Search for Anomalous Wtb Couplings with 0.9 fb⁻¹of D0 Data

Shabnam Jabeen For the D0 Collaboration PHENO 2008

Tevatron and the D0 Experiment

Highest-energy accelerator currently in operation

 Only place where Top quarks can be produced

D0 – Multipurpose detector

- Silicon and fiber detectors for charged particles tracking, immersed in 2Tsolenoid
- Liquid argon Calorimeter
- Muon system—Wire chambers
 - 1.8 T iron toroid

Introduction

- New physics can manifest itself either in terms of
 - new particles or
 - Modified couplings changing the cross-sections of existing processes and angular distributions of SM processes

Modifications to top quark interactions, in particular with weak gauge bosons, could yield the first signs of new physics

- Single top production cross section is directly proportional to the square of CKM matrix element Vtb times Wtb coupling
- D0 and CDF have recently shown evidence for single top production
- We use same 0.9 fb⁻¹ data set and selection cuts to look for anomalous Wtb couplings as was used in D0 single top evidence analysis (Phys. Rev. Lett. 98,181802(2007))

Anomalous Wtb Couplings

 The most general (up to dimension 5) CP-conserving Wtb vertex can be parameterized with the effective Lagrangian given by

$$\mathcal{L} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(L_{V}P_{L} + R_{V}P_{R})tW_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}}(L_{T}P_{L} + R_{T}P_{R})tW_{\mu}^{-} + h.c.$$

where,
$$L_{T,V} \simeq V_{tb} \cdot f_{T,V}^L$$
 and $R_{T,V} \simeq V_{tb} \cdot f_{T,V}^R$
Within Standard Model, $L_V \equiv V_{tb} \simeq 1$ and $R_V = L_T = R_T = 0$

- The size of right handed vector coupling, *Rv*, is indirectly constrained by the measured rate of b →sγ, and has an upper bound of *Rv* ≤ 0.04. First direct constraints come from W helicity measurement in top decays in ttbar events.
- There are no experimental constraints on left- and right-handed tensor couplings

SM vs Anomalous Couplings

Presence of anomalous couplings changes the production cross section, kinematics, and angular distributions

Search Strategy

 Starting from a general Lagrangian with anomalous Couplings, the square of matrix element for leading order *ud−>tb* process, in the limit of *m_b* →0, can be written as:

 $M \cdot M^{\dagger} = a \cdot L_V^2 + b \cdot R_V^2 + c \cdot L_T^2 + d \cdot R_T^2 + e \cdot L_V \cdot L_T + g \cdot R_V \cdot R_T$

- Consider single top production with the Standard Model (LV) coupling with added contribution from either - the right-handed vector (RV) coupling, or
 - the left-handed tensor (LT) coupling, or
 - the right-handed tensor (RT) coupling
- For each scenario calculate discriminants that separate signal from background
- Calculate 2D posterior probability densities for each scenario

MC Samples & Event Selection

- Single top signal events with anomalous couplings are generated with the CompHEP-SingleTop Monte Carlo event generator
- The background samples W+jets and ttbar events, are generated using ALPGEN with a jet matching algorithm. The multijet background is modeled using a data sample designed to contain mis-identified leptons.
- Select one isolated electron or muon with p_T >15 GeV, Missing E_T >15 GeV, 2-4 jets with at least one b-tagged jet

Multivariate Analysis

- Use Boosted Decision Trees (DT) multivariate technique to discriminate signal from background
- For every analysis train 2 signals against sum of backgrounds, 2,3,4 jets combined, with same input variables as for single top analysis

- *Lv-Rv* Scenario.
 - -SM single top with left handed vector coupling only: $(tb + tqb)L_{\vee}$ -Anomalous single top with right handed vector coupling only: $(tb + tqb)R_{\vee}$
- L_{V} - R_{T} Scenario.

-SM single top with left handed vector coupling only: $(tb + tqb)L_V$ -Anomalous single top with right handed tensor coupling only: $(tb + tqb)R_T$

• *Lv-L*^T Scenario.

-SM single top with left handed vector coupling only: $(tb + tqb)L_{\vee}$ -Anomalous single top with left handed tensor coupling only: $(tb + tqb)L_{\top}$ -Anomalous single top with left handed tensor coupling only: $(tb + tqb)L_{\vee}+L_{\top}$

4 different trees for each scenario (2 lepton × 2 *b*-tag choices)

DT Output for Bkgnd Like Samples

W+jets like sample: 2 jets, 1 tag, HT(lepton,MET,all jets)<175GeV

ttbar like sample = 4 jets, =1 tag HT(lepton,MET,all jets)>300GeV

Within uncertainties, data is consistent with background model in background dominated regions

Shabnam Jabeen (BU)

Boosted Decision Trees Output

Cross Section Measurement

Binned likelihood from discriminant distribution

- Compute posterior probability density of two single top signals using Bayes' theorem:
 - Flat positive-defined prior for the cross section
 - Systematic uncertainties are treated as Gaussian nuisance parameters
- 12 distributions with 100 bins each that go into this calculation for each scenario

Summary of Results

- Simultaneous limit setting for two signals by calculating 2D posterior probability density
- Cross-sections are calculated in e,mu,2,3,4 jets,1,2 tag channels and then combined. Same for limits on $|V_{tb}.f|^2$
- Peak of the 2D distribution corresponds to measured cross-section and 1D projection of posterior densities is used to set limit on individual couplings and cross sections

Conclusion

- We looked for any deviations from standard model by looking at the Wtb vertex in single top production, where anomalous couplings can change angular distributions, as well as production cross section
- From two dimensional posterior density distributions we measure cross sections and set limits on each coupling
- Data seem to prefer standard model left coupling over right vector, or right or left tensor coupling
- Work in progress results will be finalized soon

Signal Acceptance

Signal Acceptances

	Electron Channel		Muon Channel	
Signals	Single tag	Double tag	Single tag	Double tag
LH Vector (LV)				
tb_{LV}	$1.3 \pm 0.1 ~\%$	$0.47 \pm 0.08 ~\%$	$1.0 \pm 0.2 ~\%$	$0.40 \pm 0.08~\%$
tqb_{LV}	$1.1\pm0.1~\%$	$0.09 \pm 0.02~\%$	$0.9 \pm 0.1~\%$	$0.07 \pm 0.01~\%$
LH Tensor (LT)				
tb_{LT}	$1.2\pm0.1~\%$	$0.48 \pm 0.08 ~\%$	$1.1\pm0.2~\%$	$0.45 \pm 0.09~\%$
tqb_{LT}	$1.1\pm0.1~\%$	$0.10 \pm 0.02~\%$	$0.9\pm0.2~\%$	$0.09 \pm 0.02~\%$
LV + LT				
tb_{LV+LT}	$1.2 \pm 0.1 ~\%$	$0.48 \pm 0.08~\%$	$1.1\pm0.2~\%$	$0.47 \pm 0.09~\%$
tqb_{LV+LT}	$1.0 \pm 0.1 ~\%$	$0.09 \pm 0.02~\%$	$0.9 \pm 0.1 ~\%$	$0.08 \pm 0.02~\%$
RH Vector (RV)				
tb_{RV}	$1.3 \pm 0.2 ~\%$	$0.45 \pm 0.08~\%$	$1.1\pm0.2~\%$	$0.42 \pm 0.08~\%$
tqb_{RV}	$1.1 \pm 0.1 ~\%$	$0.09 \pm 0.02~\%$	$0.9 \pm 0.2 ~\%$	$0.08 \pm 0.02~\%$
RH Tensor (RT)				
tb_{RT}	$1.5\pm0.2~\%$	$0.60 \pm 0.01~\%$	$1.3 \pm 0.2 ~\%$	$0.53 \pm 0.11~\%$
tqb_{RT}	$1.1 \pm 0.1 ~\%$	$0.10 \pm 0.02~\%$	$0.9 \pm 0.2 ~\%$	$0.09 \pm 0.02~\%$

Acceptances for anomalous production are very similar to standard model single top

Some Input Variables

Boosted Decision Trees

- Machine-learning technique, widely used in social sciences, some use in HEP
 - Start at first "node ": For each variable, find splitting value with best separation between two children (mostly signal in one, mostly background in the other)
 - Select variable and splitting value with best separation to produce two "branches". Repeat recursively on each node

-Stop when improvement stops or when too few events are left Decision tree output for each event = leaf purity closer to 1(0) for signal (background)

$$Purity = \frac{N_{Signal}}{N_{Signal} + N_{Background}}$$

 Improve performance of DT by using adaptive boosting, which averages over many trees, diluting the piecewise nature of the DT output