# Solving the LHC Inverse Problem with Dark Matter Observations

Brent D. Nelson Northeastern University, Boston

with Baris Altunkaynak and Michael Holmes hep-ph/0804.2899



## The "LHC Inverse Problem"

Arkani-Hamed, Kane, Thaler & Wang, "Supersymmetry and the LHC inverse problem," JHEP 0608, 070 (2006) [arXiv:hep-ph/0512190].

• Basic premise: multiple SUSY parameter sets are likely to fit the LHC data

$$\begin{array}{c} \tan \beta, \ \mu, \ M_1, \ M_2, \ M_3 \\ m_{Q_{1,2}}, \ m_{U_{1,2}}, \ m_{D_{1,2}}, \ m_{L_{1,2}}, \ m_{E_{1,2}} \\ m_{Q_3}, \ m_{U_3}, \ m_{D_3}, \ m_{L_3}, \ m_{E_3} \end{array} \right)$$

- Proven to be true in 10  $fb^{-1}$  of simulated data, using 1808 observables
- ⇒ A thought experiment: let's assume LHC data not uniquely invertible



## The "LHC Inverse Problem"

Arkani-Hamed, Kane, Thaler & Wang, "Supersymmetry and the LHC inverse problem," JHEP 0608, 070 (2006) [arXiv:hep-ph/0512190].

• Basic premise: multiple SUSY parameter sets are likely to fit the LHC data

$$\begin{array}{c}
 \tan \beta, \ \mu, \ M_1, \ M_2, \ M_3 \\
 m_{Q_{1,2}}, \ m_{U_{1,2}}, \ m_{D_{1,2}}, \ m_{L_{1,2}}, \ m_{E_{1,2}} \\
 m_{Q_3}, \ m_{U_3}, \ m_{D_3}, \ m_{L_3}, \ m_{E_3}
\end{array}$$

- Proven to be true in 10  $fb^{-1}$  of simulated data, using 1808 observables
- ⇒ A thought experiment: let's assume LHC data not uniquely invertible



 $\Rightarrow$  43,000 parameter points  $\rightarrow$  378 models in 276 degenerate pairs

## The "LHC Inverse Problem"

Arkani-Hamed, Kane, Thaler & Wang, "Supersymmetry and the LHC inverse problem," JHEP 0608, 070 (2006) [arXiv:hep-ph/0512190].

• Basic premise: multiple SUSY parameter sets are likely to fit the LHC data

$$\begin{array}{c}
 \tan \beta, \ \mu, \ M_1, \ M_2, \ M_3 \\
 m_{Q_{1,2}}, \ m_{U_{1,2}}, \ m_{D_{1,2}}, \ m_{L_{1,2}}, \ m_{E_{1,2}} \\
 m_{Q_3}, \ m_{U_3}, \ m_{D_3}, \ m_{L_3}, \ m_{E_3}
\end{array}$$

- Proven to be true in 10  $fb^{-1}$  of simulated data, using 1808 observables
- ⇒ A thought experiment: let's assume LHC data not uniquely invertible



 $\Rightarrow$  43,000 parameter points  $\rightarrow$  378 models in 276 degenerate pairs

(1) Make better use of LHC data itself

- Better choice of observables
- Use exclusive measurements/reconstruct decay chains
- Simply wait for more integrated luminosity

 $\Rightarrow$  But let's go ahead and take the LHC Inverse Problem at face value

(1) Make better use of LHC data itself

- Better choice of observables
- Use exclusive measurements/reconstruct decay chains
- Simply wait for more integrated luminosity

 $\Rightarrow$  But let's go ahead and take the LHC Inverse Problem at face value

(2) Wait for the ILC to rescue us

Berger, Gainer, Hewett, Lillie & Rizzo, arXiv:hep-ph/0711.1374, 0712.2965

- Good News: When charged superpartners accessible, pairs generally separable
- Bad News: Only 57 pairs distinguishable at  $5\sigma$  at  $\sqrt{s} = 500$  GeV ILC (63 at  $3\sigma$  level)
- Worse News: The earliest we can expect the ILC is 2019...

(3) Use dark matter observables as a discriminant

- Many experiments taking data now or in near future
- WIMP signal rates strongly sensitive to things LHC cannot see (like LSP wavefunction)

## **Dark Matter: Challenges and Opportunities**

Given a WIMP signal can we say definitively that it is consistent with only one of our post-LHC models?

- $\Rightarrow$  Dark matter arena very different from collider studies!
- Variety of experiments and detection methodologies
- Backgrounds to WIMP signals less well modeled and understood
- Theoretical assumptions often the biggest source of uncertainty

## **Dark Matter: Challenges and Opportunities**

Given a WIMP signal can we say definitively that it is consistent with only *one* of our post-LHC models?

- $\Rightarrow$  Dark matter arena very different from collider studies!
- Variety of experiments and detection methodologies
- Backgrounds to WIMP signals less well modeled and understood
- Theoretical assumptions often the biggest source of uncertainty
- $\Rightarrow$  Biggest uncertainties  $\rightarrow$  number density of WIMPs  $n_{\chi} = \rho_{\chi}/m_{\chi}$
- We have little idea what this should be... but rotation curves give some indication
- Assume a local density normalized by  $(\rho_{\chi})_0 = 0.3 \text{ GeV/cm}^3$
- Indirectly related to thermal relic density  $\Omega_{\chi} h^2$
- Impacts direct detection nuclear recoil rates
- Annihilation rates and branching fraction into interesting final states

⇒ We performed all calculations using DarkSUSY

#### **Thermal Relic Density**



## **Thermal Relic Density**



- Thermal relic density sensitive to small variations in SUSY parameters
- Lots of ways to alter standard predictions for  $\Omega_{\chi} h^2$

Gelmini & Gondolo, PRD74 (2006) 023510

- $\Rightarrow$  Our approach is to consider two possibilities
- (1) Assume  $(\rho_{\chi})_0 = 0.3 \text{ GeV/cm}^3$  regardless of  $\Omega_{\chi} h^2$  prediction
- (2) Rescale  $(\rho_{\chi})_0$  by a factor  $r_{\chi} = Min(1, \Omega_{\chi}h^2/0.025)$

- $\Rightarrow$  What does it mean to distinguish between degenerate models?
- Values of  $s_i^A$  and  $s_i^B$  need to be large enough that both are detectable above the relevant background for the experiment in question
- Values of  $s_i^A$  and  $s_i^B$  need to be sufficiently separated to give a statistically significant difference when measured with respect to the appropriate mutual error  $\sigma_i^{AB}$

- $\Rightarrow$  What does it mean to distinguish between degenerate models?
- Values of  $s_i^A$  and  $s_i^B$  need to be large enough that both are detectable above the relevant background for the experiment in question
- Values of  $s_i^A$  and  $s_i^B$  need to be sufficiently separated to give a statistically significant difference when measured with respect to the appropriate mutual error  $\sigma_i^{AB}$
- Direct detection experiments look for scattering of WIMPS from heavy nuclei
- The actual observable (s<sub>i</sub>) is the number of recoil events observed over some time interval
- The rate for such events is approximated by

$$R \sim \sum_{i} \Phi_{\chi} \frac{\sigma_{\chi i}^{\mathrm{SI}}}{M_{i}} = \sum_{i} \frac{\langle v_{\chi} \rangle \rho_{\chi} \sigma_{\chi i}^{\mathrm{SI}}}{m_{\chi} M_{i}},$$

with  $M_i$  being the mass of *i*-th nucleus and  $\langle v_{\chi} \rangle \simeq 270 {\rm km/s}$ 

#### **Direct Detection: HEP Theory Style**



Sensitivity curves taken from: http://dmtools.berkeley.edu/limitplots/

#### **Direct Detection: HEP Theory Style**



Sensitivity curves taken from: http://dmtools.berkeley.edu/limitplots/

- ⇒ Direct detection experiments measure recoil rates, not cross-sections
- The latter is *inferred* from an assumed  $\rho_{\chi}$
- After rescaling by  $r_{\chi} = Min(1, \Omega_{\chi}h^2/0.025)$  none of these models would have produced more than one or two events in current experiments

- ⇒ Direct detection experiments measure recoil rates, not cross-sections
- The latter is *inferred* from an assumed  $\rho_{\chi}$
- After rescaling by  $r_{\chi} = Min(1, \Omega_{\chi}h^2/0.025)$  none of these models would have produced more than one or two events in current experiments
- $\Rightarrow$  Is that enough for a discovery? Depends on backgrounds!
- Primary backgrounds: nuclear recoils/ionization charge induced by radioactive decays/cosmic rays
- Expectation:
  - $\sim \mathcal{O}(1)$  events/experiment/year in germanium;
  - $\sim \mathcal{O}(10)$  events/experiment/year in liquid xenon

⇒ Calculation of integrated event rate depends on experimental configuration

$$R = \int_{E_{\min}}^{E_{\max}} \frac{dR}{dE} dE \qquad \begin{array}{l} R_1 \text{ (Xenon)} \\ R_2 \text{ (Germanium)} : 10 \text{ keV} \leq E_{\text{recoil}} \leq 25 \text{ keV} \\ \end{array}$$

## **Direct Detection: Less Naive**

- 1. Counts  $N_A$  and  $N_B$  ( $N_i$  = rate<sub>i</sub> × exposure) must *both* exceed  $N_{\min}$  events
- 2. The two quantities  $N_A$  and  $N_B$  must differ by at least  $5 \sigma^{AB}$
- 3. Allow for experimental error/background beyond purely statistical via parameter  $f: \sigma^{AB} = \sqrt{(1 + f)(N_A + N_B)}$

#### **Direct Detection: Less Naive**

- 1. Counts  $N_A$  and  $N_B$  ( $N_i$  = rate<sub>i</sub> × exposure) must *both* exceed  $N_{\min}$  events
- 2. The two quantities  $N_A$  and  $N_B$  must differ by at least  $5 \sigma^{AB}$
- 3. Allow for experimental error/background beyond purely statistical via parameter f:  $\sigma^{AB} = \sqrt{(1 + f)(N_A + N_B)}$



#### **Direct Detection: Less Naive**

- 1. Counts  $N_A$  and  $N_B$  ( $N_i$  = rate<sub>i</sub> × exposure) must *both* exceed  $N_{\min}$  events
- 2. The two quantities  $N_A$  and  $N_B$  must differ by at least  $5 \sigma^{AB}$
- 3. Allow for experimental error/background beyond purely statistical via parameter f:  $\sigma^{AB} = \sqrt{(1+f)(N_A + N_B)}$



#### **Direct Detection Experiments: Near Future**



⇒ NOTE: We assume 200 days of data-taking per calendar year using 80% of nominal target mass

#### **Direct Detection Experiments: Far Future**



⇒ NOTE: We assume 200 days of data-taking per calendar year using 80% of nominal target mass

# **Summary of Direct Detection Capability**

|                             | Conservative | Moderate | Optimistic |
|-----------------------------|--------------|----------|------------|
| Direct detection, xenon     | 48           |          |            |
| Direct detection, germanium | 4            |          |            |

Conservative

\*

\*

\*

\*

\*

\*

\*

\*

- ★ Density rescaled
- $\star N \ge 100$  recoil events
- ★ Error f = 0.2
- ★ 100 kg-years Ge, 1 ton-year Xe

# **Summary of Direct Detection Capability**

|                             | Conservative | Moderate | Optimistic |
|-----------------------------|--------------|----------|------------|
| Direct detection, xenon     | 48           | 112      |            |
| Direct detection, germanium | 4            | 14       |            |

- Conservative
  - ★ Density rescaled
  - $\star N \ge 100$  recoil events
  - ★ Error f = 0.2
  - ★ 100 kg-years Ge, 1 ton-year Xe
- Moderate
  - ⋆ Density rescaled
  - $\star N \ge 10$  recoil events
  - $\star$  Error f = 0
  - ★ 100 kg-years Ge, 1 ton-year Xe



 $\star$ 

# **Summary of Direct Detection Capability**

|                             | Conservative | Moderate | Optimistic |
|-----------------------------|--------------|----------|------------|
| Direct detection, xenon     | 48           | 112      | 224        |
| Direct detection, germanium | 4            | 14       | 147        |

- Conservative
  - ★ Density rescaled
  - $\star N \ge 100$  recoil events
  - **\star** Error f = 0.2
  - ★ 100 kg-years Ge, 1 ton-year Xe
- Moderate
  - Density rescaled
  - $\star$   $N \ge 10$  recoil events
  - ★ Error f = 0
  - ★ 100 kg-years Ge, 1 ton-year Xe
- Optimistic
  - ⋆ Density not rescaled
  - $\star$   $N \ge 10$  recoil events
  - **\star** Error f = 0
  - ★ 1 ton-year Ge, 5 ton-years Xe

- ⇒ Indirect detection experiments look for products of LSP annihilation
- Many possible signals: neutrinos, gamma rays, anti-matter
- Gamma rays special: travel directly from source, relatively easy to detect
- Can therefore focus search in direction of expected high density areas like galactic center

- ⇒ Indirect detection experiments look for products of LSP annihilation
- Many possible signals: neutrinos, gamma rays, anti-matter
- Gamma rays special: travel directly from source, relatively easy to detect
- Can therefore focus search in direction of expected high density areas like galactic center
- $\Rightarrow$  Halo profiles especially important in this situation
- Annihilation rates scale like the *square* of the density
- We observe the entire line-of-sight to the galactic center therefore need to know the halo profile  $\rho_{\chi}(r)$
- Many possible profiles suggested in literature; each can be summarized by one parameter  $\overline{J}(\Delta\Omega)$

$$\overline{J}(\Delta\Omega) \equiv \frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega' J(\psi'); \quad J(\psi) = \frac{1}{8.5 \,\mathrm{kpc}} \int_{\mathrm{l.\,o.\,s.}} ds(\psi) \left(\frac{\rho_{\chi}(r)}{0.3 \,\mathrm{GeV}/\mathrm{cm}^3}\right)^2$$

⇒ Two types of signal: continuous spectrum and mono-energetic lines

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}} = \mathbf{0.94} \times 10^{-13} \sum_{i} \frac{dN_{\gamma}^{i}}{dE_{\gamma}} \left(\frac{\langle \sigma_{i}v \rangle}{10^{-29} \,\mathrm{cm}^{3} \,\mathrm{s}^{-1}}\right) \left(\frac{100 \,\mathrm{GeV}}{m_{\chi}}\right)^{2} \overline{J}(\Delta\Omega) \Delta\Omega$$

- Typical sensitivities require  $\Phi_{\min} \sim 10^{-10}$  photons/cm<sup>2</sup>/sec
- ⇒ We therefore consider the NFW profile model Navarro, Frenk & White, APJ 462 (1996) 563; 490 (1997) 493
- Plain vanilla version gives  $\overline{J}(10^{-5}\,\mathrm{sr}) = 1.3 imes 10^4$
- With effects of adiabatic compression  $\overline{J}(10^{-5}\,\mathrm{sr}) = 1.0 \times 10^{6}$
- ⇒ Two classes of experiments: satellite telescopes and earth-based atmospheric Cherenkov Telescopes (ACTs)

|       | $E_{\min}$ | $E_{\max}$ | $\sigma_E/E$ | $A_{ m eff}$               | $\Delta \Omega$                 |
|-------|------------|------------|--------------|----------------------------|---------------------------------|
| GLAST | 50 MeV     | 300 GeV    | 10%          | $1 	imes 10^4 \ { m cm}^2$ | $1 \times 10^{-5} \mathrm{sr}$  |
| ACT   | 100 GeV    | 10 TeV     | 15%          | $3 	imes 10^8 \ { m cm}^2$ | $1 \times 10^{-5}  \mathrm{sr}$ |

- Continuous spectrum cuts off quickly at  $E_{\gamma} \simeq m_{\chi}$
- For our models 98 GeV  $\leq m_{\chi} \leq 557$  GeV with 85% having  $m_{\chi} \leq 300$  GeV
- Thus we choose to only consider GLAST for the continuous spectrum

# Indirect Detection Experiments: Backgrounds

No way to distinguish photons from WIMP annihilation and those from generic astrophysical sources

$$\frac{d\Phi_{\gamma}^{\rm bkg}}{dE_{\gamma}} = 9 \times 10^{-11} \times \left(\frac{E_{\gamma}}{1 \text{ GeV}}\right)^{-2.7} \text{ photons/cm}^2/\text{s/GeV}$$

- New wrinkle: both ACTs and satellites (EGRET) observe an excess of gamma ray photons from the galactic center!
- EGRET data only covers low energy range...

$$\frac{d\Phi_{\gamma}^{\rm EG}}{dE_{\gamma}} = 2.2 \times 10^{-7} \times \exp\left(-\frac{E_{\gamma}}{30 \,\,{\rm GeV}}\right) \times \left(\frac{E_{\gamma}}{1 \,\,{\rm GeV}}\right)^{-2.2} \,\,{\rm photons/cm^2/s/GeV}$$

- ACT data covers much higher energy range....
- Our treatment: consider both the "low" background and the EGRET normalized "high" background
- Conservative: EGRET data likely consistent with point sources
- Might be possible to remove with angular information

Dodelson, Hooper & Serpico, PRD 77 (2008) 063512



### Nominal Reach – NFW + a.c. w/ Rescaling



15

- 1. Use DarkSUSY to compute  $d\Phi/dE_{\gamma}$  over range  $1 \text{ GeV} \le E_{\gamma} \le 200 \text{ GeV}$
- 2. Differential rate integrated over six energy bins

| $1-10{ m GeV}$      | $60-100{ m GeV}$  |
|---------------------|-------------------|
| $10-30{\rm GeV}$    | $100-150{ m GeV}$ |
| $30-60\mathrm{GeV}$ | $150-200{ m GeV}$ |

- 3. Require  $N_{\gamma} > 100$  for *both* models in the model pair, where  $N_{\gamma}$  is photon count over the full energy range  $1 \text{ GeV} \le E_{\gamma} \le 200 \text{ GeV}$
- 4. Require excess over background in *multiple, adjacent* energy bins:  $N_i > 2\sqrt{N_i^{\text{bkg}}}$  for three of the six energy bins
- 5. To be distinguishable, we also require  $|N_i^A N_i^B| > 5\sqrt{N_i^A + N_i^B + 2N_i^{bkg}}$  holds for at least three adjacent bins, simultaneously.

## **Separating Models at GLAST**



17

# **Summary of Indirect Detection Capability**

|                       | Conservative | Moderate | Optimistic |
|-----------------------|--------------|----------|------------|
| Gamma rays, continuum | 56           | 115      | 158        |

 $\Rightarrow$  All estimates assume NFW profile model with adiabatic compression and imagine 5 m<sup>2</sup>-years of exposure for GLAST towards the galactic center

**Conservative** Density is rescaled and "high" background rate used

Moderate Density is rescaled and "low" background rate used

**Optimistic** Density is *not* rescaled and "low" background rate used

|                             | Conservative | Moderate | Optimistic |
|-----------------------------|--------------|----------|------------|
| All Pairs                   |              |          |            |
| Direct detection, xenon     | 48           | 112      | 224        |
| Direct detection, germanium | 4            | 14       | 147        |
| Gamma rays, continuum       | 56           | 115      | 158        |
| Gamma rays, monochromatic   | 23           | 34       | 36         |
| All Pairs, All Signals      | 101          | 186      | 245        |
| Physical Pairs Only         | 34           | 55       | 77         |
| ILC Inseparable Only        | 32           | 62       | 81         |

• Total number of degenerate pairs = 276

|                             | Conservative | Moderate | Optimistic |
|-----------------------------|--------------|----------|------------|
| All Pairs                   |              |          |            |
| Direct detection, xenon     | 48           | 112      | 224        |
| Direct detection, germanium | 4            | 14       | 147        |
| Gamma rays, continuum       | 56           | 115      | 158        |
| Gamma rays, monochromatic   | 23           | 34       | 36         |
| All Pairs, All Signals      | 101          | 186      | 245        |
| Physical Pairs Only         | 34           | 55       | 77         |
| ILC Inseparable Only        | 32           | 62       | 81         |

- Total number of degenerate pairs = 276
- Total number of "physical" pairs = 77

|                             | Conservative | Moderate | Optimistic |
|-----------------------------|--------------|----------|------------|
| All Pairs                   |              |          |            |
| Direct detection, xenon     | 48           | 112      | 224        |
| Direct detection, germanium | 4            | 14       | 147        |
| Gamma rays, continuum       | 56           | 115      | 158        |
| Gamma rays, monochromatic   | 23           | 34       | 36         |
| All Pairs, All Signals      | 101          | 186      | 245        |
| Physical Pairs Only         | 34           | 55       | 77         |
| ILC Inseparable Only        | 32           | 62       | 81         |

- Total number of degenerate pairs = 276
- Total number of "physical" pairs = 77
- Pairs inaccessible at the ILC = 103

|                             | Conservative | Moderate | Optimistic |
|-----------------------------|--------------|----------|------------|
| All Pairs                   |              |          |            |
| Direct detection, xenon     | 48           | 112      | 224        |
| Direct detection, germanium | 4            | 14       | 147        |
| Gamma rays, continuum       | 56           | 115      | 158        |
| Gamma rays, monochromatic   | 23           | 34       | 36         |
| All Pairs, All Signals      | 101          | 186      | 245        |
| Physical Pairs Only         | 34           | 55       | 77         |
| ILC Inseparable Only        | 32           | 62       | 81         |

- Total number of degenerate pairs = 276
- Total number of "physical" pairs = 77
- Pairs inaccessible at the ILC = 103

 $\Rightarrow$  And all before the ILC is even a year old!