual neutrino mass terms,
and these are generated only through operators of high
mass dimension which include scalar fields associated to
the U(1)ν breaking scale 〈φ〉. Hence, neutrinos are light
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equilibrium by Z ′ exchange, we can readily estimate that
they ought to decouple at T = Td, given roughly by

T 2
d

MPl
∼

T 5
d

4π〈φ〉4
, (V.10)

if the Z ′ mass is much larger than Td. Hence, ster-
ile neutrinos contribute to the expansion rate at the
time of BBN like (10.75/g∗(Td))4/3 equivalent neutrinos.
For Td values above the QCD phase-transition (around
180 MeV), g∗ ! 60, so that each sterile state contributes
like 0.1 neutrinos (or less) and is easily allowed by the
data. Td ! 180 MeV translates into 〈φ〉 ! 5 TeV.

For smaller U(1)ν breaking scales there are several
ways out. Modest modifications to the concordance cos-
mological model allow for more relativistic degrees of
freedom at the time of BBN, including allowing for a
large lepton asymmetry among the active leptons. The
authors of [35], for example, find that up to four massless
neutrinos can be added to the primordial universe as long
as the electron neutrino chemical potential is ξe ∼ 0.2.

Heavier sterile neutrinos (m ! 1 eV) must also satisfy
constraints on the amount of matter (hot or cold) in the
universe. If the sterile neutrinos decouple while relativis-
tic (mνs

" 100 MeV for 〈φ〉 ! 5 TeV), their contribution
to the critical density is estimated to be

Ωνs
∼ 0.2

( mνs

100 eV

)

. (V.11)

Hence, mostly right-handed states with masses above
100 eV would overclose the universe. A 100 eV sterile
neutrino would behave as hot dark matter, whose con-
tribution to the energy budget of the universe is cur-
rently constrained to be much less than the estimate
above. On the other hand, we estimate that much heav-
ier sterile states (m ! 100 MeV) will decouple while non-
relativistic, and serve as good dark matter candidates if
their masses are above tens of GeV, and otherwise over-
close the universe.

In summary, very light quasi-sterile neutrinos (m "
10 eV) are in agreement with early universe data if
〈φ〉 ! 5 TeV, even if we do not appeal to non-standard
cosmology. Smaller 〈φ〉 are easily allowed if one adds
new ingredients to the early universe, like a large lep-
ton asymmetry. Heavier mostly sterile states (10 eV "
m " 10 GeV) either populate the universe with too much
hot dark matter or too much matter (Ωνs

$ 1). These
constraints can be circumvented in a variety of ways, in-
cluding adding new sterile neutrino interactions that will
keep the heavy states in thermal equilibrium until lower
temperatures, or postulating a low reheating tempera-
ture (Treheat " 100 MeV, easily allowed by current data
[36], should suffice).

VI. COLLIDER PROBES OF NEUTRINO MASS
GENERATION

If the U(1)ν gauge symmetry which controls the
higher-dimensional operators responsible for generating

field U(1)ν charge

qL, uR, dR
1
3

!1L, e1

R −1 − 2azφ

!2L, !3L, e2

R, e3

R −1 + azφ

n1
R −1 − 2bzφ

n2
R, n3

R −1 + bzφ

H 0

φ zφ = −
3(a + b)

a2 + ab + b2

TABLE II: The two-parameter family of U(1)ν charges in the
2+1 Leptocratic Model (a′ = b′ = 0) with the additional
constraint of zH = 0. The Orwellian Leptocratic Model with
zH = 0 is recovered for a = 0.

neutrino masses is spontaneously broken at or below the
TeV scale, then the associated Z ′ gauge boson is likely to
produce observable effects at high-energy colliders. Here
we discuss the case where the gauge coupling is not much
smaller than unity, so that the Z ′ boson may be produced
copiously at the LHC [38]. Furthermore, we assume that
the Z ′ mass is below 1 TeV so that it can show up as a
resonance at the ILC.

For nonzero values of the U(1)ν charge of the Higgs
doublet, there is tree-level mixing between the Z and Z ′

bosons, which is tightly constrained by the LEPI data
(see Fig. 1 of Ref. [13]). We will thus consider only the
zH = 0 case. In Secs. III and IV we have studied sev-
eral U(1)ν charge assignments. The most general one
consistent with neutrino mass generation at the TeV-
scale is that of the 2+1 Leptocratic Model (note that
the Orwellian Leptocratic Model is a particular case with
a = 0). Imposing the additional condition of zH = 0 we
find

c = 6zq , (VI.12)

so that all U(1)ν charges are given in terms of only two
rational parameters, a and b. It is convenient to normal-
ize the gauge coupling such that the quarks have U(1)ν

charge +1/3. The other U(1)ν charges are listed in Table
II.

In the event of a Z ′ discovery in dilepton channels at
the LHC or the Tevatron, it would be straightforward
to measure the ratio of branching fractions into e+e−

and µ+µ−. Unlike the majority of models studied in the
literature, the 2+1 Leptocratic Model with a %= 0 predicts
a value for this ratio different than unity:

B (Z ′ → e+e−)

B (Z ′ → µ+µ−)
=

(

1 + 2azφ

1 − azφ

)2

, (VI.13)
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Conclusion
• TeV scale seesaw: 

• required in new EW models; testability at colliders 

• SM x non-anomalous U(1), in presence of RH neutrinos

• anomaly cancellations: constraints on charges, predict flavor structure

• TeV scale seesaw possible with 3 RH neutrinos

• neutrinos can either be Dirac or Majorana fermions

• Orwellian leptocratic models: generation independent charged lepton charges

• (2+1) leptocratic models: generation dependent charged lepton charges 

• GUT extension: SU(5) x U(1)NA  [MCC, Jones, Rajaraman, Yu, arXiv:0801.4228]

• family symmetry

• proton stability


