

Scott Wilbur University of Chicago on behalf of the CDF Collaboration

Scott Wilbur University of Chicago $\gamma + b + j + \not\!\!E_T$ Search PHENO 2008

1

Introduction

- Signature-based search: no specific model
- One possible contributor: chargino - neutralino production (SUSY)
- No SM background in this channel
- We agressively cut away mismeasured events

The Detector

Event Selection

- Required a photon with $E_T > 25 \text{ GeV}$
- Required at least two jets with $E_T > 15 \text{ GeV}$
- Required at least one jet tagged as a *b* quark
- Required $\Delta \phi$ between jet and $\not\!\!\!E_T$ at least 0.3 radians

Fake Photon Background

- $\pi^0 \to \gamma \gamma$ can cause a jet to fake a photon
- For low-energy pions, the two photons hit a larger area in the strip chamber
- One photon has 65% chance to convert in preshower radiator, two have 85% chance for at least one to convert
- We get a statistical weight for each event: gives fake fraction in a large sample

Fake *b*-jet Background

- Tracks in a *b*-jet originate from a displaced vertex
- Other long-lived particles (Λ, K_s) or imperfect track reconstruction can fake a *b*jet
- We look at properties of each jet, determine chance of erroneously *b*-tagging it

We applied these weights to the (pretag) sample to get the fake b-tag background

- No SM process generates $\gamma + b + j + \not\!\!\!E_T$
- In these cases, $\not\!\!\!E_T$ will point along the mismeasured jet
- We cut away events where the $\not\!\!E_T$ is too close to a jet

	Real γ	Fake γ
Real b-tag	А	В
Fake b-tag	С	D

- A: Used Madgraph Monte Carlo
- **B** and **D**: Applied fake photon weight to tagged sample
- **C:** Applied mistag matrix and real photon weight to untagged sample

Monte Carlo Background

- Used Madgraph to generate $\gamma + b + \text{jets}$ and $\gamma + c + \text{jets}$ samples
- Used matching scheme to remove events that would double-count radiation
- Fit secondary vertex mass with contributions from γb , γc , and light flavor

• Used these numbers to normalize Monte Carlo

Monte Carlo Background

Predicted and Observed Events

Background	Predicted Standard	Statistical	Systematic
Source	Model Events	Uncertainty	Uncertainty
$\gamma + b + j$ MC	291	7	50
$\gamma + c + j$ MC	92	25	45
Fake b , Real γ	141	6	30
Fake γ	113	49	54

Predicted Events: 637 ± 54 (stat.) ± 128 (syst.)

Observed Events: 617

Mass of b + j

Mass of $\gamma + b$

Mass of $\gamma + b + j$

Scott Wilbur University of Chicago

Mass of b + j vs. mass of $\gamma + b + j$

Scott Wilbur University of Chicago

Future Work

How do we communicate a signature-based result to the theorists?

- We generate a "standard candle" $(p\overline{p} \to W^- Z \to e^- \overline{\nu}_e \ b \ \overline{b})$, with the e^- changed to a photon
- We use CDF detector simulation to find our expected signal from this process
- Theorists can run MC of any new model and of our standard candle
- They can then scale their MC so that their standard candle matches ours
- This will give our expected sensitivity to their new model

Conclusion

- We looked for anomalous production of $\gamma + b + j + \not\!\!\!E_T$
- We cut away mismeasured events to the extent that we could
- We found that the number of observed events was consistent with the standard model background expectation
- We found that all kinematic distributions were consistent with the standard model background

In short: we see no evidence of new physics in this channel.