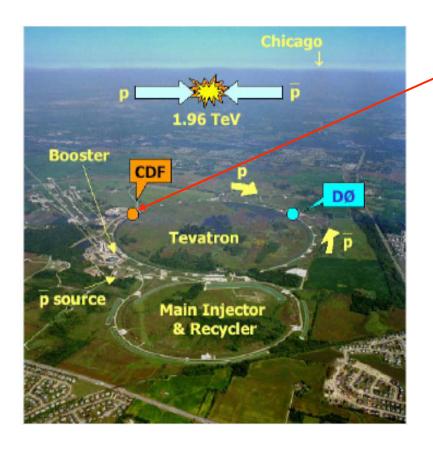
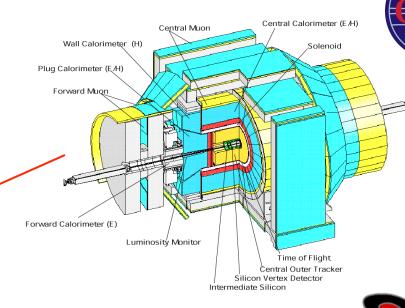


Search for Pair Production of Stop Quarks Mimicking Top Event Signatures at CDF

Andrew Ivanov

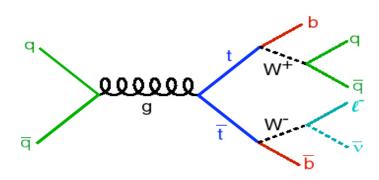

University of California, Davis
CDF Collaboration

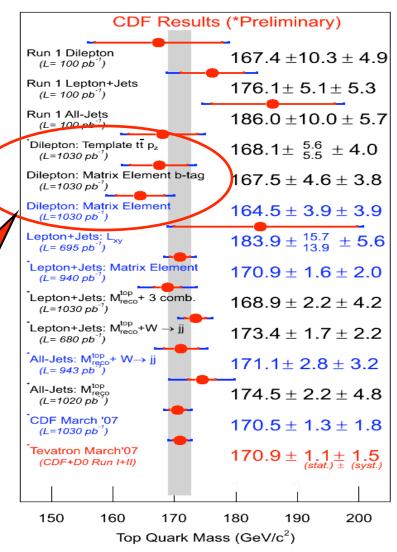

PHENO - 2008

Symposium

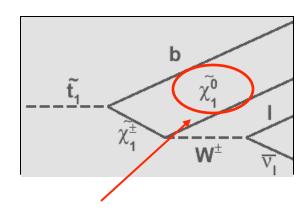
29 April, 2008

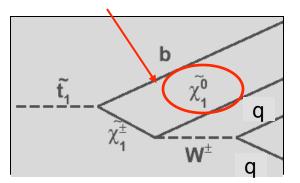
Tevatron and CDF detector




 Top quark has been discovered in 1995

- Standard Model particle,
 heaviest observed ~ 175 GeV
- We search for new physics in variety of channels
- But can it be hidden in the sample of top quarks?


Top Quarks


- We study top quark properties and measure its mass in all of its decay channels
- There have been always apparent inconsistencies between the top mass measurements in the dilepton and lepton+jets channels

Stop in Top Data?

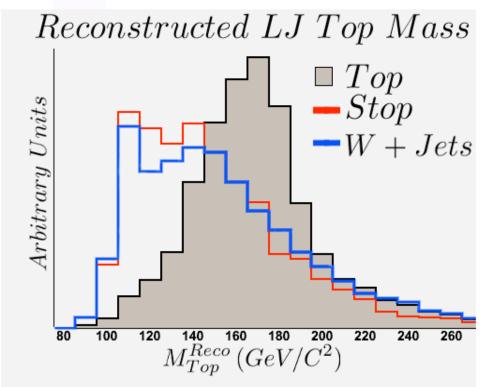
Extra particles in stop decays!

For top:

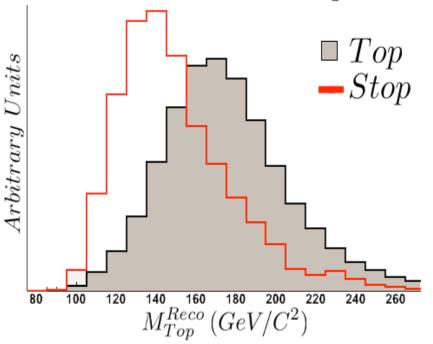
$$m(W) = m(lv) = m(qq)$$

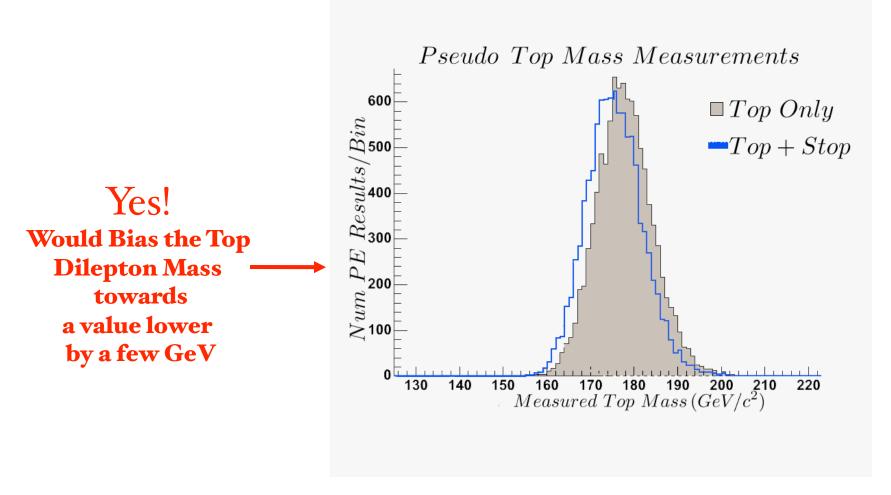
 $m(t) = m(blv) = m(bqq)$

PHENO 2008, Apr-29-2008


We hypothesize that discrepancies in top mass measurements in different channels could be due to presence of light stop pair production with the subsequent decay chain:

$$\tilde{t_1} \rightarrow b\tilde{\chi_1}^{\pm} \rightarrow b\tilde{\chi_1}^0 W^{\pm (*)}$$


- Event signature is identical to the signatures of top quarks!
- Stop is a scalar quark, cross section ~ 10 times smaller
- How do stop events behave under the top event reconstruction?
- Lepton+Jets channel: neutralino on hadronic side
 breaks the invariant mass constraints
- Dilepton channel: neutralinos are invisible, effect is minimal

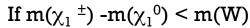

Effect of Stop Presence in Lepton + Jets And Dilepton Channels

Would Presence of Stop Have an Effect on Top Mass Measurement?

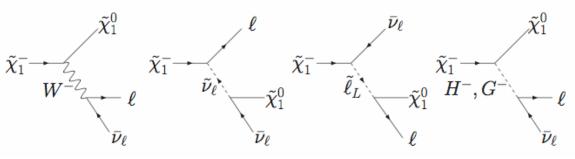
Theoretical Assumptions

• Assumptions: $\tilde{\chi}_1^0$ is the LSP, and $\tilde{q}, \tilde{\ell}, \tilde{\nu}$ are heavy

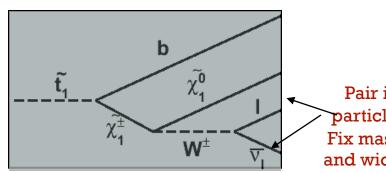
$$m_{ ilde{t}_1} \lesssim m_t$$
 WMAP data


$$m_{ ilde{\chi}_1^+} < m_{ ilde{t}_1} - m_b$$
 Electroweak Baryogenesis

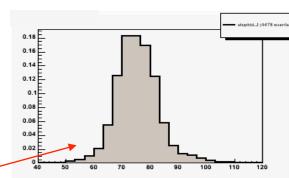
C. Balazs, M. Carena, C. Wagner, PRD 70 (2004) 015007


■ Dominant decay mode (BR~ 100%):

$$(\tilde{t}_1 \to b\tilde{\chi}_1^{\pm}) \to b\tilde{\chi}_1^0 W^{\pm} \to b\tilde{\chi}_1^0 l\nu$$


- We search in Dilepton Channel
- Event signature:
 - □ 2 leptons
 - □ >= 2 jets
 - \Box + Missing E_T

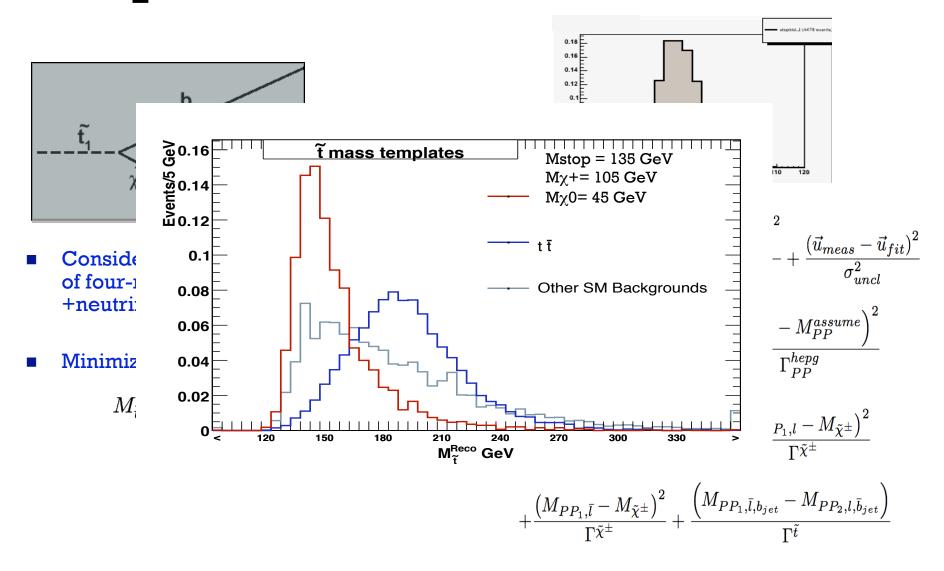
Dilepton branching ratio can be enhanced due to other SUSY particles off-shell:



Stop Mass Reconstruction

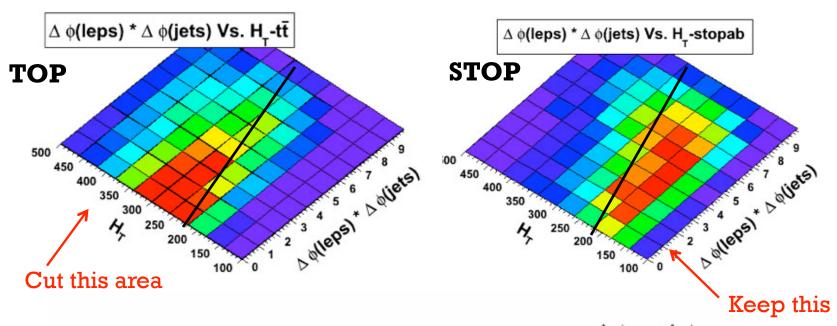
Pair invisible

particles into PP,
Fix mass=75 Gev
and width= 5 GeV



- Consider all possible directions of sum of four-momenta of PP=neutralino +neutrino for each leg
- Minimize χ^2 for and construct sum:

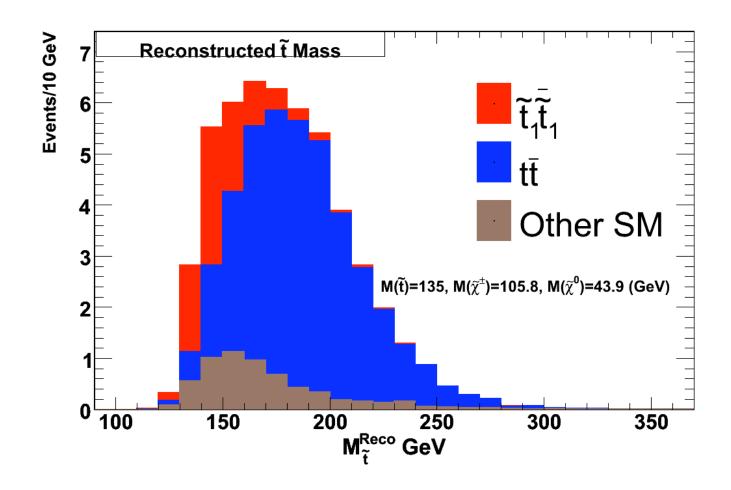
$$M_{\tilde{t}} = \frac{1}{\sum_{i} e^{-\chi_{i}^{2}}} \sum_{direction \ i} M_{i}^{\tilde{t}} e^{-\chi_{i}^{2}}$$


$$\begin{split} \mathbf{e^{V}} \\ \mathbf{e^{V}} \\ \chi^{2} &= \frac{\left(\vec{l}_{meas} - \vec{l}_{fit}\right)^{2}}{\sigma_{l}^{2}} + \frac{\left(\vec{l}_{meas} - \vec{l}_{fit}\right)^{2}}{\sigma_{l}^{2}} + \frac{\left(\vec{u}_{meas} - \vec{u}_{fit}\right)^{2}}{\sigma_{uncl}^{2}} \\ &+ \sum_{jets\,i} \frac{\left(\vec{j}_{i_{meas}} - \vec{j}_{i_{fit}}\right)}{\sigma_{jet_{i}}^{2}} + \frac{\left(M_{PP_{1}}^{fit} - M_{PP}^{assume}\right)^{2}}{\Gamma_{PP}^{hepg}} \\ &+ \frac{\left(M_{PP_{2}}^{fit} - M_{PP}^{assume}\right)^{2}}{\Gamma_{PP}^{hepg}} + \frac{\left(M_{PP_{1},l} - M_{\tilde{\chi}^{\pm}}\right)^{2}}{\Gamma^{\tilde{\chi}^{\pm}}} \\ &+ \frac{\left(M_{PP_{1},\bar{l}} - M_{\tilde{\chi}^{\pm}}\right)^{2}}{\Gamma^{\tilde{\chi}^{\pm}}} + \frac{\left(M_{PP_{1},\bar{l},b_{jet}} - M_{PP_{2},l,\bar{b}_{jet}}\right)}{\Gamma^{\tilde{t}}} \end{split}$$

Stop Mass Reconstruction

Top Killer

Main background stop are top events



$$H_T \equiv \sum P_T < 215 \text{ GeV} + 325 \text{ GeV} \times \frac{\Delta \phi_{leps} \Delta \phi_{jets}}{\pi^2}$$

Kills about 50 % of top with ~ 15% loss of stop events

Can we see stop?

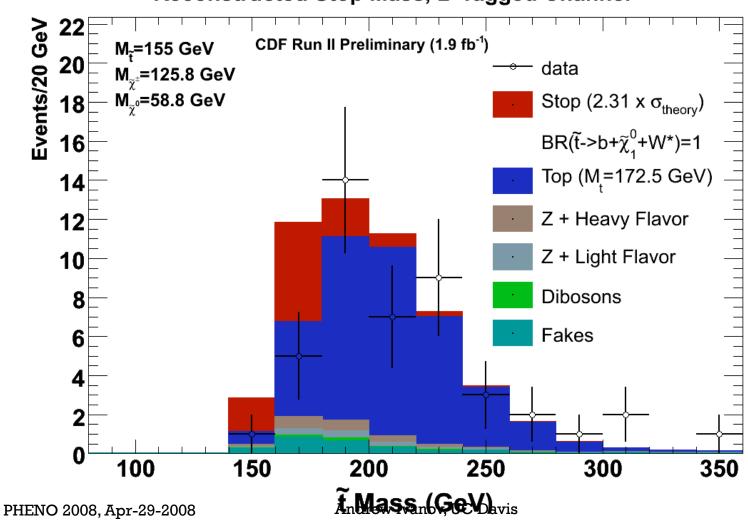
Event Yields in Signal Region

At least one of the jets has a b-tag

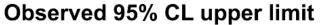
No jets have a b-tag

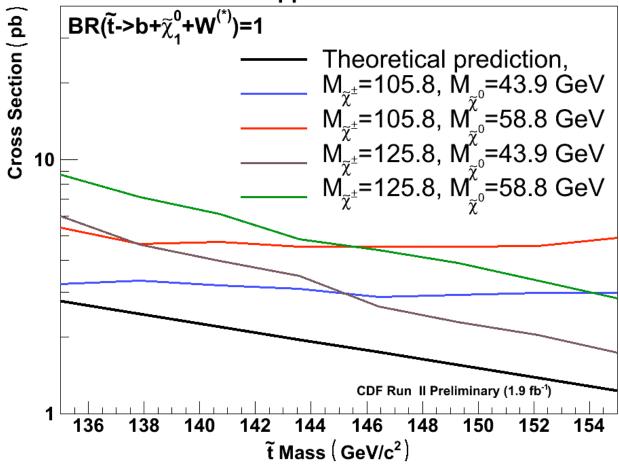
Events per 1900 pb^{-1} with Njet ≥ 2

Source	ee	$\mu\mu$	$e\mu$	$\ell\ell$			
Stop(155,105,60)	0.71 ± 0.14	0.89 ± 0.17	2.04 ± 0.39	3.65 ± 0.70			
Top	8.43 ± 1.29	7.81 ± 1.20	20.26 ± 2.85	36.50 ± 5.27			
Z+HF	1.02 ± 0.22	0.70 ± 0.15	0.27 ± 0.05	2.00 ± 0.43			
Z+LF	0.63 ± 0.07	0.37 ± 0.07	0.24 ± 0.02	1.24 ± 0.12			
Diboson	0.14 ± 0.02	0.10 ± 0.01	0.20 ± 0.03	0.44 ± 0.06			
Fakes	0.39 ± 0.12	0.48 ± 0.14	1.48 ± 0.44	2.35 ± 0.70			
SM Total	10.62 ± 1.49	9.46 ± 1.27	22.46 ± 2.88	42.53 ± 5.56			
Data	10	11	24	45			


Events per 2000 pb^{-1} with Njet ≥ 2

ļ	SM Total Data	17.02 ± 3.01	14.46 ± 2.59	20.54 ± 3.28	52.02 ± 8.04
	Fakes	1.65 ± 0.49	1.98 ± 0.59	5.02 ± 1.51	8.66 ± 2.60
	Diboson	1.40 ± 0.25	1.05 ± 0.21	2.46 ± 0.45	4.91 ± 0.91
	Z+LF	9.33 ± 2.57	6.77 ± 2.10	3.13 ± 0.25	19.23 ± 4.91
	Z+HF	0.26 ± 0.05	0.20 ± 0.04	0.07 ± 0.01	0.54 ± 0.10
Ì	Top	4.38 ± 0.64	4.45 ± 0.66	9.85 ± 1.36	18.68 ± 2.46
Ì	Stop(155,105,60)	0.29 ± 0.06	0.34 ± 0.06	0.83 ± 0.16	1.46 ± 0.28
	Source	ee	$\mu\mu$	$e\mu$	$\ell\ell$


Reconstructed Stop Mass in Data


Reconstructed Stop Mass, B-Tagged Channel

Observed Limits

Summary

- We performed a stop search in 1.9 fb⁻¹ of CDF Run II data
- No evidence for stop signal is observed
- We set limits on stop pair production