

PHENO 08 – April 28, 2008

ZZ → Ilvv production with the DØ detector at the Tevatron collider

Gianluca Cerminara on behalf of the DØ collaboration

Overview

- ZZ production
 - why an interesting measurement
 - experimental challenge of the IIvv final state
- Event pre-selection
 - Iuminosity used for the measurement
 - "tight" quality leptons to reject backgrounds from fakes
- Instrumental background treatment
 - an alternative approach to missing E_{T} (MET) selection
- Physics background discrimination
- Results:
 - significance estimate
 - cross section measurement

ZZ production at hadron collider

- ZZ production last unobserved di-boson process at Tevatron
 - small cross-section
 - $\sigma(ZZ) = 1.4 \pm 0.1 \text{ pb} @ \sqrt{s} = 1.96 \text{ TeV}$

(J. M. Campbell and R. Ellis, Phys. Rev. D 60 (1999) 113006)

- interest of the measurement:
 - irreducible background to Higgs searches
 - no triple boson couplings in the SM \rightarrow possible new physics = anomalous couplings
- experimental challenge
 - 4-lepton \rightarrow clean signature but low statistics
 - $2l_{2\nu} \rightarrow$ higher branching ratio but also higher backgrounds

 Z/γ

Event pre-selection

- Data sample after data quality:
 - 2.2 fb⁻¹ in the di-electron and di-muon final states respectively
- Trigger selection: OR of single μ /e triggers.
- Lepton selection
- 2 muons ($|\eta|$ < 2) with :
 - p_T > 15 GeV
 - central track matched to stubs in the muon spectrometer
 - tight requirement on calorimeter and track scaled isolation

- 2 electrons (|η|<1.1 and 1.5<|η|< 2) with:
 - p_T > 15 GeV
 - calorimeter cluster matched to a central track
 - isolation requirement
 - multivariate discriminant for the shower shape

• high quality leptons \rightarrow high background rejection (W+jets)

G. Cerminara

PHENO 2008 - April 28 - 30, 2008 4

Selection of Z events

- require 70 < M_I < 110 GeV
- veto on additional lower quality leptons / isolated tracks
 - suppress WZ
- veto on the # of jets (≤ 2)
 - clean calorimeter events \rightarrow improve MET resolution

- ۲
 - no powerful discrimination of $Z \rightarrow II$ events
- No direct cut on MET but build a new variable (E_T):
 - sensitive to genuine p_{τ} imbalance
 - less sensitive to resolution effects

Selection based on p_T imbalance

- di-lepton p_{τ} decomposed with respect to the thrust axis
 - p_T balancing uses a metric which enhance the transverse component (less sensitive to lepton resolution)
- balance each component against recoil activity in the opposite hemisphere
 - calorimeter recoil (jets and calorimeter MET)
 - track recoil activity
- reduce imbalance to account for resolution effects

thrust axis

p_⊤1

a

<u>By construction</u> all uncertainty corrections reduce the imbalance

di-lepton p_T

 $p_{\tau}2$

a,

Reject instrumental backgrounds

Reject instrumental backgrounds

Event yield after the selection

	$\operatorname{di-electron}$	di-muon	
Sample	# of events	# of events	
$\overline{Z \to ll}$	0.40 ± 0.32	0.45 ± 0.25	
$Z \to \tau \tau$	0.36 ± 0.05	0.18 ± 0.04	
$ZZ \rightarrow llll$	0.010 ± 0.001	0.010 ± 0.001	
$t\bar{t}$	0.25 ± 0.03	0.14 ± 0.03	
$WZ \rightarrow l\nu ll$	1.05 ± 0.06	0.77 ± 0.06	
W + jets	3.22 ± 0.77	0.23 ± 0.15	
$WW \rightarrow l\nu l\nu$	9.67 ± 0.68	8.67 ± 0.62	
Tot MC bckg	14.87 ± 1.08	10.44 ± 0.69	
$ZZ \rightarrow ll \nu \nu$	3.81 ± 0.19	3.30 ± 0.17	
Tot MC	18.68 ± 1.09	13.73 ± 0.71	
data	25	17	

- $WW \rightarrow IvIv$ main irreducible background
- W+jets background \rightarrow normalization from data

Separate WW from ZZ

- Build a likelihood discriminant based on the following variables:
 - di-lepton invariant mass
 - leading lepton p_T
 - $\Delta \phi$ (leading lepton, di-lepton system)
 - $\cos(\theta^*)$ lepton (θ^* decay angle in the di-lepton rest frame)

Significance estimate

- Use output of likelihood discriminant to evaluate significance
 - negative log-likelihood ratio as test statistic
 - run signal + background (S+B) and background only (B only) pseudo-experiments
- Significance:
 - expected 1.8 σ (p-value = 0.0387)
 - observed 2.4 σ (p-value = 0.0082)
- Cross section measurement:
 - fit likelihood output with floating signal
 - determine fraction of signal (f) with respect to Z events (used for the normalization)

$$\sigma^{ZZ} = \sigma^Z \frac{A_Z}{A_{ZZ}} \frac{f N_{ZZ}^{MC}}{N_Z}$$

$$Z^{Z} = 2.1 \pm 1.1(stat.) \pm 0.4(sys.)$$
 pb

Systematic uncertainties

- Main systematics on significance estimate:
 - W+jet normalization from data (limited statistics)
 - diem: 3.2 ± 0.8 events dimu: 0.23 ± 0.15 events
 - WW and WZ theoretical cross-section
 - diem: 9.7±0.7 events
 dimu: 8.7±0.6 events
 - lepton resolution (shape uncertainty)

Main systematics on cross-section

- $Z \rightarrow$ II theoretical cross section +2% -5%
- Systematics on the A_z/A_{zz} acceptance ratio
 - modelling of the ZZ p_{τ} spectrum (3.6%)
 - modelling of the veto efficiencies (3%)
 - p.d.f. uncertainty (1.7%)
- Systematics accounted in the LLR through Gaussian smearing and Likelihood profiling

- 2.4 σ significance observed in the llvv channel
- measurement of the ZZ production cross section with the DØ experiment:
 - $\sigma^{ZZ} = 2.1 \pm 1.1(stat.) \pm 0.4(sys.)$ pb
 - compatible with the standard model prediction:
 - $\sigma^{ZZ} = 1.4 \pm 0.1 \text{ pb}$

(no evidence of anomalous ZZ production)

- CDF measurement (ZZ \rightarrow IIvv and ZZ \rightarrow 4I): $\sigma^{ZZ} = 1.4^{+0.7}_{-0.6}$ (stat.+sys.) pb
- New tool for the discrimination of real MET developed

The D0 detector

¥

Signal Significance

Channel breakdown

	di-electron		di-muon		combined	
	expected	observed	expected	observed	expected	observed
p-value	0.0753	0.1140	0.1100	0.0052	0.0387	0.0082
significance	+1.44	+1.21	+1.23	+2.57	+1.77	+2.40

References

- The DØ Collaboration, ZZ → IIvv production in ppbar collisions at √s =1.96 TeV, DØ note 5620 (2008). http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/EW/E24/
- J. M. Campbell and R. Ellis, *Update on vector pair production at hadron colliders*, Phys. Rev. D 60 (1999) 113006.
- The DØ Collaboration, Search for ZZ and $Z\gamma^*$ production in ppbar collisions at $\sqrt{s} = 1.96$ TeV and limits on anomalous ZZZ and $ZZ\gamma^*$ couplings, Phys. Rev. Lett. 100, 131801 (2008).
- The CDF Collaboration, *First Measurement of ZZ production in ppbar collisions at √s* =1.96 TeV, arXiv:0801.4806v1 (2008).