

SM Tests at the Tevatron Collider

Cecilia E. Gerber University of Illinois-Chicago

Pheno 2008 Symposium LHC Turn on

University of Wisconsin-Madison, April 28-30 2008

Pheno 2008 Symposium

Outline

- <u>Selected</u> new results presented by rate:
 - High p_T jets
 - W&Z bosons
 - Top quark
 - ZZ
 - SM Higgs
- See parallel sessions for more results!

The Fermilab Tevatron

	Run I	Run IIa	Run IIb
Bunches in Turn	6 × 6	36 × 36	36 ×36
√s (TeV)	1.8	1.96	1.96
Peak L (cm ⁻² s ⁻¹)	1.6 ×10 ³⁰	9 ×10 ³¹	3 ×10 ³²
∫ Ldt (pb⁻¹/week)	3	17	50
Bunch crossing (ns)	3500	396	396
Interactions/ crossing	2.5	2.3	8

- Highest-energy accelerator currently in operation
 - only place where Top quarks have been produced
 - Data delivered >3.5fb⁻¹
 - expect to reach 6- 8 fb⁻¹ by the end of the run.

Pheno 2008 Symposium

Jet Production

$$\sigma(\mathbf{p}_1 \overline{\mathbf{p}}_2 \to 2 \text{ jets}) =$$

$$\sum_{abcd} \int dx_1 dx_2 f_{a/A}(x_1) f_{b/B}(x_2) \hat{\sigma}(ab \to cd)$$

- Inclusive Jet Cross Section
 - Most basic test of QCD
 - Sensitive to the value of α_{s}
 - PDFs at high Q^2
 - proton structure at large x

DØ jet coverage $|\eta| < 2.4 \rightarrow very$ forward jets are available!

Inclusive Jet x-section

Data corrected to particle level is compared to NLOJET++ with CTEQ6.5M

Agrees well with NLO QCD over the entire range ($\mu_R = \mu_F = p_T$)

Most precise measurement to date. Result is already included in MRSTW08 PDF. hep-ex 0802.2400 - submitted to PRL

Pheno 2008 Symposium

W/Z Production

v/l

Pheno 2008 Symposium

- Production dominated by qq annihilation
- Due to very large pp→ jj production, need to use leptonic decays

• (BR ~ 11% (W), ~3% (Z) per mode)

Modifications due to QCD corrections:

- Boson produced with transverse momentum
- Boson + jet events possible main bkgd to top/Higgs
- Inclusive cross sections larger
- Boson decay angular distribution modified
 Benefits of studying QCD with W&Z bosons:
 - Distinctive event signatures
 - Low backgrounds
 - Large Q^2 ($Q^2 \sim Mass^2 \sim 6500 \text{ GeV}^2$)
 - Well understood Electroweak Vertex
 - C. Gerber (UIC)

Z Boson Forward-Backward Charge Asymmetry

$$A_{FB}^{i} = \frac{\left(\frac{d\sigma}{dM_{i}}\right)^{+} - \left(\frac{d\sigma}{dM_{i}}\right)^{-}}{\left(\frac{d\sigma}{dM_{i}}\right)^{+} + \left(\frac{d\sigma}{dM_{i}}\right)^{-}}$$

+/- correspond to hemispheres of e⁻ w.r.t. proton in Collins-Soper frame

Unfolded data is compared with theory \rightarrow good agreement

arXiv:/0804.3220 [hep-ex]

Background subtracted raw AFB is compared to templates generated with different input values of $sin^2\theta_W^{eff}$ to extract

 $\sin^2 \theta_W^{eff} = 0.2327 \pm 0.0018 \text{ (stat.)} \pm 0.0006 \text{ (syst.)}$

Comparable in precision to the LEP combination.

Pheno 2008 Symposium

C. Gerber (UIC)

7

W/Z Properties

W production Charge Asymmetry

Provides input on the momentum fraction dependence of the u and d quark PDF within the proton.

 $\frac{1}{d\sigma}$

 σdq_T

for e⁺ e⁻ pairs

(70< M_{ee}< 110 GeV)

W/Z + Heavy Flavor Production (dominant background for top&Higgs)

W →ℓv + c-jet

- select W's with a muon-jet
- muon & W have opposite charge
- sensitive to s quark PDF

Agrees with SM expectation.

Pheno 2008 Symposium

$Z \rightarrow \ell \ell + 2 \text{ b-jets}$

- b-jets tagged with SVT
- fraction fitted from the
 invariant mass of the tracks
- data is corrected to hadron level & compared to theory

Differential distributions available for the first time.

Top quark Pair Production & Decay

• Top quarks are mainly produced in pairs, via the strong interaction

 σ_{tt} =6.8±0.6 pb (Kidonakis, Vogt) σ_{tt} =6.7+0.7-0.9 pb (Cacciari et al.)

- $m_t > m_W + m_b \Rightarrow$ dominant 2-body decay t \rightarrow Wb
- $\Gamma_t^{SM} \approx 1.4 \text{ GeV} \text{ at } m_t = 175 \text{ GeV}$
 - Top decays before top-flavored hadrons or tt-quarkonium bound states can form
 - Top spin and kinematics is transferred to the final state

Top quark Properties

Pheno 2008 Symposium

Sample of Top quark Properties

W Helicity in ttbar I+j events

Search for ttbar resonances

Study invariant mass spectrum of I+j events

No evidence for narrow resonance decaying into ttbar

 $cos\theta^*$ used as sensitive b observable W^+

2-parameter fit for fraction of longitudinal (F⁰) and right-handed (F⁺) polarized W bosons in top decays Statistically limited: agrees with the SM prediction

Top quark Mass

171.4 ± 1.1 (stat) ± 1.0 (JES) ± 1.0 (syst) GeV C. Gerber (UIC) 14

Pheno 2008 Symposium

Top Mass from x-section

 $m_{top} = 170 \pm 7 \text{ GeV}$

Top quark mass can be extracted comparing the measured x-sec with theory

Measurement has different experimental and theoretical uncertainties than direct measurements.

Results between two methods are in agreement

SM Constraints on the Higgs

Pheno 2008 Symposium

Single Top Production

 Experimentally challenging due to large W+jets background in lower jet multiplicities than pair production

 s-channel
 t-channel

 $\sigma = 0.88 \pm 0.11 \text{ pb}$ $\sigma = 1.98 \pm 0.25 \text{ pb}$

- Simple counting experiment cannot extract the signal from the overwhelming background
 - Need advanced techniques
 - Multiple methods per experiment (3 each)
 - Serve as cross check
 - Combination adds power

Evidence for single top production

Signal Significance		Cross Section	
Expected	Observed	Measured	
DØ (0.9 fb ⁻¹) PRL 98, 181802 (2007)			
2.3σ	3.6σ	4.7±1.3 pb	
Vtb = 1.31 + 0.25 - 0.21			
CDF (2.2 fb ⁻¹)			
5.1σ	3.7σ	2.2 ± 0.7 pb	
Vtb = 0.88 ± 0.14 ± 0.07			

Same final state as WH

smallest measured x-sec: ZZ

 $\sigma(ZZ) = 1.6 \pm 0.1~{\rm pb}~({\rm SM})$

Pheno 2008 Symposium

CDF combines events with 4 charged leptons (e,μ), and 2 charged leptons and 2 neutrinos. Based on 3 *llll* and 5 *llvv* candidates:

$$\sigma(ZZ) = 1.4^{+0.7}_{-0.6}(stat + syst)pb$$

4.4σ observed significance http://arxiv.org/abs/0801.4806v1

DO uses events with 2 charged leptons and 2 neutrinos (2.2 fb-1)

$$\sigma(ZZ) = 2.1 \pm 1.1(stat) \pm 0.4(syst)pb$$

2.4σ observed significance

On to the Higgs...

Pheno 2008 Symposium

SM Higgs search at the Tevatron

Higgs Searches examples: low mass

Also analyzed $ZH \rightarrow \ell \ell$ bb

Pheno 2008 Symposium

Higgs Searches examples: high mass

Pheno 2008 Symposium

Tevatron Combination

Combination (April 2008) includes 29 mutually exclusive final states!!

Black lines: Expected and Observed 95% C.L. ratios to SM x-section.

Bands: 1 and 2 σ fluctuations on expected limit, in background-only hypothesis.

Tau & $\gamma\gamma$ channels add sensitivity. Other channels were re-analized

For m_H=115, expected (observed) 95% CL relative to σ_{SM} = 3.3 (3.7) For m_H=160, expected (observed) 95% CL relative to σ_{SM} = 1.6 (1.1)

Median expected Higgs sensitivity

With data accumulated by the end of 2010, we expect

- 95% exclusion possible over almost entire allowed mass range
- 3σ evidence possible at low and high ends of range

Pheno 2008 Symposium

Conclusions

- DØ and CDF are running better than ever
 - Data taking efficiencies ~ 90%
 - Fast turn-around from data-taking to physics results
 - Rate of publications consistently growing
- Many exciting measurements and discoveries
- CDF <u>http://www-</u> cdf.fnal.gov/physics/W08CDFResults.html
- DØ <u>http://www-</u> d0.fnal.gov/Run2Physics/WWW/results.htm
- Tevatron program is rich and promising
- We are enthusiastic about the physics through the end of the decade