

BMBF - Förderschwerpunkt

Elementarteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

New Physics Searches at HERA

Jolanta Sztuk-Dambietz

University of Hamburg on behalf of

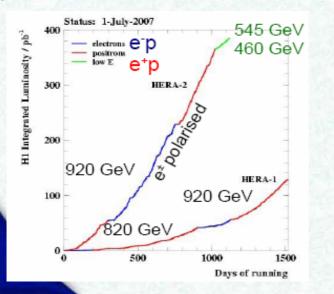
and

Outline:

- > H1 and ZEUS at HERA
- Searches in inclusive DIS
- > Model based searches
- Model independent searches
- > Summary

PHENO 2008, Madison, April 28, 2008

>HERA-I: 1992-2000 L~120 pb⁻¹/exp.

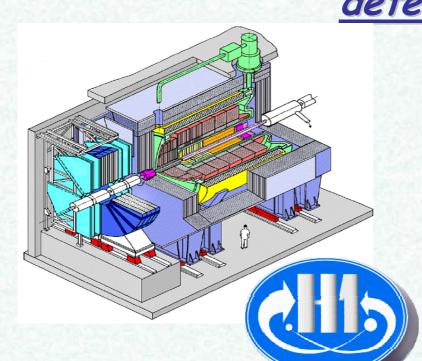

>HERA-II 2002-2007 L~350 pb⁻¹/exp.

-Luminosity upgrade:

~10x more e-p data than in HERA-I

-Longitudinally polarized lepton beam

ep collision at H1 and ZEUS


Presented results:

	H1	ZEUS
e+p	294 pb ⁻¹	272 pb ⁻¹
e-p	184 pb ⁻¹	206 pb ⁻¹
Total	478 pb ⁻¹	479 pb ⁻¹

Total luminosity ~ 1fb⁻¹

<u>H1 and ZEUS hermetic multi-purpose</u> detectors

BER L

Liquid Argon Calorimeter

optimized for precision measurement of the scattered lepton

$$σ_{\rm E}$$
 /E = 12%/√E (ele)
 $σ_{\rm E}$ /E = 50%/√E (had)

Uranium-scintillator Calorimeter

ZEUS

optimized for precision measurement of the hadronic final state

$$σ_E / E = 18\% / √E$$
 (ele)
 $σ_E / E = 35\% / √E$ (had)

Beyond Standard Model searches at HERA

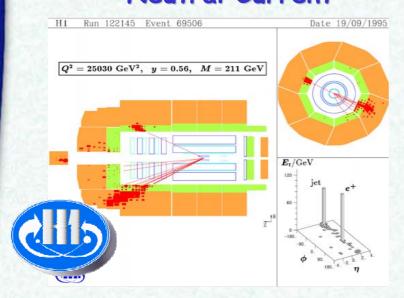
Searches in inclusive DIS

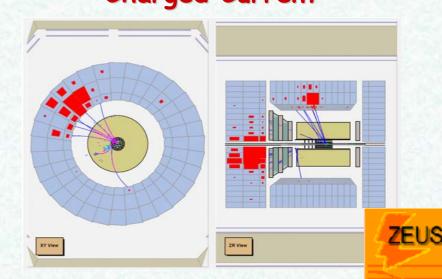
- ✓ NC: Quark Radius, Contact Interaction , Extra Dimensions
- ✓ CC: Polarization dependence

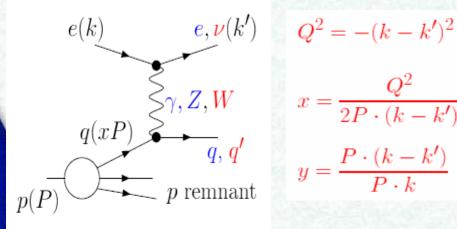
Model based searches

- Test models and verify predicted signatures
- ✓ Leptoquarks and LFV
- ✓ Excited Leptons
- ✓ Single Top production
- ✓ Doubly Charged Higgs
- ✓ Supersymmetry

<u>Model-independent searches</u>


Compare data vs SM, reveal anomalies above small SM contribution


- ✓ Isolated leptons and missing P_T
- ✓ High-P_T multi-leptons
- ✓ General searches
- ✓ Magnetic monopoles


Topics in red covered in this talk

Deep Inelastic etp Scattering

Main processes studied at H1 and ZEUS: Neutral Current **Charged Current**

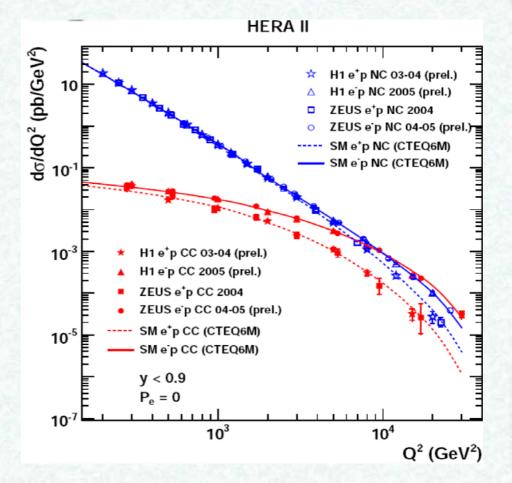
$$x = \frac{Q^2}{2P \cdot (k - k')}$$

$$y = \frac{P \cdot (k - k')}{P \cdot k}$$

 $Q^2 = -(4-momentum of propagator)^2$ the virtuality of the exchanged boson.

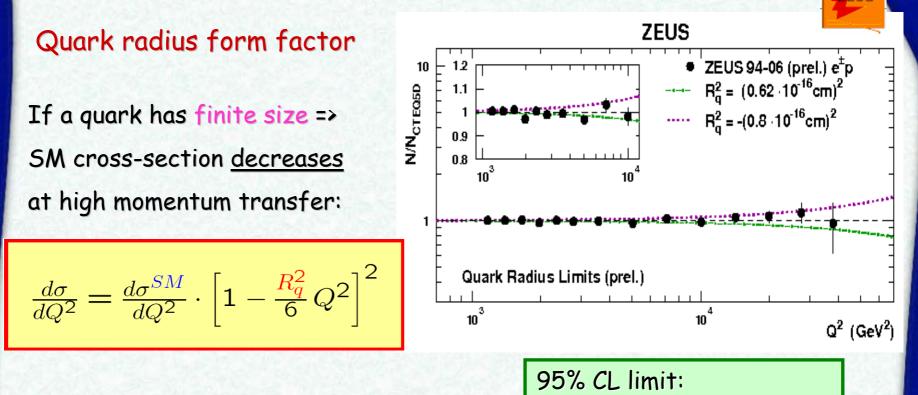
x - fractional momentum of proton carried by struck quark q

y - fractional energy of the incoming lepton transferred to the proton in the proton's rest frame 5


DIS at high-Q²

Neutral Current and Charge Current cross-sections for e+p and e-p

NC DIS at highest Q² =>
Z° contribution significant!


➤CC DIS: e⁻u enhanced e⁺d suppressed

Excellent agreement of precise data with Standard Model over many order of magnitude => testing ground for SM and QCD

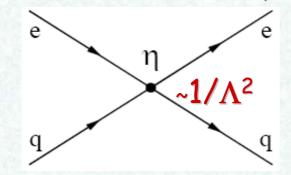
New Physics would create deviations from SM at high-Q²!

Quark (sub)structure

where **Rq** is the root mean square radius of the electroweak charge distribution in the quark

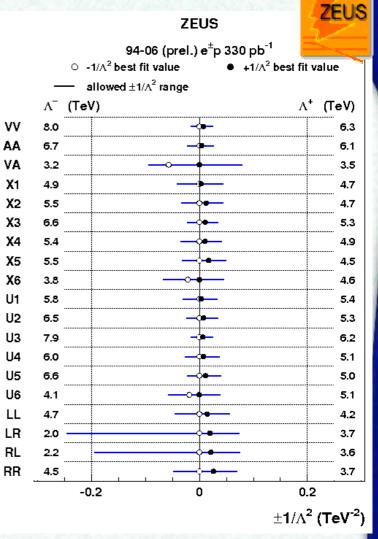
H1: Rq < 0.74 × 10⁻¹⁸ m

ZEUS: Rq < 0.62 x 10⁻¹⁸ m


Limit below 1/1000 of the proton radius! 7

Contact Interactions

General models:


If the scale Λ of new interactions is large:

>Effective contact interaction parameterization

Modification of DIS cross-section at high-Q²

Different models with different helicity structure =>

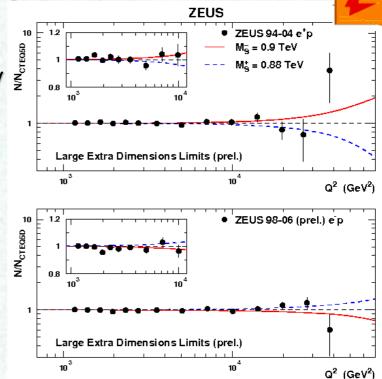
95% CL limits : $\Lambda > 2.0-8.0$ TeV

Sensitive to several TeV range ! 8

Large Extra Dimensions

Arkani-Hamed-Dimopoulos-Dvali Model

If gravity propagates in the 4+δ dimensions the effective mass scale Ms can be as low as 1TeV ⇒ Gravitational interactions become comparable in strength to electroweak interactions

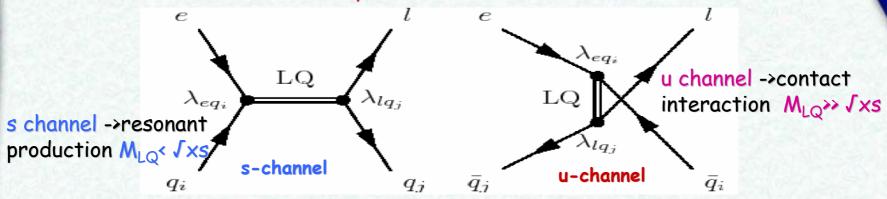

The contribution of graviton exchange to the ep NCDIS => effective CI type coupling:

e

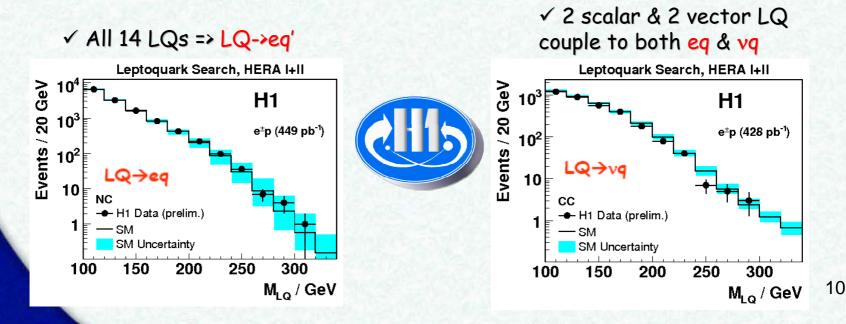
 $G_1G_2G_3$

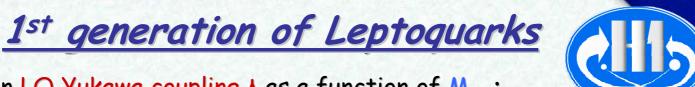
$$\eta_G = \pm \lambda \cdot \frac{\mathcal{E}^2}{M_S^4}$$

where: λ is the coupling strength and ε is related to the energy scale of hard interaction ($\int s$, Q2)


95% CL limits on LED scale Ms: Ms+ > 0.88 TeV Ms- > 0.90 TeV

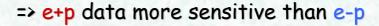
9

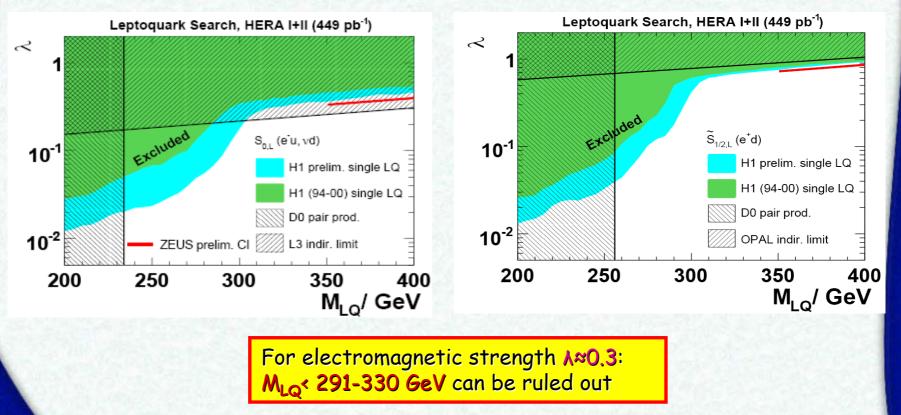

ZEUS


1st generation of Leptoquarks

Scalar or vector color triplet bosons carrying L and B numbers => Fermion number F = 3B + L = 0.2

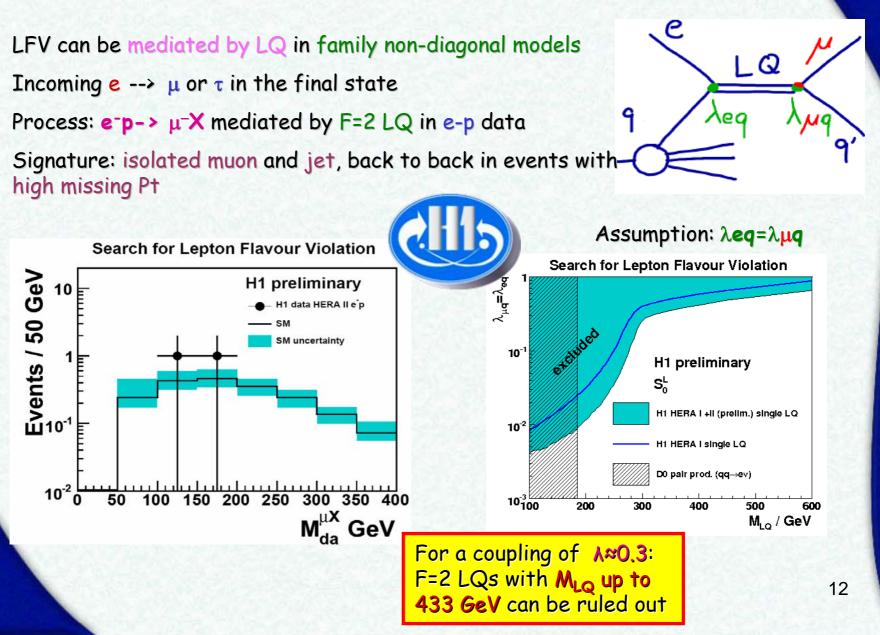
Buchmuller-Ruckl-Wyler (BRW) model => 7 scalar and 7 vector LQs:



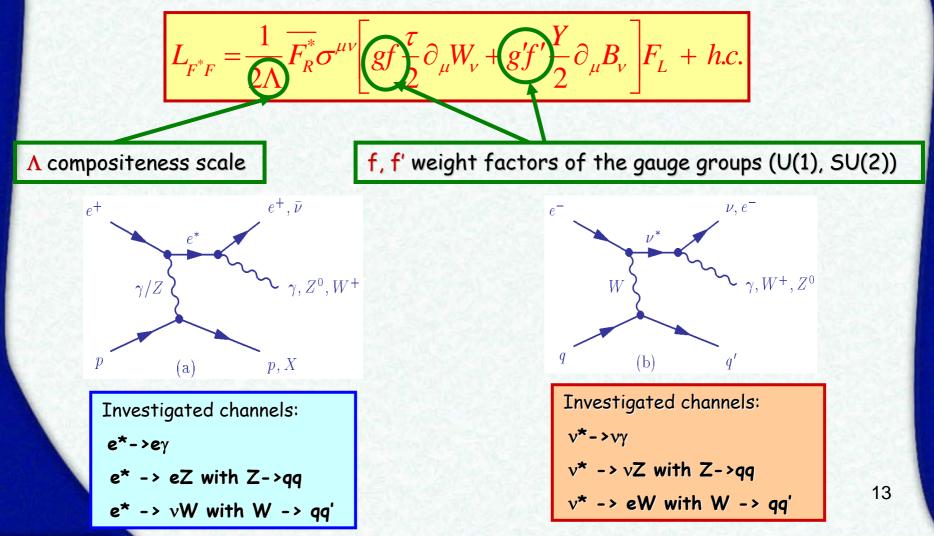

Limit on LQ Yukawa coupling Λ as a function of M_{LQ} :

F=2 BRW LQ model

F=0 BRW LQ model


=> e-p data more sensitive than e+p

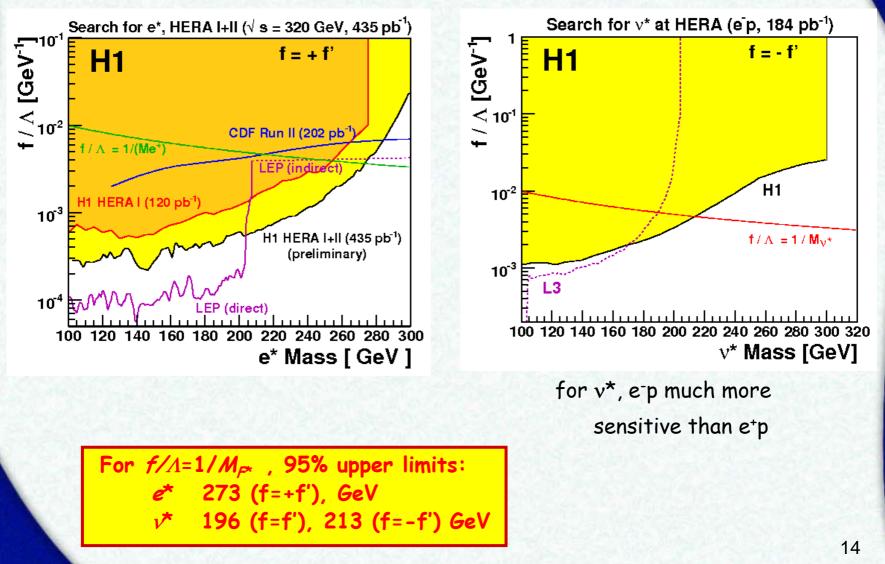
Limits comparable to those obtained by LEP and Tevatron¹¹

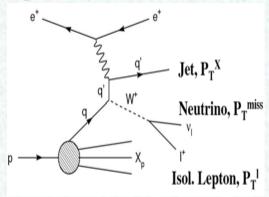

Or. Lepton Flavour Violation

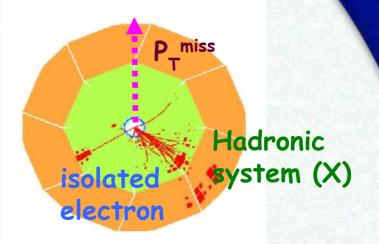
Excited Leptons

Gauge mediated model for compositeness of fermions (Hagiwara et al.): Excited leptons: spin $\frac{1}{2}$, isospin $\frac{1}{2}$ and the same currents as SM leptons

Effective Lagrangian to parameterize compositeness




Excited electrons

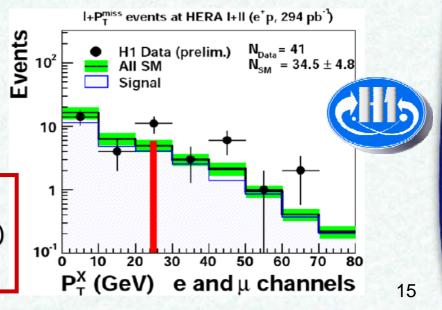

Excited neutrinos

High-Pt leptons with missing Pt

In the SM, isolated leptons are produced by single W production (σ ~1pb)

Signature:

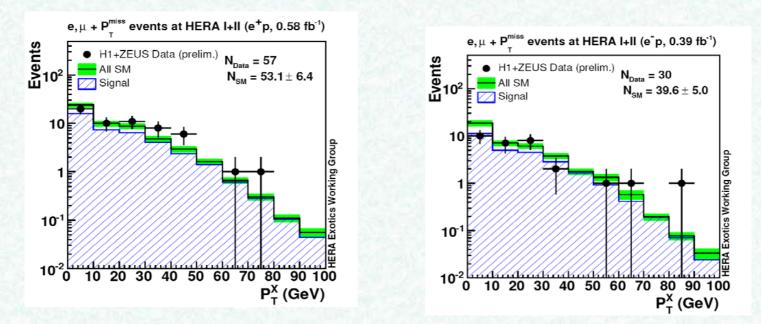
Jet hadronic system with large transverse momentum


Isolated lepton

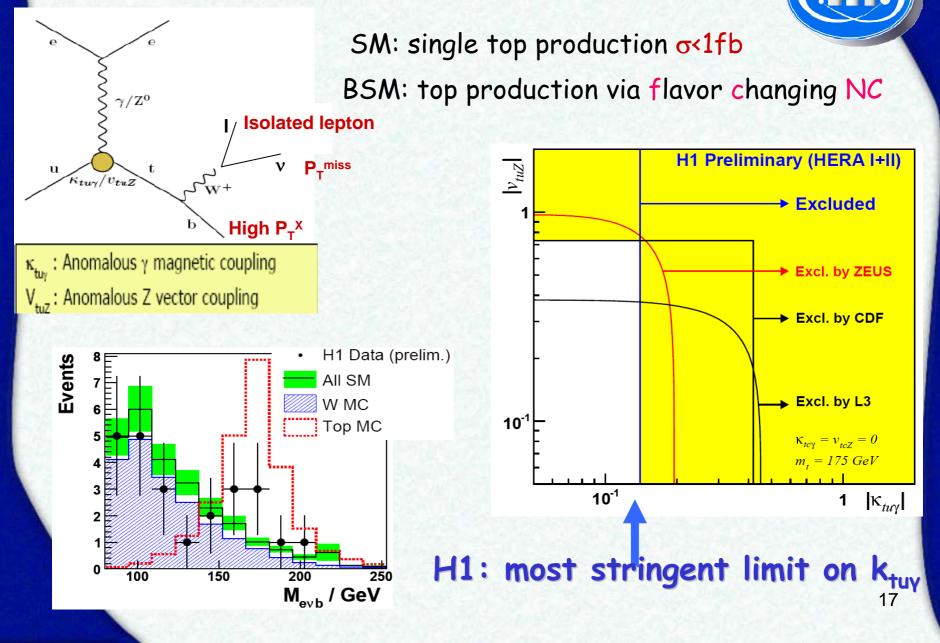
Large missing transverse momentum

e+p data: P_t^X > 25 GeV

H1: 21 events for 9 ± 1.5 expected (~ 3σ)


ZEUS: no events in excess of SM

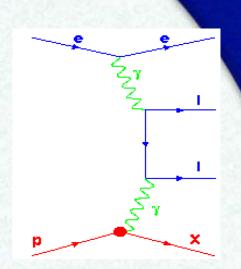
High-Pt leptons with missing Pt

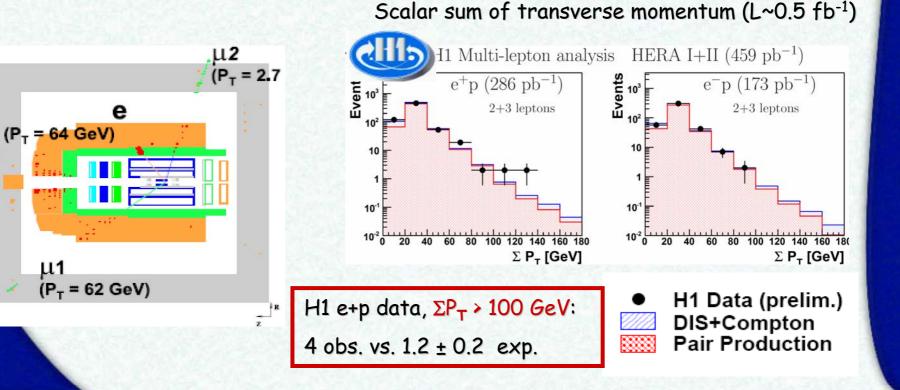


Total luminosity $L = 0.97 \text{ fb}^{-1}$

Good agreement with the SM Excess observed in H1 e+p $P_T^X > 25$ GeV sample is reduced (~1.8 σ) Single W production is observed at HERA ZEUS

Anomalous Single Top production




High Pt multi-leptons

Small and very precisely known SM contribution

- \checkmark Mainly produced via $\gamma\gamma$ in SM
- ✓ Look for events with at least 2 high-Pt isolated leptons (e or μ)
- ✓ Topologies: ee, eee, eμ, μμ, eμμ

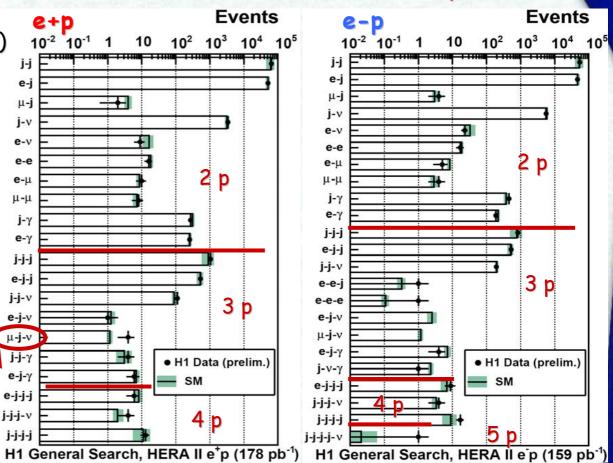
μ1

Multi-electrons H1 and ZEUS combined

H1 and ZEUS results combined in common phase-space

ZEUS

Total luminosity L=0.94 fb⁻¹


General searches

A model independent search for deviation from the SM prediction

HERA II data (L=337 pb⁻¹) HERA I (L=117 pb⁻¹) published [PLB 602(2004)14]

All topologies with >= 2 isolated particle: e, γ, μ, jet, ν

A common phase space: $P_T > 20 \text{ GeV}$ $10 < \theta < 140 \text{ deg.}$

Good agreement between data and SM predictions

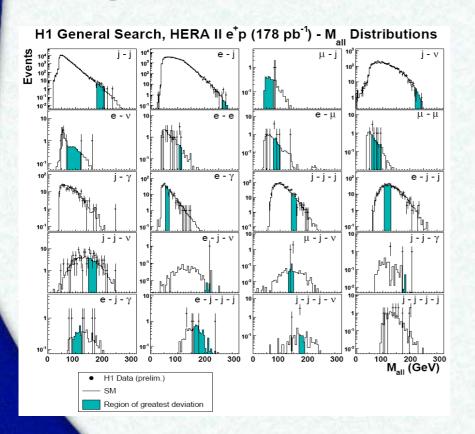
The largest deviation from SM in μ -j-v (e+p)

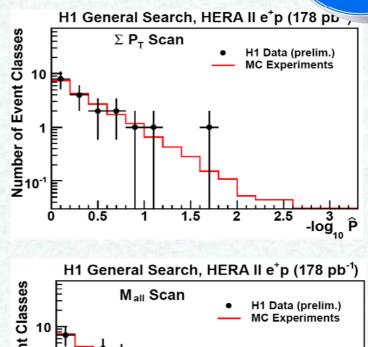
Summary

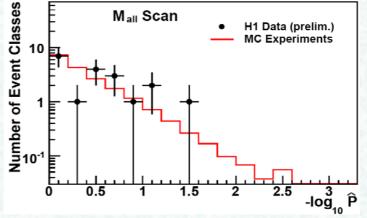
✓ HERA data taking ended on June 30 2007 after 15 years successful operation:

=>the two experiments combined have collected ~1fb⁻¹ data

- ✓ Many analyses use already full dataset
- ✓ H1 +ZEUS started to perform common analyses
- ✓ Results show no significant deviations from the Standard Model
- ✓ HERA provides strong results in searches beyond SM







Agreement to SM quantified by looking for maximum deviation in $\Sigma P_{\rm T}$ and $M_{\rm all}$ distributions

=> Statistical analysis to quantify the significance of deviations (P)

Observed fluctuations compatible with the SM prediction

General Models

Coupling structure

Couplings $\eta_{\alpha\beta}^{eq}$ are related to the "new physics" mass scale Λ by the formula:

$$\eta = \frac{\varepsilon \cdot g_{CI}^2}{\wedge^2}$$

where g_{CI} is the coupling strength of new interactions and $\varepsilon = \pm 1$. $g_{CI}^2 = 4\pi$

Different models assume different helicity structure of new interactions \Rightarrow

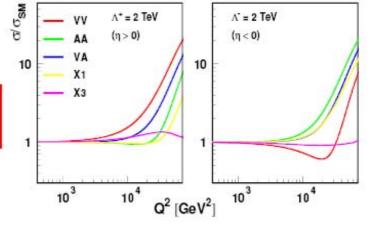
Also referred to as compositeness models (Λ - compositeness scale)

Model	η_{LL}^{ed}	η_{LR}^{ed}	η_{RL}^{ed}	η_{RR}^{ed}	η_{LL}^{eu}	η_{LR}^{eu}	η_{RL}^{eu}	η^{eu}_{RR}
LL	$+\eta$				$+\eta$			
LR		$+\eta$			111126	$+\eta$		
RL			$+\eta$				$+\eta$	
RR				$+\eta$				$+\eta$
VV	$+\eta$	$+\eta$	$+\eta$	$+\eta$	$+\eta$	$+\eta$	$+\eta$	$+\eta$
AA	$+\eta$	$-\eta$	$-\eta$	$+\eta$	$+\eta$	$-\eta$	$-\eta$	$+\eta$
VA	$+\eta$	$-\eta$	$+\eta$	$-\eta$	$+\eta$	$-\eta$	$+\eta$	$-\eta$
X1	$+\eta$	$-\eta$	11.		$+\eta$	$-\eta$	76	
X2	$+\eta$	10	$+\eta$		$+\eta$	1	$+\eta$	
X3	$+\eta$		1000	$+\eta$	$+\eta$			$+\eta$
X4	22	$+\eta$	$+\eta$	10	12	$+\eta$	$+\eta$	0
X5		$+\eta$		$+\eta$		$+\eta$		$+\eta$
X6			$+\eta$	$-\eta$			$+\eta$	$-\eta$
U1					$+\eta$	$-\eta$		
U2					$+\eta$		$+\eta$	
U3					$+\eta$			$+\eta$
U4					100.000	$+\eta$	$+\eta$	
U5						$+\eta$		$+\eta$
U6						Constantial State	$+\eta$	$-\eta$

J.Sztuk-Dambietz

LQs and CIs at HERA

Contact Interactions


Cross-section

Contact Interactions modify tree level $eq \rightarrow eq$ scattering amplitudes $M_{\alpha\beta}^{eq}$:

Resulting contribution to the differential NC DIS cross-section:

$$\frac{d\sigma}{dx\,dQ^2}(\eta) = \frac{d\sigma^{SM}}{dx\,dQ^2} \cdot \left[1 + A(x,Q^2)\,\eta + B(x,Q^2)\,\eta^2\right]$$

General formula for all CI type models

J.Sztuk-Dambietz

LQs and CIs at HERA

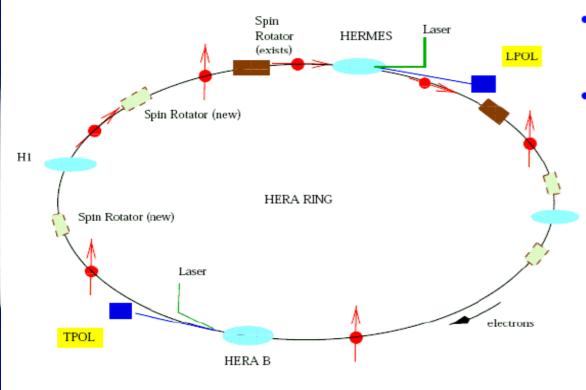
A-4

	Models	
L	eptoquarks	
A	achen notation	

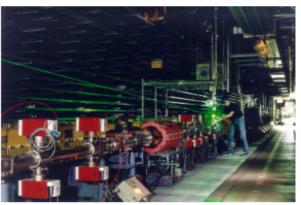
-

Model	Fermion number F	Charge Q	$BR(LQ \rightarrow e^{\pm}q) \ \beta$	Coupling		Squark type
S^L_{\circ}	2	-1/3	1/2	$e_L u$	νd	\tilde{d}_R
S^R_{\circ}	2	-1/3	1	$e_R u$		
S^L_{\circ} S^R_{\circ} \tilde{S}_{\circ}	2	-4/3	1	$e_R d$		
$S_{1/2}^{L}$	0	-5/3	1	$e_L \overline{u}$		
		-2/3	0		$\nu \overline{u}$	
$S^{R}_{1/2}$	0	-5/3	1	$e_R \overline{u}$		
-/-		-2/3	1	$e_R \overline{d}$		
$\tilde{S}_{1/2}$	0	-2/3	1	$e_L \overline{d}$		$\overline{\widetilde{u}_L}$
		+1/3	0		$\nu \overline{d}$	$\frac{\overline{\widetilde{u}_L}}{\widetilde{d}_L}$
S_1	2	$-4/3 \\ -1/3$	1	$e_L d$		
		-1/3	1/2 0	$e_L u$	νd	
V^L	0	+2/3 -2/3	1/2	$e_L \overline{d}$	$\frac{\nu u}{\nu \overline{u}}$	
$\frac{V_0}{VR}$	0	-2/3	1/2	$e_L a$ $e_R \overline{d}$	νu	
V_{\circ}^{L} V_{\circ}^{R} \tilde{V}_{\circ}	0	-5/3	1	$e_R \overline{u}$		
VO	2	-4/3	1	e_{Ld}		
$V_{1/2}^{L}$	-	-1/3	0	eLa	νd	
$V^{R}_{1/2}$	2	-4/3	1	$e_R d$	Pu	
1/2	-	-1/3	1	$e_R u$		
$\tilde{V}_{1/2}$	2	-1/3	1	$e_L u$		
- 1/ 2	_	+2/3	ò	-11-	νu	
V_1	0	-5/3	1	$e_L \overline{u}$		
		-2/3	1/2	$e_L \overline{d}$	$\nu \overline{u}$	
		+1/3	0		$\nu \overline{d}$	

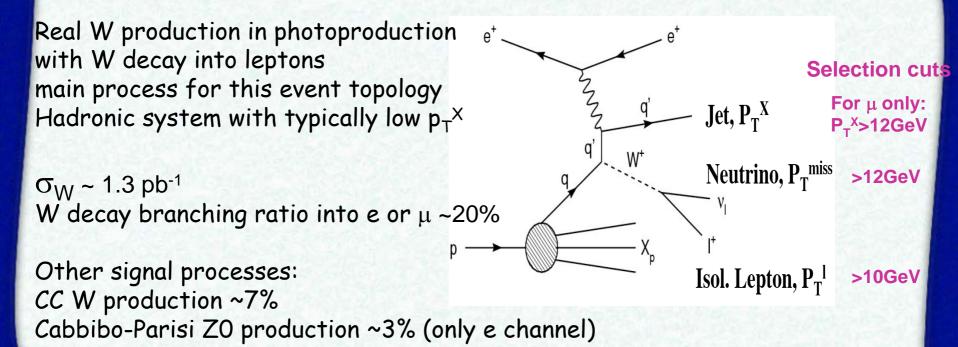
J.Sztuk-Dambietz


LQs and CIs at HERA

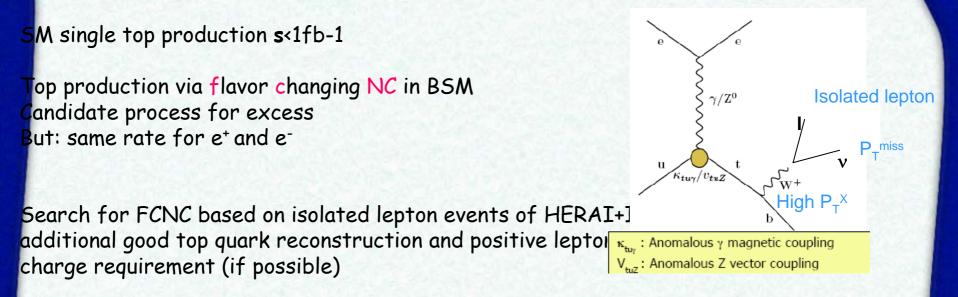
A-1


Polarized e[±]

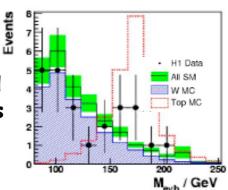
e beam acquires transverse polarization by the Sokolov-Ternov effect (magnetic moment couples to the dipole B field, spin flip by synchrotron radiation emission).


Spin rotators provide longitudinal polarization at the experiments (Hermes since 1995, H1 and ZEUS since 2003).

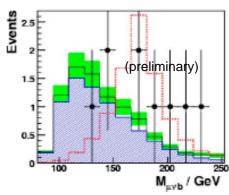
- Polarization typically 30-40%.
- Polarization monitored by Compton backscattering of laser beams.



Standard Model prediction


Modeled using EPVEC generator with NLO QCD correction: Modifies cross section by ~10%, reduces theoretical uncertainty to ~15%

Anomalous single top production

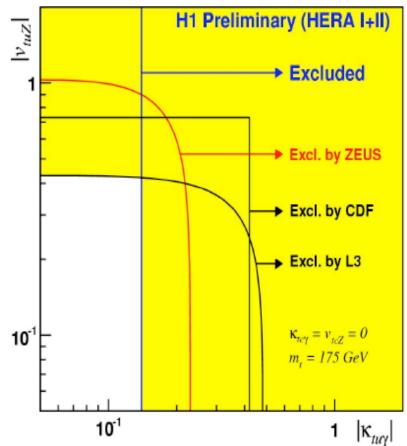

24 events selected, 26 events SM prediction

No significant signal found using multi variant analysis

ELECTRON CHANNEL

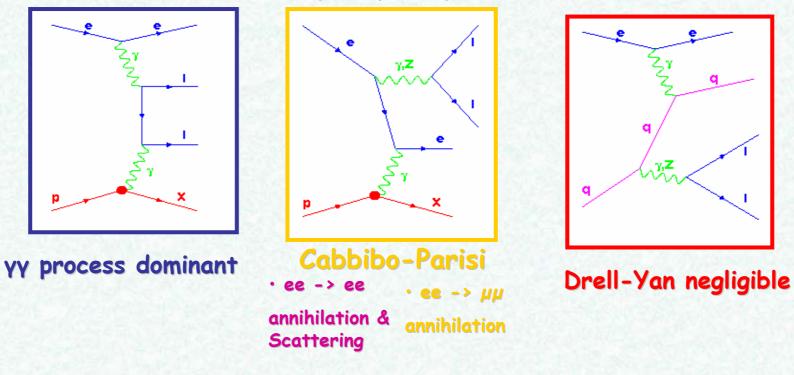
MUON CHANNEL

Single top results


limits on FCNC cross section derived using maximum likelihood:

o(ep->etX) < 0.16 (95% CL)

HERA 1 results: H1: σ(ep->etx) < 0.55 pb Zeus: σ(ep->etX)<0.23 pb


Upper bound on the anomalous coupling: $k_{\tau \upsilon \gamma} < 0.14$

New limit extends into region of phase space uncovered by other colliders

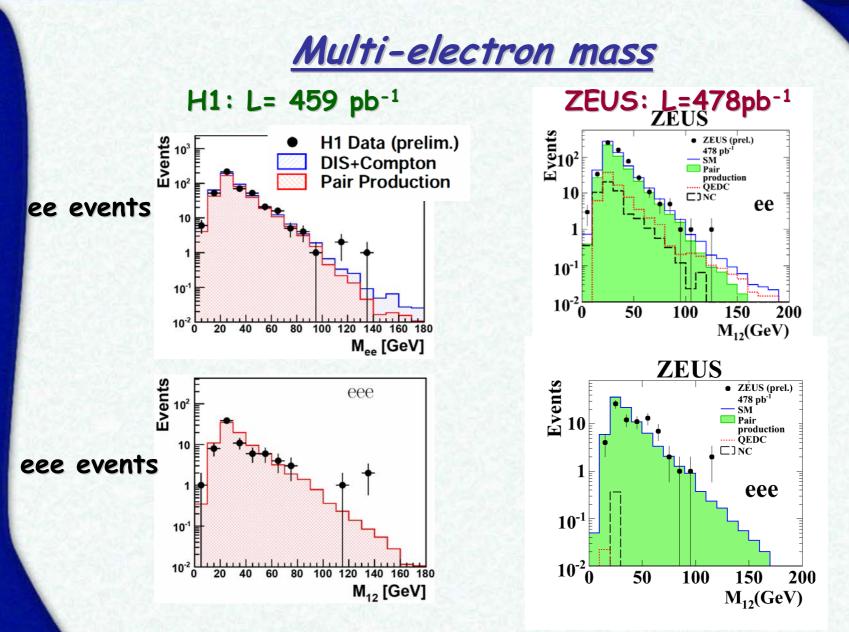
Multi-lepton events at HERA

How are lepton pairs produced ?

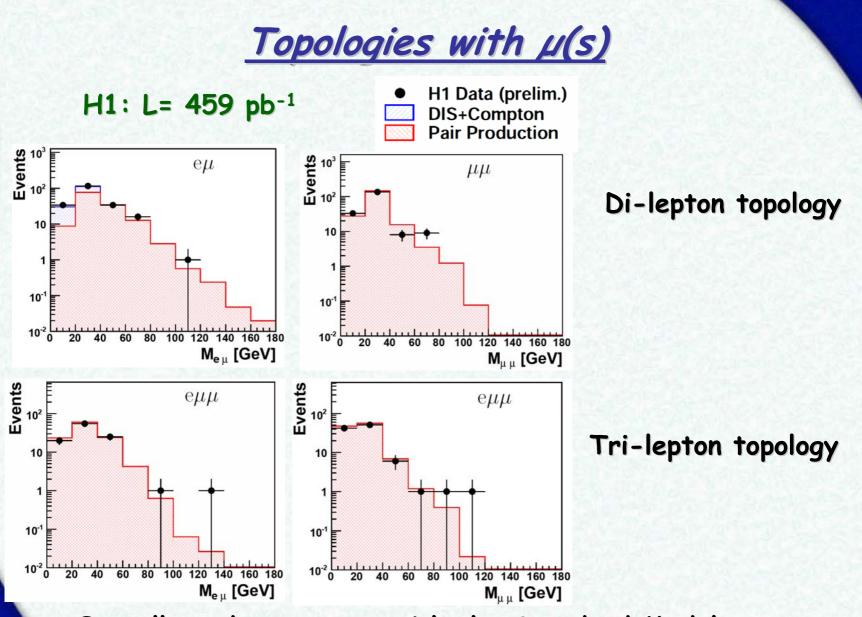
Multi-lepton production is a QED process -very well understood in the Standard Model Any excess over SM prediction <u>at high mass region</u> is sensitive to new phenomena (e.g. H^{±±})

Multi-lepton events at high mass

Selection:


- > Look for events with at least 2 high Pt leptons:
- > P_{t}^{11} > 10 and P_{t}^{12} > 5 GeV and 20° < θ_{l} < 150°
- > Additional lepton: Ee>5 GeV or P_t^μ>2GeV (5° < θ_l < 175°)</p>
- > Covered topologies:
- * H1: ee, $e\mu$, $\mu\mu$ and eee, $e\mu\mu$ * ZEUS: ee, eee

Dominant background:
> NC DIS: DIS e + fake electron


> QED Compton: γ misidentified as e

Invariant mass M_{II}:

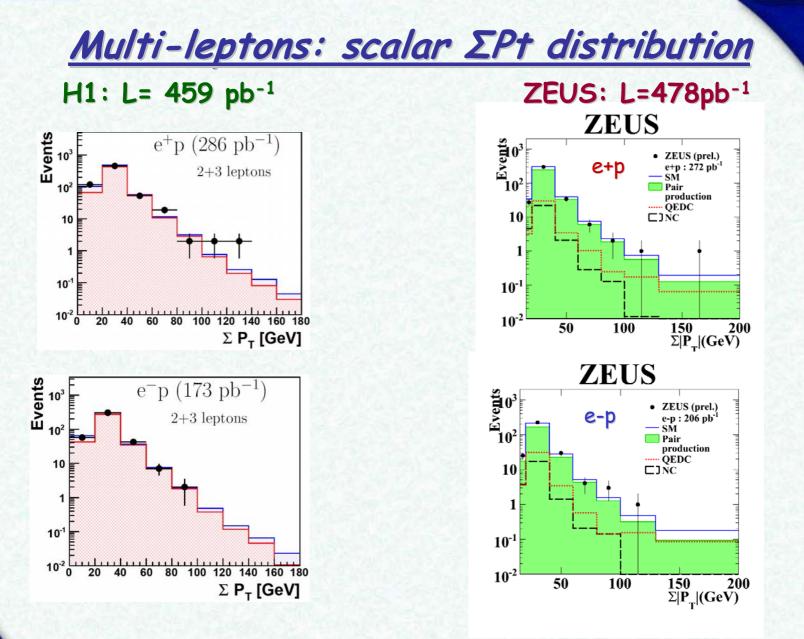
Reconstructed using 2 highest Pt leptons

Overall good agreement with the Standard Model

Overall good agreement with the Standard Model

Event yields at high M₁₁ > 100 GeV

H1 Preliminary: L= 459 pb⁻¹


			1 2	1	51		
	Selection	Data	SM	Pair Production	NC-DIS + Compton		
e^+p collisions (286 pb ⁻¹)							
e⁺p	ee $M_{12} > 100 \text{ GeV}$	3	1.0 ± 0.2	0.6 ± 0.2	0.4 ± 0.1		
CΡ	$\mu\mu M_{\mu\mu} > 100 \text{ GeV}$	0	0.06 ± 0.03	0.06 ± 0.03			
	$e\mu M_{e\mu} > 100 \text{ GeV}$	1	0.53 ± 0.05	0.53 ± 0.05	_		
	eee $M_{12} > 100 { m GeV}$	3	0.6 ± 0.1	0.6 ± 0.1	_		
	$e\mu\mu M_{e\mu} > 100 \text{ GeV}$	1	0.04 ± 0.02	0.04 ± 0.02	—		
	$e\mu\mu M_{\mu\mu} > 100 \text{ GeV}$	1	0.007 ± 0.005	0.007 ± 0.005	—		
			e^-p collisions (1	173 pb^{-1})			
e ⁻ p	ee $M_{12} > 100 \text{ GeV}$	0	0.55 ± 0.1	0.3 ± 0.1	0.25 ± 0.07		
C P	$\mu\mu M_{\mu\mu} > 100 \text{ GeV}$	0	0.03 ± 0.02	0.03 ± 0.02	-		
	$e\mu M_{e\mu} > 100 \text{ GeV}$	0	0.3 ± 0.05	0.3 ± 0.05	—		
	eee $M_{12} > 100 \text{ GeV}$	0	0.32 ± 0.06	0.32 ± 0.06	—		
	$e\mu\mu M_{e\mu} > 100 \text{ GeV}$	0	0.04 ± 0.01	0.04 ± 0.01	—		
	$e\mu\mu M_{\mu\mu} > 100 \text{ GeV}$	0	0.006 ± 0.004	0.006 ± 0.004	—		
	$e\mu M_{e\mu} > 100 \text{ GeV}$ $eee M_{12} > 100 \text{ GeV}$ $e\mu\mu M_{e\mu} > 100 \text{ GeV}$	0 0 0 0	$\begin{array}{c} 0.3 \pm 0.05 \\ 0.32 \pm 0.06 \\ 0.04 \pm 0.01 \end{array}$	$\begin{array}{c} 0.3 \pm 0.05 \\ 0.32 \pm 0.06 \\ 0.04 \pm 0.01 \end{array}$			

All high mass events M_{II} > 100 GeV from e+p data

ZEUS Preliminary: L=478pb⁻¹

e+p (L=272pb⁻¹) e+p (L=206pb⁻¹)

Data sample	Data	SM	Pair Production	Compton	NC DIS
ee	1	0.9 ± 0.1	0.5 ± 0.07	0.4 ± 0.12	0.07 ± 0.03
eee	2	0.6 +0.5 -0.07	0.6 ± 0.07	<0.01	< 0.5
ee	1	0.8 ± 0.08	0.4 ± 0.04	0.4 ± 0.1	0.04 ± 0.01
eee	0	0.4 +0.5 -0.05	0.4 ± 0.05	<0.01	< 0.5

Good agreement with SM

Event yields at scalar $\Sigma P_{t} > 100 \text{ GeV}$

H1 Preliminary: L= 459 pb⁻¹ Multileptons: electrons and muons

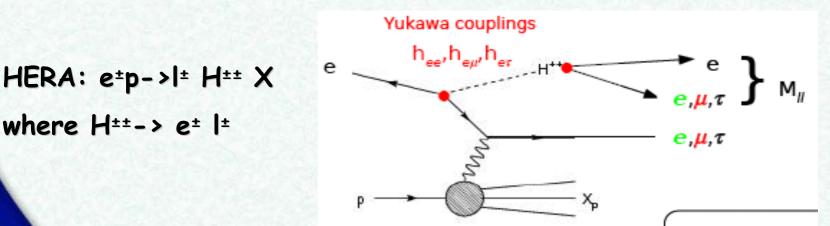
Data sample	Data	SM	Pair Production	NCDIS + Compton
е+р L=286рb	4	1.2 ± 0.2	1.0 ± 0.2	0.2 ± 0.1
е-р L=173pb	0	0.8 ± 0.2	0.6 ± 0.2	0.2 ± 0.1
All L=459pb	4	1.9 ± 0.4	1.5 ± 0.3	0.4 ± 0.1

H1:All events at high ΣPt come from e+p data

ZEUS Preliminary: L=478pb⁻¹

Multileptons: electrons only

Data sample	Data	SM	Pair Production	Compton	NC DIS
e+p L=272pb	2	0.95 +0.10 -0.09	0.67 ± 0.07	0.26 +0.07 -0.06	0.02 ± 0.01
е-р L=206рb	1	0.68+0.08-0.07	0.41 ± 0.04	0.27 +0.07 -0.06	0.01 ± 0.01
All L=478pb	3	1.63 +0.16 -0.12	1.08 ± 0.11	0.53 ^{+0.15} -0.11	0.03 ± 0.01


Search for doubly charged Higgs

In extension to SM:

- H±± appears in Higgs triplet(s) of non-zero hypercharge
- Left-right symmetries: $SU(2)_R \times SU(2)_L \times U(1)_{B-L}$
- provides mass to Majorana neutrinos
- Couplings to leptons h_{II}^{R,L} unknown

Democratic scenario: hee=heu=her

One dominant coupling h_{el}>>0, others ~0

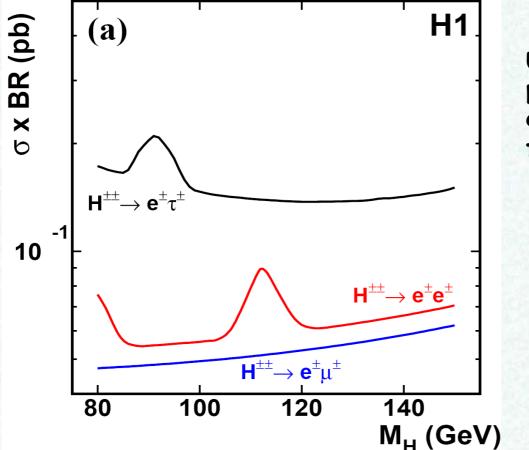
Double charged Higgs

Selection:

- √Data: HERA-I L=118 pb-1
- √ee, eµ: based on multi-lepton analysis
- \checkmark et with t->e,µ and hadrons
- \checkmark 2 high-Pt leptons with the same charge as a beam lepton

✓Reconstruct inv. mass Higgs candidates - M_{II}

Results:


<u>M_{II}>65 GeV</u>

	Obs	SM exp.
ee	3	2.45 ±0.11
еµ	1	4.17± 0.44
ет	1	21+05

<u>M_{||}>100 GeV</u>

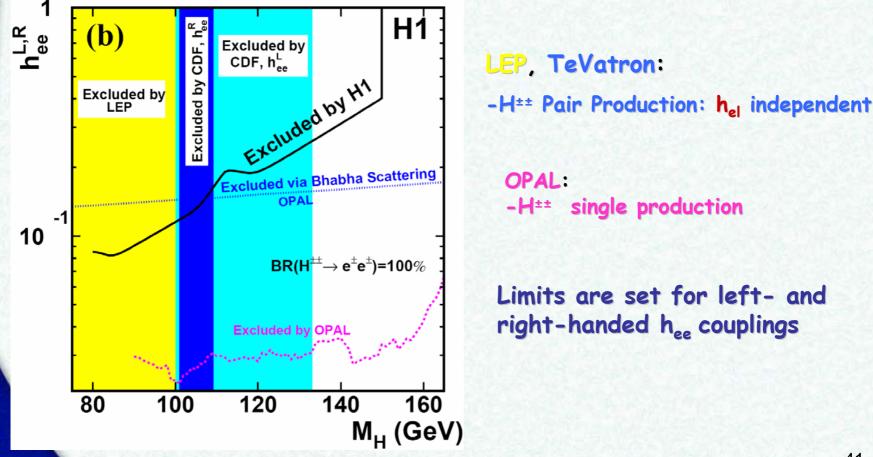
Only one ee event satisfies the final selection createria No evidence for H^{±±} => set limits

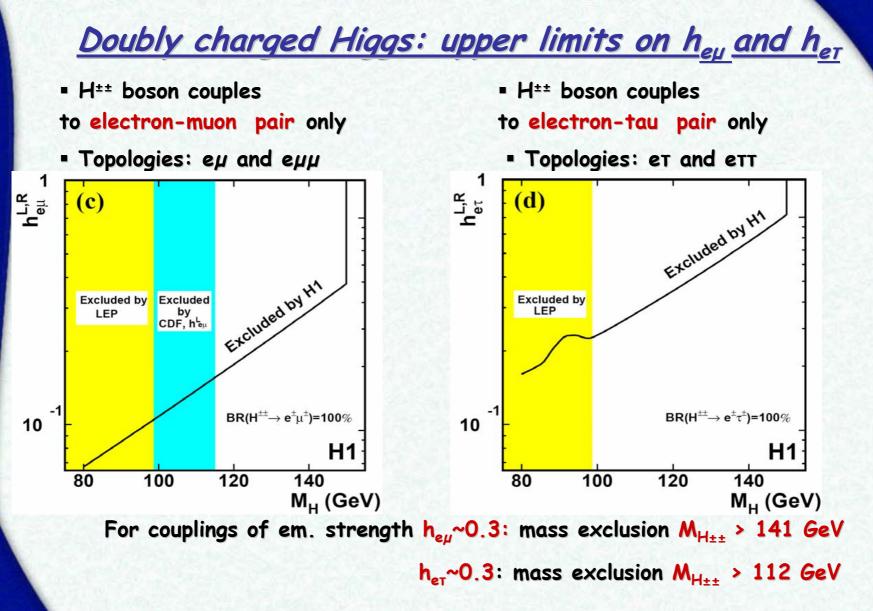
Double charged Higgs: results

Upper limits for H^{±±} production at 95%C.L. derived by modified frequentist method

 $H^{\pm\pm} \rightarrow e^{\pm}T^{\pm}$

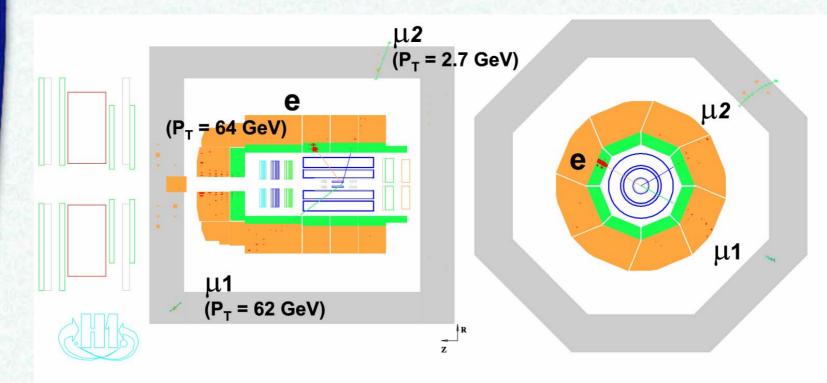
 $H^{\pm\pm} \longrightarrow e^{\pm}e^{\pm}$

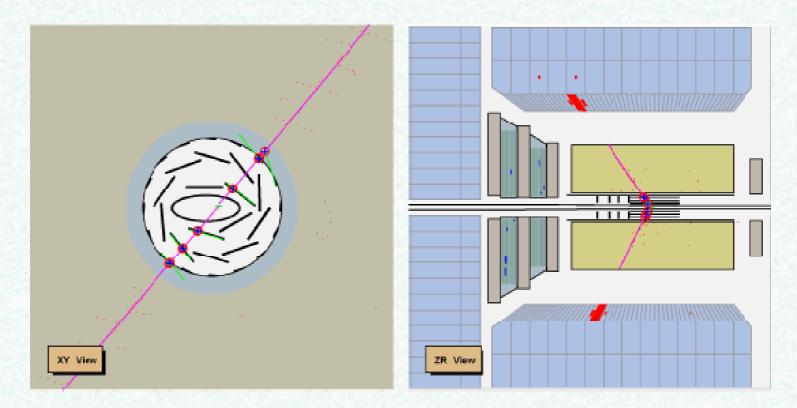

 $H^{\pm\pm} \rightarrow e^{\pm}\mu^{\pm}$


Best sensitivity: σxBr(h_{eµ})<0.05 pb

Double charged Higgs: upper limits on hee

H^{±±} boson couples to <u>electron-electron</u> pair only


Topologies: ee and eee (excess was observed in HERA I data)


HERA limits extend beyond LEP, TeVatron reach

x



Mass = 100.8 GeV, $Pt^{e1} = 50.4$ GeV, $Pt^{e2} = 50.0$ GeV, $\theta_{e1} = 1.12(rad), \theta_{e2} = 0.97(rad).$

>H1 results for ee and eee channels (HERA-I data)

Distribution of inv. Mass of 2 highest Pt electrons

General good agreement with SM
Interesting events at Mee >100 GeV

Selection	Data	SM	Pair Production (GRAPE)	DIS + Compton
ʻ2 e" $M_{12} > 100 \ {\rm GeV}$	3	0.30 ± 0.04	0.21 ± 0.03	0.09 ± 0.02
"3e" $M_{12} > 100 \ {\rm GeV}$	3	0.23 ± 0.04	0.23 ± 0.03	< 0.02 (95% C.L.)

