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In QFT, if the tree level unitarity is violated in the 
scattering ampiltude, we know it must come from  

• Our theory becomes strongly coupled

• There is no gauge symmetry assciated 
with the massive spin one particles

J.M. Cornwall, D.N. Levin, and G.Tiktopoulos, Phys. Rev. D 10, 1145 (1974)
B.W. Lee, C. Quigg, H.B. Thacker, Phys. Rev. Lett. 38, 883 (1977); 

Phys. Rev. D 16, 1519 (1977)

M.S. Chanowitz and M.K. Gaillard, Nucl. Phys. B 261, 379 (1985)

Applying to SM, and considering we haven’t 
discovered higgs yet, we know that SM higgs 

mass must be light, or ...............
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At the LHC, if there are new physics 
beyond SM, very probabally we won’t 

see the full sector of new physics. New 
particle 

spectrum 
beyond 

SM

SM 
particle 

spectrum

LHC energy

Then perhaps the gauge symmetry in 
the underlying theory is apparantly 
violated in the incomplete theory 
that we can recontruct from LHC 

observables.  

A new spin one particle      with a nonzero 
axial coupling to fermions      is such a case. 

G1

ψ0
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Then tree-level unitarity is violated 
in                         , and we can 
predict the scale of new physics 

beyond the reach of LHC in a model-
independent way!

ψ̄0ψ0 → G1G1

Perhaps one of the first scientific 
reasons to build the next generation 
colliders (VLHC, muon collider, etc).  

New 
particle 

spectrum 
beyond 

SM

SM 
particle 

spectrum

LHC energy

G1

G2

Gn

ψ0

W, Z

t
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G1

ψ0

Suppose we observe a new spin one particle      
with mass        at LHC, and        decays into some 

fermion      with mass       . 

G1

MG

m0

We can measure the      couplings to the left and 
right components of      and we find the axial 

coupling                               is nonzero.    
ψ0

G1

gA ≡ (g1L − g1R)/2

If            , the leading order bad behaved processes are 
coming from chirality-nonconserving channels such as      

and it is ∝ m0
√

sψ̄0
Lψ0

L → G1G1

gA != 0

Here we focus on the J=0 partial wave amplitude and drop 
out the irevelant pieces that are related to G^1 self-
interaction that perhaps could be measured at LHC. 

LHC energy
G1

G2

ψ0
L ψ0

R

g1R
g1L

?
ψ1

L ψ1
R? ?

MG

m0
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M = 4g2
A

m0

M2
G

√
s s! m2

0 M2
G

assume we define the spin-singlet 
combination for the inital states

2

1. The total amplitude for the Abelian case is

M = 4g2
A

m0

M2
G

v̄(p2)PLu(p1)

≈ 4g2
A

m0

M2
G

√
s , (1)

where we assume s # m2
0, M2

G. For the non-Abelian
case SU(N), the color factor C is

√

tr[tatbtbta]/N where
we drop the piece proportional to fabcT c in the ampli-
tude which does not contribute to J = 0 partial wave
scattering amplitude.
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FIG. 1: Different Feymann diagrams that contribute to
ψ̄0

Lψ0
L → G1G1 in terms of one mass insertion. Here we omit

those with t-channel fermion exchange.

To satisfy the partial wave unitarity, the tree-level J =
0 partial wave amplitude extracted from Eq. (1)

a0 =
1

32π

∫ 1

−1
d cos θM =

Cg2
Am0

√
s

4πM2
G

(2)

must be smaller than 1/2. C represents the color factor
where C = 1 is for the Abelian case and C = CF =
(N2 − 1)/2N is for the non-Abelian case. This pro-
duces the bound

√
s ! EU = 2πM2

G/Cg2
Am0. If we

define the spin-singlet combination for the initial state
fermions, 1√

2
[ψLψ̄L〉 − ψRψ̄R〉][6, 7], we may make the

bounds slightly tighter,

√
s ! EU =

√
2πM2

G

Cg2
Am0

. (3)

III. TWO SITE MOOSE UV COMPLETIONS.

We consider two two site SU(N) moose models with
completely different new physics that maintains the uni-
tarity. In the first model A, there is a new massive
fermion ψ1

L that contributes to scattering ψ̄0
Lψ0

L → G1G1.
The corresponding moose diagram is presented in Fig 2.
The gauge coupling in each moose is gA and gB respec-
tively. The fermion charged under gauge group SU(N)B

has a Dirac mass term −M ψ̄B
L ψB

R + h.c.. The bifunda-
mental scalar field Σ, which we will call the “link” field,
has a Yukawa coupling yψ̄A

LΣψB
R + h.c..

The link field gets a vev 〈Σik̄〉 = uδik̄ and sponta-
neously breaks SU(N)A and SU(N)B into the diagonal

ψB
R

ψA
R

ψ̄A
L ψ̄B

L

MSU(N)A SU(N)B

yΣ

FIG. 2: The moose diagram for model A. An arrow into the
site means that particle transforms under the fundamental
representation of the relevant site and an arrow out of the site
means that particle transforms under the anti-fundamental
representation. The solid lines stand for Weyl fermions and
the dashed line represents the scalar.

group SU(N)0. Such a spontaneous symmetry break-
ing could be realized both linearly and nonlinearly in our
case and it won’t affect the main results in our discussion.
The kinetic term for the link field will become the mass
term for the massive gauge boson Tr[(DµΣ)†(DµΣ)] ⊃
u2(gAAa

µ − gBBa
µ)2/2 = u2g2(G1a

µ )2/2. The decomposi-
tion between gauge bosons in the mass eigenstate and
gauge eigenstate are

(

G0
µ

G1
µ

)

=

(

cg sg

sg −cg

) (

Aµ

Bµ

)

(4)

and
(

Aµ

Bµ

)

=

(

cg sg

sg −cg

) (

G0
µ

G1
µ

)

, (5)

where we define g ≡
√

g2
A + g2

B, sg ≡ gA/g and cg ≡
gB/g.

For the fermion sector, the Yukawa coupling and Dirac
mass term yψ̄A

LΣψB
R − M ψ̄B

L ψB
R + h.c. contribute to the

fermion mass term m1ψ̄1
Lψ1

R + h.c. We define m1 ≡
√

(yu)2 + M2, sf ≡ yu/m1 and cf ≡ −M/m1. The
decomposition between left handed fermions in the mass
eigenstate and gauge eigenstate are

(

ψ0
L

ψ1
L

)

=

(

−cf sf

sf cf

) (

ψA
L

ψB
L

)

(6)

and
(

ψA
L

ψB
L

)

=

(

−cf sf

sf cf

) (

ψ0
L

ψ1
L

)

. (7)

While for the right handed fermions, the gauge eigen-
state is the mass eigenstate, which is ψ0

R = ψA
R and

ψ1
R = ψB

R . If we write the gauge boson-fermion inter-
actions in the mass eigenstate, we will find the couplings

a0 =
1

32π

∫ 1

−1
d cos θM =

Cg2
Am0

√
s

4πM2
G

! 1
2

C represents the color factor where C=1 is for the Abelian case and          
is for the SU(N) case.C = (N2 − 1)/2N

√
s ! EU =

√
2πM2

G

Cg2
Am0
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group SU(N)0. Such a spontaneous symmetry break-
ing could be realized both linearly and nonlinearly in our
case and it won’t affect the main results in our discussion.
The kinetic term for the link field will become the mass
term for the massive gauge boson Tr[(DµΣ)†(DµΣ)] ⊃
u2(gAAa

µ − gBBa
µ)2/2 = u2g2(G1a

µ )2/2. The decomposi-
tion between gauge bosons in the mass eigenstate and
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and
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(
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, (5)

where we define g ≡
√

g2
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B, sg ≡ gA/g and cg ≡
gB/g.

For the fermion sector, the Yukawa coupling and Dirac
mass term yψ̄A

LΣψB
R − M ψ̄B

L ψB
R + h.c. contribute to the

fermion mass term m1ψ̄1
Lψ1

R + h.c. We define m1 ≡
√

(yu)2 + M2, sf ≡ yu/m1 and cf ≡ −M/m1. The
decomposition between left handed fermions in the mass
eigenstate and gauge eigenstate are

(
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While for the right handed fermions, the gauge eigen-
state is the mass eigenstate, which is ψ0

R = ψA
R and

ψ1
R = ψB

R . If we write the gauge boson-fermion inter-
actions in the mass eigenstate, we will find the couplings

Could be viewed as a two 
site deconstructed “KK 

gluon” (N=3) and top quark
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state is the mass eigenstate, which is ψ0
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R . If we write the gauge boson-fermion inter-
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After the link field gets a vev                  .                                                                                     
the mass eigenstates of the gauge bosons 

and left-handed fermions become 
mixture of their gauge eigenstate. 

〈Σik̄〉 = uδik̄

The “0-mode” fermion is massless, we 
can introduce a gauge invaraint mass 
term                to give the mass. We 
work in the limit aaaaaaaaaaaaaaaaaaa

M ′ψ̄AψA

M ′ ! yu,M     could come from another SGSB 
sector like y′ψ̄AψAφ

M ′
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Two-site UV completion (A)
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The full results for maintainning tree-level unitarity is 
shown based on mass insertion techniques.   

The tree level unitarity in                    a       
scattering is recovered if one consider       in 

the  t, u-channel.

ψ̄0ψ0 → G1G1

ψ1

LHC energy
G1

ψ0
L ψ0

R

g1R

ψ1
L ψ1

R

m0

G0

g1L

σ

In this limit, the “KK-modes”            gain their 
mass from the link field condensation 
(compactification in 5D case).  The “0-

mode”      , on the other hand, gains their mass 
differently (like top quark from EWSB) and 

does not couple to the link field.

G1, ψ1

ψ0
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Two-site UV completion (A)
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Violation of Goldstone equivalence 
principle, 

Violation of 
Wald Identity. 

Violation of tree-
level unitaity. 

Without     , ψ1

3

between massless gauge boson G0 and fermions are uni-
versal g0 = gsgcg because of SU(N)0 gauge invariance.
The couplings between massive gauge boson G1 and dif-
ferent Weyl fermions are different, and they are presented
in Fig 4.
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g’1L=g(sf
2−cg

2) gmix=−gsfcfL
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R
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The fermion ψ0 is massless, and we can introduce its
mass through a gauge invariant mass term M ′ψ̄AψA =

m0ψ̄0
Lψ0

R + m′ψ̄1
Lψ0

R + h.c. Such a mass term could come
from a Yukawa interaction y′ψ̄AψAφ with a singlet scalar
field φ in the moose. We can see that the mass term for
ψ0 is always accompanied with a mixed mass term and
the ratio is m′/m0 = −sf/cf .

R
0

L
0

R
0

G1

G1

m

(a)

L
0 G1

G1

G1

G1

R
0

R
0

R
0

R
0L

0

L
0 m

(c)

L
0

L
0

m

(b)

R
0

G1

G1

G1

G1

G1

G1

R
0

R
0

L
0

(d) (e) (f)
L
1

m’ m’

L
0

L
1

L
0

L
1

L
0

R
0

L
1

m’

R
0

G1

G1

R
0

L
0

L
0

m

L
0

L
1

(g)

G1

G1

(h)

FIG. 5: Different Feymann diagrams that contribute to
ψ̄0

Lψ0
L → G1G1 in terms of one mass insertion in model A

and B. Here we omit those with u-channel fermion exchange.

Armed with these interactions and mass terms, we can
compute the amplitudes from all Feymann diagrams with
different interactions and mass insertions. Those from t-
channel fermion exchange are presented in Fig 5 (a) ∼
(g). If we omit the common factor Cm0

√
s/M2, those

amplitudes from different diagrams are2:
(a) −2g1Lg1R = −2(g2s4

g − g2s2
gs

2
f )

(b) g1Lg1L = g2(s2
g − s2

f )2

(c) g1Rg1R = g2s4
g

(d) −2gmixg1R(m′/m0) = −2(g2s2
gs

2
f )

(e) g1Lgmix(m′/m0) = g2s2
gs

2
f − g2s4

f

(f) gmixg′1L(m′/m0) = g2s4
f − g2c2

gs
2
f

(g) g2
mix = g2s2

fc2
f

Summing over all amplitudes from diagram (a)∼(g), we
can see that the whole result proportional to

√
s is zero

and unitarity is not violated.
The mixed mass term m′ψ̄1

Lψ0
R + h.c. will rotate the

mass eigenstate and introduce extra pieces for the new

2 The diagram (a), (d) has a kinamatic factor -2 relative to the
others.

3

between massless gauge boson G0 and fermions are uni-
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The fermion ψ0 is massless, and we can introduce its

mass through a gauge invariant mass term M ′ψ̄AψA =
m0ψ̄0

Lψ0
R + m′ψ̄1

Lψ0
R + h.c. Such a mass term could come

from a Yukawa interaction y′ψ̄AψAφ with a singlet scalar
field φ in the moose. We can see that the mass term for
ψ0 is always accompanied with a mixed mass term and
the ratio is m′/m0 = −sf/cf .
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FIG. 5: Different Feymann diagrams that contribute to
ψ̄0

Lψ0
L → G1G1 in terms of one mass insertion in model A

and B. Here we omit those with u-channel fermion exchange.

Armed with these interactions and mass terms, we can
compute the amplitudes from all Feymann diagrams with
different interactions and mass insertions. Those from t-
channel fermion exchange are presented in Fig 5 (a) ∼
(g). If we omit the common factor Cm0

√
s/M2, those

amplitudes from different diagrams are2:
(a) −2g1Lg1R = −2(g2s4

g − g2s2
gs

2
f )

(b) g1Lg1L = g2(s2
g − s2

f )2

(c) g1Rg1R = g2s4
g

(d) −2gmixg1R(m′/m0) = −2(g2s2
gs

2
f )

(e) g1Lgmix(m′/m0) = g2s2
gs

2
f − g2s4

f

(f) gmixg′1L(m′/m0) = g2s4
f − g2c2

gs
2
f

(g) g2
mix = g2s2

fc2
f

Summing over all amplitudes from diagram (a)∼(g), we
can see that the whole result proportional to

√
s is zero

and unitarity is not violated.
The mixed mass term m′ψ̄1

Lψ0
R + h.c. will rotate the

mass eigenstate and introduce extra pieces for the new

2 The diagram (a), (d) has a kinamatic factor -2 relative to the
others.

!= =0

    does not couple to   , as it doesn’t 
couple to  

ψ0 π
Σ

Apprent explicit 
violation of gauge 

invariance!

If we miss       , which is not a gauge 
eigenstate, its mass term and interactions 

are also not in a gauge invariant form.  

ψ1
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The fermion ψ0 is massless, and we can introduce its
mass through a gauge invariant mass term M ′ψ̄AψA =
m0ψ̄0

Lψ0
R + m′ψ̄1

Lψ0
R + h.c. Such a mass term could come

from a Yukawa interaction y′ψ̄AψAφ with a singlet scalar
field φ in the moose. We can see that the mass term for
ψ0 is always accompanied with a mixed mass term and
the ratio is m′/m0 = −sf/cf .

Armed with these interactions and mass terms, we can
compute the amplitudes from all Feymann diagrams with
different interactions and mass insertions. Those from t-
channel fermion exchange are presented in Fig 4 (a) ∼
(g). If we omit the common factor Cm0

√
s/M2, those

amplitudes from different diagrams are2:
(a) −2g1Lg1R = −2(g2s4

g − g2s2
gs

2
f )

(b) g1Lg1L = g2(s2
g − s2

f )2

(c) g1Rg1R = g2s4
g

(d) −2gmixg1R(m′/m0) = −2(g2s2
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2
f )

(e) g1Lgmix(m′/m0) = g2s2
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2
f − g2s4

f

(f) gmixg′1L(m′/m0) = g2s4
f − g2c2

gs
2
f

(g) g2
mix = g2s2

fc2
f

Summing over all amplitudes from diagram (a)∼(g), we

2 The diagram (a), (d) has a kinamatic factor -2 relative to the
others.
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FIG. 4: Different Feymann diagrams that contribute to
ψ̄0

Lψ0
L → G1G1 in terms of one mass insertion in model A

and B. Here we omit those with u-channel fermion exchange.

can see that the whole result proportional to
√

s is zero
and unitarity is not violated.

The mixed mass term m′ψ̄1
Lψ0

R + h.c. will rotate the
mass eigenstate and introduce extra pieces for the new
mass eigenstate ψ̃1 and ψ̃0. In the limit M ′ $ m1, if
we only keep the leading order expansion on m1, we will
find that ψ̃0

L = ψ0
L, ψ̃1

L = ψ1
L and ψ̃0

R = ψ0
R−(m′/m1)ψ̄1

R,
ψ̃1

R = ψ1
R+(m′/m1)ψ̄0

R. Thus there is an additional piece

for ¯̃ψ0
Lψ̃0

L → G1G1 coming from ψ̄1
Lψ0

L → G1G1 with a
factor (m′/m1). However, we can find that this part is
separated from the previous one, and the

√
s part in the

ψ̄1
Lψ0

L → G1G1 will cancel if we observe the full theory.
We do not show this here in detail.

ψB
R

ψA
R

ψ̄A
L ψ̄B

L

SU(N)A SU(N)B

yΣ y′Σ†

FIG. 5: The moose diagram for model B.

Sending *           **, with a WZW term 
left to cancel the gauge anomaly. No 
Dirac mass term in moose A and B. 

g1L

LHC energy
G1

ψ0
L ψ0

R

g1R

m0

G0

σ

For fermions, the mass eigenstate is the 
gauge eigenstate. No mixing! Like the case 

in SM, no violation of gauge invaraince.  

Very similar to                   in SM.t̄t→ ZZ

y′ →∞

The tree level unitaity in                    a       
scattering is recovered from the s-channel   s  

exchange, or our symmetry breaking is 
triggered by strong dynamics. 

ψ̄0ψ0 → G1G1

σ
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It is discovered that unitarity bounds from 2 to n process will 
give a stronger than the 2 to 2 process because of the growing of 

the phase space in the final state.  

F. Maltoni, J.M. Niczyporuk and S. Willenbrock, Phys. Rev. D 65, 033004 (2002)

D. A. Dicus and H.J. He, Phys. Rev. Lett. 94, 221802 (2005);  
Phys. Rev. D 71, 093009 (2005).

For a 2 to n inelastic collision, the total cross section is bounded by                           

σinel[2→ n] ! 4π

s
We assume that the corresponding 2 to 2 

elastic channel is dominated by s-partial wave. 
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We can derive a unitarity bound from                       scattering.  ψ̄0ψ0 → nG1

EU =
2πMG

CgA

[(
MG

2gAm0

)2 1
R

] 1
2(n−1) R =

2n−1(n
2 !)2

(n!)2(n− 1)!(n− 2)!

C = (CF )n/2(n−1)

We find that the unitarity bound here is always higher than true new 
physics scale as long as all couplings are weakly coupled. 

We can double check the unitaity bound here by comparing with the 
true new physics scale in model A (     mass) and B (     mass) 

respectively. 
ψ1 σ
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In order to know       and       , we have to measure     chirality, so      
must decay before it hadronize if it is colored.   

g1L g1R

Γψ0 > ΛQCD if it is colored

ψ0
ψ0

top quark 
t’ quark  (top partner)
chiral 4th generation

The axial coupling      could be measured by looking at the angular 
distribution of leptons from     decay in the     rest frame.

gA

ψ0 ψ0

K. Agashe,  A. Belyaev, T. Krupovnickas G. Perez and J. Virzi Phys. Rev. D 65, 033004 (2007)

Perhaps our methods can’t apply to the models with discret 
parity as the pair produced missing       will make it very difficult 

to reconstruct 
ET

ψ0

One can even define variables like “polarization asymmetry” 
to directly measure such     , which is just like   AFBgA
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5

stone bosons6 of the type ψ0− ψ̄0−nπ. The n-dependent
part of the exact n-body phase space integration could be
written as Jn = (s/4π)n−2/(s(n − 1)!(n − 2)!). The to-
tal inelastic cross section σinel[2 → n] = (m0/un)2Jn

is bounded as σinel[2 → n] ! 4π/s by assuming the
2 → 2 elastic channel is dominated by s-partial wave.
After some calculations, the estimated unitarity bound
could be estimated as EU ≈ 4πu(u/m0)1/n(n/e) using
Stirling’s formula.

Following Ref.[6], we calculate the precise unitarity
bound and write it in terms of observed quantities so
that the bound is model independent. The result is

EU =
2πMG

CgA

[

(

MG

2gAm0

)2 1

R

]
1

2(n−1)

, (11)

where

R =
2n−1(n

2 !)2

(n!)2(n − 1)!(n − 2)!
(12)

and C = (CF )n/2(n−1) is the color factor. Our color
factor is slightly different from the one in Ref. [6] as G1

is in the adjoint representation of SU(N).
We can compare the unitarity bound in Eq. (11)

with m1, which is the true new physics scale in model
A. We can write the unitarity bound in terms of the
parameters in model A and approximate it as EU ≈
(4πu/s2

f)(u/m0s2
f )1/(n−1)(n/e). If we require m1 =

yu/sf < EU , we can find the equations reduce to y <
(4π/sf )(u/m0s2

f )1/(n−1)(n/e), which is always satisfied
for a weakly coupled Yukawa coupling y < 4π. The
bound is difficult to saturate because of the competition
between the linear growth on n, the strong power sup-
pression (u/m0s2

f )1/(n−1), and the finite mixing (sf < 1).
For realistic cases, as we can see later in Fig. 6, the nmin

is small and sf is large so that EU and m1 are at the
same order. In case of model B, just like the SM, the
bound in Eq. (11) is always weaker than E >

√
4πu,

which is the mass scale of the physical Higgs at which
the self-interaction of the physical higgs becomes strongly
coupled.

V. EXPERIMENTAL DISCOVERY AND

APPLICATIONS.

The discovery of a massive gauge boson G1 and its
mass determination comes from its resonant production.
If the ψ0 from G1 decay is highly boosted, which is al-
ways the case at LHC, the chirality of the G1 − ψ0 − ψ0

6 There are diagrams that involves Goldstone self-interactions.
Those diagrams only enhance the unitarity bound by a factor
of [O(2− 3)]1/(n−1) which is very close to one for large n[6] and
they correspond to diagrams that involve G1 self interactions in
the scattering ψ̄0

Lψ0
L → nG1 which we couldn’t measure at LHC.

coupling will be the same as the observed chirality of ψ0.
Then such chirality could be measured by looking at the
angular distribution of the light decay products in the ψ0

rest frame (typically light leptons from W decay) whose
helicity is correlated to the initial ψ0 chirality[14]. In or-
der to measure the chirality of ψ0 from its decay, if ψ0

is colored, we will restrict our ψ0 to those with widths
bigger than ΛQCD, so that they will first decay instead of
hadronize. Typical examples of the ψ0 are the top quark
or the new quarks which decay through a W boson into
SM quarks (t′ quarks). Knowing the relative ratio of
the G1 decaying into different chiralities of ψ0, which is
g1L/g1R, and the overall decay width of G1 → ψ̄0ψ0,
which is proportional to g2

1L + g2
1R, we can calculate the

axial coupling gA. It is important to notice that the angu-
lar distribution of the light decay products in the ψ0 rest
frame from G1 decay or some redefined variables such as
“polarization asymmetry” suggested in Ref. [15] offers a
direct way to check the nonzero axial coupling at LHC
which indicates that the tree level unitarity is violated
from scattering ψ̄0ψ0 → nG1.
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FIG. 6: Precise unitarity bound as a function of integer n for
the scattering ψ̄0ψ0

→ nG1 in different models. We choose
MG = 3 TeV universally. (a) The origin warped extra dimen-
sion model with SM fermions in the bulk, G1 is the first KK
gluon and ψ0 is the top quark. g1L = −0.2gs, g1R = 4gs[16],
EU = 29.2TeV. (b) The warped extra dimension model with
an extended custodial symmetry, G1 is the first KK gluon
and ψ0 is the top quark. g1L = 0.07gs, g1R = 2.76gs[17],
EU = 52.7TeV. (c) The same model as (b) but ψ0 is the a t′

like quark with mass 370GeV. g1L = −0.2gs, g1R = 6.35gs[18],
EU = 7.6TeV. (d) The top quark seesaw model, G1 is the col-
oron and ψ0 is the top quark. g1L = 4.85gs, g1R = −0.2gs[19],
EU = 22.9TeV.

Measuring the polarization of ψ0 requires reconstruct-
ing the ψ0 rest frame from observables in the event, which

(a) RS1 with SM in the bulk.

(b) RS1 with O(3) extended 
custodial symmetry.

(c) The same as (b) but with 

(d) Top quark seesaw.

MG = 3TeV

G1 ψ01st KK gluon top quark

G1 ψ01st KK gluon top quark

G1 ψ01st KK gluon t’ quark

G1 ψ0coloron top quark

We choose the typical parameters in the 
above models.   

Unitarity bounds very LOW!
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Really apply to any model without discrete 
parity with a large axial coupling. 

deconstructed moose models

Little higgs models withour T-parity.

Higgsless models

Warped extra dimension models

models with gauge extension

etc!

EU < 78 TeV
if MG/gA < 3 TeV is the top quark, ψ0

Generally speaking, 

We really need the 
next generation 

colliders (VLHC?)to 
distinguish and study 
those posibilities in 

detail. 
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between massless gauge boson G0 and fermions are uni-
versal g0 = gsgcg because of SU(N)0 gauge invariance.
The couplings between massive gauge boson G1 and dif-
ferent Weyl fermions are different, and they are presented
in Fig 3.

G1 G1

L
0

L
0

R
0

R
0

g1L=g(sg
2−sf

2) g1R=g(sg
2)

G1 G1

L
0

L
1

L
1

g’1L=g(sf
2−cg

2) gmix=−gsfcfL
1

G1

R
1

R
1g’1R=−gcg

2

FIG. 3: Feymann rules for the massive gauge boson and
fermion interactions in the model A.

The fermion ψ0 is massless, and we can introduce its
mass through a gauge invariant mass term M ′ψ̄AψA =
m0ψ̄0

Lψ0
R + m′ψ̄1

Lψ0
R + h.c. Such a mass term could come

from a Yukawa interaction y′ψ̄AψAφ with a singlet scalar
field φ in the moose. We can see that the mass term for
ψ0 is always accompanied with a mixed mass term and
the ratio is m′/m0 = −sf/cf .

Armed with these interactions and mass terms, we can
compute the amplitudes from all Feymann diagrams with
different interactions and mass insertions. Those from t-
channel fermion exchange are presented in Fig 5 (a) ∼
(g). If we omit the common factor Cm0

√
s/M2, those

amplitudes from different diagrams are2:
(a) −2g1Lg1R = −2(g2s4

g − g2s2
gs

2
f )

(b) g1Lg1L = g2(s2
g − s2

f )2

(c) g1Rg1R = g2s4
g

(d) −2gmixg1R(m′/m0) = −2(g2s2
gs

2
f )

(e) g1Lgmix(m′/m0) = g2s2
gs

2
f − g2s4

f

(f) gmixg′1L(m′/m0) = g2s4
f − g2c2

gs
2
f

(g) g2
mix = g2s2

fc2
f

Summing over all amplitudes from diagram (a)∼(g), we

2 The diagram (a), (d) has a kinamatic factor -2 relative to the
others.
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FIG. 4: Different Feymann diagrams that contribute to
ψ̄0

Lψ0
L → G1G1 in terms of one mass insertion in model A

and B. Here we omit those with u-channel fermion exchange.
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FIG. 5: Different Feymann diagrams that contribute to
ψ̄0

Lψ0
L → G1G1 in terms of one mass insertion in model A

and B. Here we omit those with u-channel fermion exchange.

can see that the whole result proportional to
√

s is zero
and unitarity is not violated.

The mixed mass term m′ψ̄1
Lψ0

R + h.c. will rotate the
mass eigenstate and introduce extra pieces for the new
mass eigenstate ψ̃1 and ψ̃0. In the limit M ′ $ m1, if
we only keep the leading order expansion on m1, we will
find that ψ̃0

L = ψ0
L, ψ̃1

L = ψ1
L and ψ̃0

R = ψ0
R−(m′/m1)ψ̄1

R,
ψ̃1

R = ψ1
R+(m′/m1)ψ̄0

R. Thus there is an additional piece

for ¯̃ψ0
Lψ̃0

L → G1G1 coming from ψ̄1
Lψ0

L → G1G1 with a
factor (m′/m1). However, we can find that this part is
separated from the previous one, and the

√
s part in the

ψ̄1
Lψ0

L → G1G1 will cancel if we observe the full theory.
We do not show this here in detail.

The second model B has a physical higgs field which
is the diagonal part of the link field σ that contributes
to scattering ψ̄0

Lψ0
L → G1G1. The corresponding moose

diagram is presented in Fig 6. We choose y′ large so that
ψB

L and ψA
R are decoupled from the low energy effective

3

between massless gauge boson G0 and fermions are uni-
versal g0 = gsgcg because of SU(N)0 gauge invariance.
The couplings between massive gauge boson G1 and dif-
ferent Weyl fermions are different, and they are presented
in Fig 3.
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FIG. 3: Feymann rules for the massive gauge boson and
fermion interactions in the model A.

The fermion ψ0 is massless, and we can introduce its
mass through a gauge invariant mass term M ′ψ̄AψA =
m0ψ̄0

Lψ0
R + m′ψ̄1

Lψ0
R + h.c. Such a mass term could come

from a Yukawa interaction y′ψ̄AψAφ with a singlet scalar
field φ in the moose. We can see that the mass term for
ψ0 is always accompanied with a mixed mass term and
the ratio is m′/m0 = −sf/cf .

Armed with these interactions and mass terms, we can
compute the amplitudes from all Feymann diagrams with
different interactions and mass insertions. Those from t-
channel fermion exchange are presented in Fig 5 (a) ∼
(g). If we omit the common factor Cm0

√
s/M2, those

amplitudes from different diagrams are2:
(a) −2g1Lg1R = −2(g2s4

g − g2s2
gs

2
f )

(b) g1Lg1L = g2(s2
g − s2

f )2

(c) g1Rg1R = g2s4
g

(d) −2gmixg1R(m′/m0) = −2(g2s2
gs

2
f )

(e) g1Lgmix(m′/m0) = g2s2
gs

2
f − g2s4

f

(f) gmixg′1L(m′/m0) = g2s4
f − g2c2

gs
2
f

(g) g2
mix = g2s2

fc2
f

Summing over all amplitudes from diagram (a)∼(g), we

2 The diagram (a), (d) has a kinamatic factor -2 relative to the
others.

R
0

L
0

R
0

G1

G1

m

(a)

L
0 G1

G1

G1

G1

R
0

R
0

R
0

R
0L

0

L
0 m

(c)

L
0

L
0

m

(b)

R
0

G1

G1

G1

G1

G1

G1

R
0

R
0

L
0

(d) (e) (f)
L
1

m’ m’

L
0

L
1

L
0

L
1

L
0

R
0

L
1

m’

R
0

G1

G1

R
0

L
0

L
0

m

L
0

L
1

(g)

G1

G1

(h)

FIG. 4: Different Feymann diagrams that contribute to
ψ̄0

Lψ0
L → G1G1 in terms of one mass insertion in model A

and B. Here we omit those with u-channel fermion exchange.

G1

0

0

FIG. 5: Different Feymann diagrams that contribute to
ψ̄0

Lψ0
L → G1G1 in terms of one mass insertion in model A

and B. Here we omit those with u-channel fermion exchange.

can see that the whole result proportional to
√

s is zero
and unitarity is not violated.

The mixed mass term m′ψ̄1
Lψ0

R + h.c. will rotate the
mass eigenstate and introduce extra pieces for the new
mass eigenstate ψ̃1 and ψ̃0. In the limit M ′ $ m1, if
we only keep the leading order expansion on m1, we will
find that ψ̃0

L = ψ0
L, ψ̃1

L = ψ1
L and ψ̃0

R = ψ0
R−(m′/m1)ψ̄1

R,
ψ̃1

R = ψ1
R+(m′/m1)ψ̄0

R. Thus there is an additional piece

for ¯̃ψ0
Lψ̃0

L → G1G1 coming from ψ̄1
Lψ0

L → G1G1 with a
factor (m′/m1). However, we can find that this part is

Maybe colored or not?   

From      decay, in the      rest 
frame, the      is measured through 
the angular distribution of leptons 

gA

ψ0 ψ0

Imgine

EU < ? TeV Build the next 
generation colliders?

We can measure            aa     
and find      is spin one.    

MG,
G1

m0
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Summary and Outlook

• Signals that are easily observed at LHC give us 
predictions on the energy scale of new physics.  

• The new physics involves either massive fermions, 
scalars or a strongly coupled sector.

• A incomplete theory that we can reconstructed 
from LHC perhaps leads to apprent explicit 
violation of gauge invariance.

• Scentific reasons to build next generation colliders. 

• The scattering process could be generalized here. 
Not nessarily restricted to our current case.
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