Flavor physics in the LHC era

Zoltan Ligeti

Lawrence Berkeley Lab

Flavor physics in the LHC era Zoltan Ligeti

Lawrence Berkeley Lab

- Introduction
- Current status: sizable NP contributions allowed
- Some key probes at LHCb and super-(KEK)B
- High- p_T flavor physics
- Conclusions

Why is flavor physics interesting?

- SM flavor problem: hierarchy of masses and mixing angles; why ν 's are different
- Empirical evidence that SM is incomplete: baryon asymmetry, dark matter, neutrino mass — at least two related to flavor
- NP flavor problem: TeV scale (hierarchy problem) \ll flavor & CPV scale

$$\epsilon_{K}: \frac{(s\bar{d})^{2}}{\Lambda^{2}} \Rightarrow \Lambda \gtrsim 10^{4} \,\mathrm{TeV}, \quad \Delta m_{B}: \frac{(b\bar{d})^{2}}{\Lambda^{2}} \Rightarrow \Lambda \gtrsim 10^{3} \,\mathrm{TeV}, \quad \Delta m_{B_{s}}: \frac{(b\bar{s})^{2}}{\Lambda^{2}} \Rightarrow \Lambda \gtrsim 10^{2} \,\mathrm{TeV}$$

- Many extensions of the SM have new sources of CP and flavor violation
- The observed baryon asymmetry of the Universe requires CPV beyond the SM Not necessarily in flavor changing processes, nor necessarily in quark sector Flavor suppression destroys KM baryogenesis; flavor matters for leptogenesis
- Flavor sector can be tested a lot better, many NP models have observable effects

The name of the game in the LHC era

- The question has been who sees NP first; once it's seen, how to understand it? [Assume the LHC sees more than a Higgs ...]
- Concentrate on flavor physics topics where sensitivity can improve significantly (by an order of magnitude, or at least a factor of many)
 - Skip $B \to X_s \gamma$ rate, near "hitting the theory wall" (best bound on many models) ... some tension between $\sin 2\beta$ and $|V_{ub}|$ [emphasized, e.g., by UTfit]
 - $...>3\sigma$ tension between LQCD f_{D_s} and $D_s^+ \to \ell^+ \nu$ [Dobrescu & Kronfeld, arXiv:0803.0512]
 - Many measurements with complementary sensitivity will improve a lot
 - If all flavor effects < 1% in your favorite model (what is it?), I'll have little to say
- Lack of a "flavor theory" there isn't an obviously right / natural way for TeV-scale NP to duplicate GIM and CKM suppressions

SUSY contributions to $K^0 - \overline{K}^0$ mixing

$$\frac{(\Delta m_K)^{\text{SUSY}}}{(\Delta m_K)^{\text{exp}}} \sim 10^4 \left(\frac{1 \text{ TeV}}{\tilde{m}}\right)^2 \left(\frac{\Delta \tilde{m}_{12}^2}{\tilde{m}^2}\right)^2 \text{Re}\left[(K_L^d)_{12}(K_R^d)_{12}\right]$$

 $K_{L(R)}^d$: mixing in gluino couplings to left-(right-)handed down quarks and squarks Constraint from ϵ_K : $10^4 \operatorname{Re}\left[(K_L^d)_{12}(K_R^d)_{12}\right] \Rightarrow 10^6 \operatorname{Im}\left[(K_L^d)_{12}(K_R^d)_{12}\right]$

- Classes of models to suppress each factors
 - (i) Heavy squarks: $\tilde{m} \gg 1 \,\mathrm{TeV}$ (e.g., split SUSY)
 - (ii) Universality: $\Delta m^2_{\tilde{O},\tilde{D}} \ll \tilde{m}^2$ (e.g., gauge mediation)
 - (iii) Alignment: $|(K_{L,R}^d)_{12}| \ll 1$ (e.g., horizontal symmetries)
- All SUSY models incorporate some of the above

Where are we now?

The standard model CKM fit

- Very impressive accomplishment
- The level of agreement between the various measurements is often misinterpreted
- Plausible TeV scale NP scenarios, consistent with all low energy data, w/o minimal flavor violation (MFV)
- CKM is inevitable; the question is not if it's correct, but is it sufficient?

New Physics in FCNC processes

Many operators for $b \rightarrow s$ transitions — no simple parameterization of NP

- $V_{td, ts}$ only measurable in loops; likely also subleading couplings of new particles
- Isolating modest NP contributions requires many measurements
 Compare NP-independent (tree) with NP-dependent (loop) processes

Constraints on NP in B_d^0 mixing

Overconstraining ("redundant") measurements are crucial to bound new physics

Only the SM-like region is allowed,

 $NP \sim SM$ is still allowed; Think "MFV": even in the presence of NP in mixing $h \sim (4\pi v / \Lambda_{\text{flav.}})^2$; is $\Lambda_{\text{flav.}} \gg \Lambda_{\text{EWSB}}$?

10-20% non-SM contributions to most loop-mediated transitions are still possible

 B_s mixing — Δm_s

• $B_s^0 - \overline{B}_s^0$ oscillate 25 times on average before they decay — challenge to measure

B_s mixing phase — $\sin 2eta_s$

- Next key measurement: time dep. *CP* asymmetry in $B_s \to \psi \phi$ (as clean as $\sin 2\beta$) In the SM: $\beta_s = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*) = 0.019 \pm 0.001$
- CDF & DØ disfavor large negative values:

Averaging complicated due to different assumptions, hopefully fixed by summer

Testing a "squashed" UT:

The *D* meson system

- Complementary to K, B: CPV, FCNC both GIM & CKM suppressed \Rightarrow tiny in SM
 - 2007: signal for mixing $> 5\sigma$ [HFAG combination]
 - Only meson mixing generated by down-type quarks (SUSY: up-type squarks)
 - SM suppression: Δm_D , $\Delta \Gamma_D \lesssim 10^{-2} \Gamma$, since doubly-Cabibbo-suppressed and vanish in flavor SU(3) limit
 - CPV (mixing or direct) $\gg 10^{-3}$ would be sign of NP
 - To do: Precise values of Δm and $\Delta \Gamma$? Is CPV absent in mixing and decays? (not yet known if $|q/p| \simeq 1$)
- Particularly interesting for SUSY: Δm_D and $\Delta m_K \Rightarrow$ if first two squark doublets are within LHC reach, they must be quasi-degenerate (alignment alone not viable)

The old/new $B \rightarrow K\pi$ puzzle

(Annihilation not shown) [Belle, Nature 452, 332 (2008)]

SCET / factorization predicts: $\arg(C/T) = \mathcal{O}(\Lambda_{\text{QCD}}/m_b)$ and $A + P_{ew}$ small

- A: huge fluctuation, breakdown of 1/m exp., missing something subtle, new phys.
- No similarly transparent problem with branching ratios, e.g., Lipkin sum rule looks OK by now: $2\frac{\bar{\Gamma}(B^- \to \pi^0 K^-) + \bar{\Gamma}(\overline{B}{}^0 \to \pi^0 K^0)}{\bar{\Gamma}(B^- \to \pi^- \overline{K}{}^0) + \bar{\Gamma}(\overline{B}{}^0 \to \pi^+ K^-)} = 1.07 \pm 0.05$ (should be near 1)

Forthcoming progress

Questions we hope to gain insights on

- The 3rd generation may differ from the 1st and 2nd by more than we know so far Large top Yukawa
 maybe non-universal coupling to EWSB and NP sector
 Want to compare 3rd–1st and 3rd–2nd generation data with precision kaon data
- Many processes have different sensitivities to various NP scenarios
 In SM: CPV only in flavor changing, charged current interactions of quarks With NP: possible in flavor diagonal processes, neutral currents, in lepton sector

Does new physics give rise to operators forbidden (highly suppressed) in the SM? E.g., $O_7 = \bar{s} \sigma^{\mu\nu} F_{\mu\nu} P_R b$ vs. $O'_7 = \bar{s} \sigma^{\mu\nu} F_{\mu\nu} P_L b$

• Try to distinguish NP scenarios: One / many sources of CPV? Only in CC interactions? Couples to up / down sector? 3rd / all generations? $\Delta F = 2$ and / or 1?

$\sin 2eta_{ m eff}$, lpha, γ — large improvements possible

Some LHCb highlights / expectations

• After Δm_s measurement, large NP contribution to B_s^0 mixing is still allowed

LHCb will probe B_s sector at a level comparable to B_d

- $B_s \rightarrow \mu^+ \mu^-$ ($\propto \tan^6 \beta$), search for $B_d \rightarrow \mu^+ \mu^-$, other rare / forbidden decays
- 10^{4-5} events in $B \to K^{(*)}\ell^+\ell^-$, $B_s \to \phi\gamma$, ... test Dirac structure, BSM op's
- γ from $B_s \to D_s^{\pm} K^{\mp}$ and other modes, α from $\rho \pi$ (probably super-(KEK)B wins)
- Precisely measure τ_{Λ_b} affects how much we trust $\Delta\Gamma_{B_s}$ calculation, etc.

Skipping $\mu ightarrow e \gamma$ and $K ightarrow \pi u ar{ u}$

• $\mu \rightarrow e\gamma$: MEG (PSI) sensitivity to $\sim 10^{-13}$

 $\mu N \rightarrow eN$: PRISM/PRIME (J-PARC) sensitivity to $\sim 10^{-17}$ (and maybe project-X)

• $K \to \pi \nu \overline{\nu}$: Theoretically clean, but small rates $\mathcal{B} \sim 10^{-10} (K^{\pm}), 10^{-11} (K_L)$

	$(\lambda^5 m_t^2) + i (\lambda^5 m_t^2)$	t: CKM suppressed
$\mathcal{A}\propto \langle$	$(\lambdam_c^2)+i(\lambda^5m_c^2)$	c : GIM suppressed
	$(\lambda \Lambda_{ m QCD}^2)$	u : GIM suppressed

So far 3 events: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.47^{+1.30}_{-0.89}) \times 10^{-10}$ [BNL E787/E949] Need more statistics for precision tests (rates also $\propto A^4 \sim |V_{cb}|^4$)

Proposals: CERN NA62: $K^+ \rightarrow \pi^+ \nu \bar{\nu} \sim 60$ events/yr, 2011–2013 FNAL: get about a thousand (few hundred) events with(out) project-X KEK E391a & J-PARC E14

Lepton flavor violation (in τ decays)

• $\mu \to e\gamma$ vs. $\tau \to \mu\gamma$ (few $\times 10^{-9}$) $\mathcal{B}(\tau \to \mu \gamma) / \mathcal{B}(\mu \to e \gamma) \sim 3 \times 10^3$

In many models best bet is $\mu \to e\gamma$, but this is model dependent, many exceptions

•
$$\tau^- \rightarrow \ell_1^- \ell_2^- \ell_3^+$$
 (few $\times 10^{-10}$) vs. $\tau \rightarrow \mu \gamma$
Consider operators: $\bar{\tau}_R \sigma_{\alpha\beta} F^{\alpha\beta} \mu_L$, $(\bar{\tau}_L \gamma^{\alpha} \mu_L) (\bar{\mu}_L \gamma_{\alpha} \mu_L)$
Suppression by α_{em} opposite in two cases \Rightarrow model dependent which process gives the best sensitivity

Super <i>B</i> sensitivity with 75 ab^{-1}						
Process	Sensitivity					
$\mathcal{B}(\tau \to \mu \gamma)$	2×10^{-9}					
$\mathcal{B}(\tau \to e \gamma)$	2×10^{-9}					
$\mathcal{B}(\tau \to \mu \mu \mu)$	2×10^{-10}					
$\mathcal{B}(\tau \to eee)$	2×10^{-10}					

• $\mu \to e\gamma$ and $(g-2)_{\mu}$ operators are very similar: $\frac{m_{\mu}}{\Lambda^2} \bar{\mu} \sigma_{\alpha\beta} F^{\alpha\beta} e$, $\frac{m_{\mu}}{\Lambda^2} \bar{\mu} \sigma_{\alpha\beta} F^{\alpha\beta} \mu$ If coefficients comparable, $\mu \rightarrow e\gamma$ gives much stronger bound If $(g-2)_{\mu}$ is due to NP, large hierarchy of coefficients (\Rightarrow model building lessons)

Rare (semi)leptonic FCNC *B* decays

Important probes of new physics

- $-B \rightarrow X_s \gamma$: Best $m_{H^{\pm}}$ limits in 2HDM in SUSY many parameters
- $-B \rightarrow X_{s}\ell^{+}\ell^{-}$ or $K^{(*)}\ell^{+}\ell^{-}$: bsZ penguins, SUSY, right handed couplings

$(c - c \ or \ \mu)$									
Decay	\sim SM rate	physics examples							
$B o s\gamma$	3×10^{-4}	$ V_{ts} $, H^{\pm} , SUSY							
B ightarrow au u	1×10^{-4}	$f_B V_{ub} ,H^\pm$							
$B \to s \nu \nu$	4×10^{-5}	new physics							
$B \to s \ell^+ \ell^-$	$6 imes 10^{-6}$	new physics							
$B_s \to \tau^+ \tau^-$	1×10^{-6}	\Downarrow							
$B \to s \tau^+ \tau^-$	5×10^{-7}								
$B ightarrow \mu u$	5×10^{-7}								
$B_s o \mu^+ \mu^-$	4×10^{-9}								
$B \to \mu^+ \mu^-$	2×10^{-10}								

A crude quide $(\ell - e \text{ or } \mu)$

Replacing $b \rightarrow s$ by $b \rightarrow d$ costs a factor ~ 20 (in SM); interesting to test in both: rates, CP asymmetries, etc.

In $B \rightarrow q l_1 l_2$ decays expect 10–20% K^*/ρ , and 5–10% K/π (model dept)

Many interesting modes will first be seen at LHCb and/or super-(KEK)B

Some of the theoretically cleanest - $(\nu, \tau, \text{ inclusive})$ only possible at e^+e^-

Flavor @ high p_T

LHC is a top factory: $1 t \overline{t}$ pair / sec

• Improve bounds on FCNC top decays by more than 10^3 ($\sigma_{t\bar{t}} \sim 800 \, \text{pb}$)

channel	$t \to Zu(c)$	$t \to \gamma u(c)$		$t \rightarrow gu(c)$		
			(3 jets)	(4 jets)	(combined)	
upper limit on BR $(L = 10 \text{ fb}^{-1})$	$3.4 imes 10^{-4}$	$6.6 imes 10^{-5}$	1.7×10^{-3}	$2.5 imes 10^{-3}$	1.4×10^{-3}	
upper limit on BR ($L = 100 \text{ fb}^{-1}$)	6.5×10^{-5}	1.8×10^{-5}	5.0×10^{-4}	8.0×10^{-4}	4.3×10^{-4}	1
	\uparrow	\uparrow	[Carvalho, C	astro, Onofre,	Veloso, ATLAS I	note, 200

• Probe FCNC top decays down to a few $\times 10^{-5}$ (now $> 10^{-2}$; SM $\sim 10^{-13}$)

FCNC top decays: $t \rightarrow c(u) \gamma, Z$

The NP involved in EWSB may induce new flavor violation observable in top decay

• Start from $SU(2) \times U(1)$ invariant operators

[Fox, ZL, Papucci, Perez, Schwartz, arXiv:0704.1482]

- EW precision tests: T, U, V
- *B* decays: semileptonic decays $(B \to X_{c,u} \ell \bar{\nu}, D^{(*)} \ell \bar{\nu}, \pi \ell \bar{\nu})$, mixing ($\Delta F = 2$) rare decays: $B \to X_s \gamma, B \to X_s \ell^+ \ell^-, B \to \rho \gamma, B \to \ell^+ \ell^-$
- Subtlety: tree-level measurements modified whole CKM fit has to be redone

Constraints on top FCNC operators

	C^u_{LL}	C^h_{LL}	C_{RL}^w	C^b_{RL}	C_{LR}^w	C^b_{LR}	C^u_{RR}
direct bound	9.0	9.0	6.3	6.3	6.3	6.3	9.0
LHC sensitivity	0.20	0.20	0.15	0.15	0.15	0.15	0.20
$B \to X_s \gamma, \ X_s \ell^+ \ell^-$	[-0.07, 0.036]	$\begin{bmatrix} -0.017, \ -0.01 \end{bmatrix} \\ \begin{bmatrix} -0.005, \ 0.003 \end{bmatrix}$	[-0.09, 0.18]	[-0.12, 0.24]	[-14, 7]	[-10, 19]	
$\Delta F = 2$	0.07	0.014	0.14				
semileptonic		-		_	[0.3, 1.7]	_	_
best bound	0.07	0.014	0.15	0.24	1.7	6.3	9.0
Λ for $C_i = 1$ (min)	$3.9~{\rm TeV}$	$8.3 \mathrm{TeV}$	$2.6{ m TeV}$	$2.0{ m TeV}$	$0.8{ m TeV}$	$0.4{ m TeV}$	$0.3{ m TeV}$
$\mathcal{B}(t \to cZ) \ (\max)$	7.1×10^{-6}	3.5×10^{-7}	3.4×10^{-5}	8.4×10^{-6}	$4.5\times\!10^{-3}$	$5.6 imes 10^{-3}$	0.14
$\mathcal{B}(t \to c \gamma) \ (\mathrm{max})$			1.8×10^{-5}	4.8×10^{-5}	$2.3\times\!10^{-3}$	$3.2\times\!10^{-2}$	_
LHC Window	Closed*	Closed*	Ajar	Ajar	Open	Open	Open

[Fox, ZL, Papucci, Perez, Schwartz, arXiv:0704.1482]

- *B* factory data constrain some of the operators beyond the LHC reach
- If top FCNC seen, LHC & B factories together can probe the NP responsible for it

Flavor effects at the TeV scale

- Questions: Does flavor matter? Can we access flavor at high p_T ?
- Some flavor aspects of LHC:
 - $p = g + u, d, s, c, b, \bar{u}, \bar{d}, \bar{s}, \bar{c}, \bar{b}$ has flavor
 - Hard to bound flavor properties of new particles (e.g., $Z' \rightarrow b\bar{b}$ vs. $Z' \rightarrow b\bar{s}$?)
 - Little particle ID: b (displaced vertex), t (which p_T range?), and all the others
- What flavor data the LHC can give us:
 - Spectrum (degeneracies)
 - Information on some (dominant?) decay widths
 - Production cross sections

Minimal flavor violation (MFV)

- How strongly can effects of NP at scale Λ_{NP} be (sensibly) suppressed?
- SM global flavor symmetry $U(3)_Q \times U(3)_u \times U(3)_d$ broken by Yukawa's

$$\mathcal{L}_Y = -Y_u^{ij} \,\overline{Q_{Li}^I} \,\widetilde{\phi} \, u_{Rj}^I - Y_d^{ij} \,\overline{Q_{Li}^I} \,\phi \, d_{Rj}^I \qquad \qquad \widetilde{\phi} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \phi^*$$

- MFV: Assume Y's are the only source of flavor and CP violation (cannot demand all higher dimension operators to be flavor invariant and contain only SM fields)
 [Chivukula & Georgi '87; Hall & Randall '90; D'Ambrosio, Giudice, Isidori, Strumia '02]
- CKM and GIM (m_q) suppressions similar to SM; allows EFT-like analyses Imposing MFV, best constraints come from: $B \rightarrow X_s \gamma, \ B \rightarrow \tau \nu, \ B_s \rightarrow \mu^+ \mu^-, \ \Delta m_{B_s}, \ \Omega h^2, \ g - 2$, precision electroweak
- Even with MFV and TeV-scale NP, expect few % deviations from SM in B, D, K
- In some scenarios high- p_T LHC data may rule out MFV or make it more plausible

Some MFV predictions

- Spectra: $y_{u,d,s,c} \ll 1$, so there is an approximate $SU(2)_q^3$ symmetry Indeed, in GMSB, the first two generation squarks are quasi-degenerate
- Mixing: Only source is CKM matrix

$$V_{\rm CKM}^{\rm (LHC)} = \begin{pmatrix} 1 & 0.2 & 0 \\ -0.2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 \Rightarrow New particles decay to either 3rd or non-3rd generation quarks, but not to both

- How to test MFV at the LHC in specific models with an extended particle content [E.g.: Grossman, Nir, Thaler, Volansky, Zupan, arXiv:0706.1845]
- Emerging non-MFV models w/ interesting flavor structure, consistent with all data

Hitchhiker's guide to recent flavor models

- Models with hierarchical fermion wave functions yield partial alignment of NP flavor violation with Yukawas in down sector (NMFV, problems w/ ε_K) [Agashe et al., hep-ph/0509117; Bona et al., arXiv:0707.0636]
 Party in up sector? CPV in D mixing & decay, D → πℓ+ℓ⁻, FCNC t decays, etc.
 e.g., RS [Agashe, Perez, Soni, hep-ph/0408134; Davidson, Isidori, Uhlig, arXiv:0711.3376; Csaki, Falkowski, Weiler, arXiv:0804.1954]
- Down-quark alignment 5D MFV \neq 4D MFV (more BSM in MFV than usual lore) [Fitzpatrick, Perez, Randall, arXiv:0710.1869]
- Suppression from heavy Dirac-gauginos (gluinos) \Rightarrow OK with low energy observables (ϵ_K ?), still plenty of high- p_T flavor violation [Kribs, Poppitz, Weiner, arXiv:0712.2039]
- Allow for modest subleading flavor-non-universal contributions in a natural way; maybe easiest to discover in slepton flavor violation

[Feng et al., arXiv:0712.0674; Nomura, Papucci, Stolarski, arXiv:0712.2074]

Expect more on lepton flavor models

[Cirigliano *et al.*, hep-ph/0507001; Chen, Yu, arXiv:0804.2503]

Implications for mass reconstructions

Flavor (i.e., generation) off-diagonal rates can be $\mathcal{O}(10\%)$ and even more

energy data, incl. $b \rightarrow s\gamma$

Table 2. Branching ratios (in %) of *u*-type squarks for the point specified in Table 1

	$\tilde{\chi}_1^0 c$	$ ilde{\chi}_1^0 t$	$\tilde{\chi}_2^0 c$	$ ilde{\chi}_2^0 t$	$ ilde{\chi}_{3}^{0}c$	$ ilde{\chi}_3^0 t$	$ ilde{\chi}_4^0 c$	$ ilde{\chi}_4^0 t$	$\tilde{\chi}_1^+ s$	$\tilde{\chi}_1^+ b$	$ ilde{\chi}_2^+s$	$ ilde{\chi}_2^+ b$
\tilde{u}_1	4.7	18	5.2	9.6	6×10^{-3}	0	0.02	0	11.3	46.4	2×10^{-3}	4.7
\tilde{u}_2	19.6	1.1	0.4	17.5	2×10^{-2}	0	6×10^{-2}	0	0.5	57.5	3×10^{-3}	2.9
\tilde{u}_3	7.3	3.7	20	1.4	6×10^{-2}	0	0.6	0	40.3	3.1	1	18.5
\tilde{u}_6	5.7	0.4	11.1	5.3	4×10^{-2}	5.7	0.6	13.2	22.9	13.1	0.6	8.0

Table 3. Branching ratios (in %) of *d*-type squarks for the point specified in Table 1

 $\tilde{\chi}_1^0 s$ $\tilde{\chi}_1^0 b$ $\tilde{\chi}_{2}^{0}s$ Sizable off-diagonal rates still $\tilde{\chi}_2^0 b$ $\tilde{\chi}_{3}^{0}s$ $\tilde{\chi}_{3}^{0}b$ $\tilde{\chi}_4^0 s$ $\tilde{\chi}_4^0 b$ $\tilde{\chi}_1^- b$ $\tilde{\chi}_1^- t$ $\tilde{\chi}_2^- b$ $\tilde{\chi}_2^- t$ \tilde{d}_1 8.4 30.6 2×10^{-2} 1.25.71.50.20.916.634.10.60 \tilde{d}_2 7×10^{-2} 17.45.85.115.709.219.7 7.4 0.39.7 0.70 allowed, consistent with low \tilde{d}_4 5×10^{-2} 14.721.711.32.210.60.58.4 22.13.61.20 \tilde{d}_6 3.4 1.7 0.520.56.90.91.21.340.310.20.111.1

[E.g.: Hurth & Porod, hep-ph/0311075]

Could complicate determination of sparticle masses from kinematical endpoints in cascade decays — most LHC studies assume MFV, i.e., $\tilde{m}_1^2 = \tilde{m}_2^2 \neq \tilde{m}_3^2$

 $\tilde{u}_1 W^-$

0

8.8

3.4

1.8

Final comments

Summary — low energy

- The SM flavor sector has been tested with impressive & increasing precision KM phase is the dominant source of *CP* violation in flavor changing processes
- Measurements probe scales > TeV; sensitivity limited by statistics, not theory
- New physics in most FCNC processes may still be $\gtrsim 10\%$ of the SM contributions
- Tests of 3-2 generation transitions will approach precision of 3-1, approaching 2-1 LHCb will constrain B_s sector at a level similar to B_d
- Sensitivity to lepton flavor violation will improve by 10–1000 in many channels
- If no NP is seen in flavor sector, similar constraints as LEP tests of gauge sector

Summary — high energy

- The consistency of precision flavor measurements at $E_{exp} \sim \text{few GeV}$ with the SM poses problems for NP at $\Lambda_{NP} \sim \text{few TeV}$
- If new particles discovered, their flavor properties can teach us about ≫ TeV NP: masses (degeneracies), decay rates (flavor decomposition), cross sections
- LHC data may rule out MFV or make it more plausible (so can LHCb & super-*B*)
- Direct and indirect probes of NP:
 - synergy in reconstructing the fundamental theory (distinguish between models)
 - complementary coverage of param. space (subleading couplings, \gg TeV scales)
- Flavor physics will provide important clues to model building in the LHC era

Backup slides

Spectacular track record

- Flavor and *CP* violation are excellent probes of new physics
 - β -decay predicted neutrino (Pauli)
 - Absence of $K_L \rightarrow \mu \mu$ predicted charm (GIM)
 - ϵ_K predicted 3rd generation (KM)
 - Δm_K predicted m_c (GL)
 - Δm_B predicted large m_t
- If there is NP at the TEV scale, it must have a special flavor and CP structure
 Did we misinterpret the fine-tuning problem? Will the LHC find just a SM Higgs?
- If $\Lambda_{CPV} \gg \Lambda_{EW}$: no observable effects in *B* decays \Rightarrow precise SM measurements If $\Lambda_{CPV} \sim \Lambda_{EW}$: sizable effects possible \Rightarrow could get detailed information on NP

Parameterization of NP in mixing

• Assume: (i) 3×3 CKM matrix is unitary; (ii) Tree-level decays dominated by SM NP in mixing — two new param's for each neutral meson:

$$M_{12} = \underbrace{M_{12}^{\text{SM}} r_q^2 e^{2i\theta_q}}_{\text{easy to relate to data}} \equiv \underbrace{M_{12}^{\text{SM}} (1 + h_q e^{2i\sigma_q})}_{\text{easy to relate to models}}$$

• Observables sensitive to $\Delta F = 2$ new physics:

$$\begin{split} \Delta m_{Bq} &= r_q^2 \,\Delta m_{Bq}^{\rm SM} = |1 + h_q e^{2i\sigma_q} |\Delta m_q^{\rm SM} \\ S_{\psi K} &= \sin(2\beta + 2\theta_d) = \sin[2\beta + \arg(1 + h_d e^{2i\sigma_d})] \\ S_{\rho\rho} &= \sin(2\alpha - 2\theta_d) \\ S_{B_s \to \psi \phi} &= \sin(2\beta_s - 2\theta_s) = \sin[2\beta_s - \arg(1 + h_s e^{2i\sigma_s})] \\ A_{\rm SL}^q &= {\rm Im}\left(\frac{\Gamma_{12}^q}{M_{12}^q r_q^2 e^{2i\theta_q}}\right) = {\rm Im}\left[\frac{\Gamma_{12}^q}{M_{12}^q (1 + h_q e^{2i\sigma_q})}\right] \\ \Delta \Gamma_s^{CP} &= \Delta \Gamma_s^{\rm SM} \cos^2(2\theta_s) = \Delta \Gamma_s^{\rm SM} \cos^2[\arg(1 + h_s e^{2i\sigma_s})] \end{split}$$

• Tree-level constraints unaffected: $|V_{ub}/V_{cb}|$ and γ (or $\pi - \beta - \alpha$)

Flavor and *CP* violation in SUSY

Superpotential:

[Haber, hep-ph/9709450]

$$W = \sum_{i,j} \left(Y_{ij}^{u} H_{u} Q_{Li} \bar{U}_{Lj} + Y_{ij}^{d} H_{d} Q_{Li} \bar{D}_{Lj} + Y_{ij}^{\ell} H_{d} L_{Li} \bar{E}_{Lj} \right) + \mu H_{u} H_{d}$$

Soft SUSY breaking terms:

$$(S = \tilde{Q}_L, \tilde{\bar{D}}_L, \tilde{\bar{U}}_L, \tilde{L}_L, \tilde{\bar{E}}_L)$$

$$\mathcal{L}_{\text{soft}} = -\left(A^u_{ij}H_u\tilde{Q}_{Li}\tilde{\bar{U}}_{Lj} + A^d_{ij}H_d\tilde{Q}_{Li}\tilde{\bar{D}}_{Lj} + A^\ell_{ij}H_d\tilde{L}_{Li}\tilde{\bar{E}}_{Lj} + BH_uH_d\right)$$

$$-\sum_{\text{scalars}}(m_S^2)_{ij}S_i\bar{S}_j - \frac{1}{2}\left(M_1\tilde{B}\tilde{B} + M_2\tilde{W}\tilde{W} + M_3\tilde{g}\tilde{g}\right)$$

 $3 Y^{f}$ Yukawa and $3 A^{f}$ matrices — $6 \times (9 \text{ real} + 9 \text{ imaginary})$ parameters $5 m_{S}^{2}$ hermitian sfermion mass-squared matrices — $5 \times (6 \text{ real} + 3 \text{ imag.})$ param's

Gauge and Higgs sectors: $g_{1,2,3}$, θ_{QCD} , $M_{1,2,3}$, $m_{h_{u,d}}^2$, μ , B - 11 real + 5 imag.

Parameters: (95 + 74) - (15 + 30) from $U(3)^5 \times U(1)_{PQ} \times U(1)_R \rightarrow U(1)_B \times U(1)_L$

• 44 CPV phases: CKM + 3 in M_1, M_2, μ (set $\mu B^*, M_3$ real) + 40 in mixing matrices of fermion-sfermion-gaugino couplings (+80 real param's)

Identities, neglecting CPV in mixing (not too important, surprisingly poorly known)

K: long-lived = CP-odd = heavy

 $D: \text{long-lived} = CP \text{-odd} (3.5\sigma) = \text{light} (2\sigma)$

 B_s : long-lived = CP-odd (1.5σ) = heavy in the SM

 B_d yet unknown, same as B_s in SM for $m_b \gg \Lambda_{
m QCD}$

Before 2006, we only knew experimentally the kaon line above

• We have learned a lot about meson mixings — good consistency with SM

	$x = \Delta m$	n/Γ	y :	$=\Delta\Gamma/(2\Gamma)$	$A = 1 - q/p ^2$		
	SM theory	data	SM theory data		SM theory	data	
B_d	$\mathcal{O}(1)$	0.78	$\left y_s \left V_{td} / V_{ts} \right ^2 ight ^2$	-0.005 ± 0.019	$-(5.5\pm1.5)10^{-4}$	$(-4.7 \pm 4.6)10^{-3}$	
B_s	$ x_d V_{ts} / V_{td} ^2$	25.8	$\mathcal{O}(-0.1)$	-0.05 ± 0.04	$-A_d V_{td}/V_{ts} ^2$	$(0.3 \pm 9.3)10^{-3}$	
K	$\mathcal{O}(1)$	0.948	-1	-0.998	$4\mathrm{Re}\epsilon$	$(6.6 \pm 1.6)10^{-3}$	
D	< 0.01	< 0.016	$\mathcal{O}(0.01)$	$y_{CP} = 0.011 \pm 0.003$	$< 10^{-4}$	$\mathcal{O}(1)$ bound only	

Some of the key CPV measurements

- β : $S_{\psi K_S} = -\sin[(B \text{mix} = -2\beta) + (\text{decay} = 0) + (K \text{mix} = 0)] = \sin 2\beta$ World average: $\sin 2\beta = 0.681 \pm 0.025 - 4\%$ precision (theory uncertainty <1%)
- $S_{b\to s}$ "penguin" dominated modes: NP can enter in mixing (as $S_{\psi K}$), also in decay Earlier hints of deviations reduced: $S_{\psi K} - S_{\phi K_S} = 0.29 \pm 0.17$
- α : $S_{\pi^+\pi^-} = \sin[(B \min = 2\beta) + (\overline{A}/A = 2\gamma + ...)] = \sin[2\alpha + \mathcal{O}(P/T)]$ CLEO 1997: $K\pi$ large, $\pi\pi$ small $\Rightarrow P_{\pi\pi}/T_{\pi\pi}$ large \Rightarrow pursue all $\rho\rho$, $\rho\pi$, $\pi\pi$ modes
- γ : interference of tree level $b \to c\bar{u}s \ (B^- \to D^0K^-)$ and $b \to u\bar{c}s \ (B^- \to \overline{D}^0K^-)$ Several difficult measurements $(D \to K_S \pi^+ \pi^-, D_{CP}, \text{CF vs. DCS})$
- Need a lot more data to approach irreducible theoretical limitations

Exciting theoretical developments

- *B* physics has been and continues to be fertile ground for theory developments
- HQET & OPE model independent description of certain exclusive and inclusive decays; nonperturbative matrix elements of higher dimensional operators are being extracted from the data, and used for precision measurements
- SCET developed to address complicated kinematic regions in *B* decays, new and simplified proofs of factorization theorems, some new results for power suppressed processes; may have important applications for jets at the LHC as well
- Lattice QCD in principle, fully model independent nonperturbative information No longer need model dependent assumptions for practical applications
 Large investment worldwide, flavor physics provides some of the most important applications and testing grounds

