Search for Flavor Changing Neutral Currents in Top decays at CDF

Alexander Paramonov (The University of Chicago) on behalf of the CDF Collaboration

April 29, 2008

Introduction

- The Top quark is very heavy (~170 GeV) and special.
- Most often it decays to a W boson and a b-quark: t \rightarrow Wb (Fig a)
- We are interested in the decay of $t \rightarrow Z^0c$ (Fig b) which is a Flavour Changing Neutral Current (FCNC)
- The Standard Model does not allow FCNC decays so any excess is an indication of <u>new physics.</u>

Analysis overview

<u>2 leptons (forming Z⁰) and 4 jets</u> <u>lepton+missing energy (MEt) and 4 jets</u>

- The top-antitop pairs are produced in collisions of protons and anti-protons at Tevatron at $\sqrt{s} = 1.96$ TeV.
- The W- and Z⁰-bosons are identified via their leptonic decays.
- Decays of the b-quarks and c-quarks are detected by finding a proper displaced vertex (decay) within a jet.
- The analysis is based on the comparison of two decay processes: tt \rightarrow WbZ⁰c and tt \rightarrow WbWb,
- The simultaneous study of the two decay processes allows cancellation of major systematic uncertainties.

Precision check of MC simulations

- We make a precision check of Monte Carlo (MC) simulations with inclusive W's and Z's.
- Leptonic decays of inclusively produced W- and Z⁰-bosons
- Test of trigger and lepton identification
- Electrons and muons
- The R-ratio is within 2% of its NNLO value

$$R = \frac{\sigma(W) * Br(W \to l\nu)}{\sigma(Z^0) * Br(Z^0 \to l^+l^-)}$$

$t\bar{t} \rightarrow W + 4 jets$

The processes contributing to the final state with a leptonic decay of a Wboson and 4 jets:

- $t\overline{t} \rightarrow WbWb$
- $t\overline{t} \rightarrow Z^0 cWb$
- $t\overline{t} \rightarrow Z^0 c Z^0 c$

 H_T is the total transverse energy in event.

$t\bar{t} \rightarrow Z^0 + 4$ jets

The final state with four jets and a leptonic decay of a Z⁰-boson is contributed from the following two processes:

- $t\bar{t} \rightarrow Z^0 cWb$
- $-t\bar{t} \rightarrow Z^0 c Z^0 c$

This is the decay mode where you'd most likely see the FCNC signal.

Reconstruction of the top quark's mass

In events with a Z⁰-boson and four jets we can reconstruct the invariant masses of the top-quarks.

The mass distribution provides additional separation between the FCNC signal and the Standard Model backgrounds. CDF Run II Preliminary (1.5 fb⁻¹)

Statistical Interpretation of data

- 2D likelihood P{DATA | σ(tt),Br(t→Z⁰c)} is constructed using Poisson statistics
- Bayesian approach with two priors for σ(tt):
 - Theory-independent ("Flat")
 - With theoretical crosssection ("Gaussian")
- To present the result in a model-independent way we parameterize the limit as a function of the fraction of longitudinally-polarized Z⁰-bosons in the decay of $t \rightarrow Z^0c$.

 $P{DATA | \sigma(t\bar{t}), Br(t \rightarrow Z^0c)}$

Results / Conclusions

- The Flavor-Changing Neutral Currents in the top decays $t \rightarrow Z^0c$ are not seen, alas.
- We set limits on Br(t \rightarrow Z⁰c) at 95% C.L.
- The observed limits agree with the expected ones.

Fraction of Longitudinal Z-bosons	0.00	0.25	0.50	0.75	1.0
Gaussian prior	9.0%	8.8%	8.6%	8.5%	8.3%
Flat prior	10.2%	10.0%	9.7%	9.5%	9.2%