Comparing the Higgs Sector of Two HDM with the Scalar Sector of Linear Sigma Model with two Nonets

Sherif A. Moussa

Extension of PRD 68, 013008 (2003), in Collaboration with S. Nasri (UAEU), J. Renata and J. Schechter (SU)

Department of Mathematical Sciences, UAEU
Apr 28, 2008 HPENO 2008 MADISON

What Is Our Aim? Plan of the Talk

- For heavy Higgs, how we calculate scattering amplitude of $W^{+} W^{-} \rightarrow W^{+} W^{-}$.
- Plan of the Tlak
- Correspondence Between $\sigma \pi S U(2)_{L} \times S U(2)_{R}$ Linear Sigma Model and the Higgs Sector of $S U(2)_{L} \times U(1)_{Y}$ EW theory.
- K Matrix and LSM Unirization
- Application to the $\mathrm{SU}(2) \times \mathrm{U}(1)$ Electroweak Model and Equivelence Theorem $\operatorname{amp}\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right)=\operatorname{amp}\left(\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}\right)+\mathcal{O}\left(\frac{m_{W}}{E_{W}}\right)$
- Correspondence between $\sigma \pi, \sigma^{\prime} \pi^{\prime} S U(2)_{L} \times S U(2)_{R}$ Linear Sigma Model and the 2HDM.
- $\operatorname{amp}\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right)=\operatorname{amp}\left(\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}\right)+\mathcal{O}\left(\frac{m_{W}}{E_{W}}\right)$ in 2HDM with Custodial Symmetry (Under Progress)
- Summary

Linear Sigma Model and the Higgs Sector of SM

- In low Energy QCD the lagrangian is

$$
\begin{array}{r}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \boldsymbol{\pi} \cdot \partial^{\mu} \pi+\partial_{\mu} \sigma \partial^{\mu} \sigma\right)-V(\sigma, \boldsymbol{\pi}), \\
V(\sigma, \boldsymbol{\pi})=-\frac{\mu^{2}}{2}\left(\sigma^{2}+\pi^{2}\right)+\frac{\lambda}{4}\left(\sigma^{2}+\pi^{2}\right)^{2} \tag{2}
\end{array}
$$

Linear Sigma Model and the Higgs Sector of SM

- In low Energy QCD the lagrangian is

$$
\begin{gather*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \boldsymbol{\pi} \cdot \partial^{\mu} \pi+\partial_{\mu} \sigma \partial^{\mu} \sigma\right)-V(\sigma, \pi), \tag{1}\\
V(\sigma, \boldsymbol{\pi})=-\frac{\mu^{2}}{2}\left(\sigma^{2}+\pi^{2}\right)+\frac{\lambda}{4}\left(\sigma^{2}+\pi^{2}\right)^{2} \tag{2}
\end{gather*}
$$

- where sing of λ are choosen to ensure SSB, and

$$
\mathrm{F}_{\pi}=\sqrt{2}\langle\sigma\rangle ; \quad \mu^{2}=\frac{1}{2} m_{\sigma b}^{2}, \quad \lambda=\frac{m_{\sigma b}^{2}}{2\langle\sigma\rangle^{2}}
$$

Linear Sigma Model and the Higgs Sector of SM

- In low Energy QCD the lagrangian is

$$
\begin{gather*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \boldsymbol{\pi} \cdot \partial^{\mu} \pi+\partial_{\mu} \sigma \partial^{\mu} \sigma\right)-V(\sigma, \pi) \tag{1}\\
V(\sigma, \boldsymbol{\pi})=-\frac{\mu^{2}}{2}\left(\sigma^{2}+\pi^{2}\right)+\frac{\lambda}{4}\left(\sigma^{2}+\pi^{2}\right)^{2} \tag{2}
\end{gather*}
$$

- where sing of λ are choosen to ensure SSB, and

$$
\mathrm{F}_{\pi}=\sqrt{2}\langle\sigma\rangle ; \mu^{2}=\frac{1}{2} m_{\sigma b}^{2}, \quad \lambda=\frac{m_{\sigma b}^{2}}{2\langle\sigma\rangle^{2}}
$$

- The Higgs sector Φ can be written as

$$
\begin{equation*}
\Phi=\binom{i \pi^{+}}{\frac{\sigma-i \pi^{0}}{\sqrt{2}}} \tag{3}
\end{equation*}
$$

Linear Sigma Model and the Higgs Sector of SM

- In low Energy QCD the lagrangian is

$$
\begin{gather*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \boldsymbol{\pi} \cdot \partial^{\mu} \pi+\partial_{\mu} \sigma \partial^{\mu} \sigma\right)-V(\sigma, \pi), \tag{1}\\
V(\sigma, \boldsymbol{\pi})=-\frac{\mu^{2}}{2}\left(\sigma^{2}+\pi^{2}\right)+\frac{\lambda}{4}\left(\sigma^{2}+\pi^{2}\right)^{2} \tag{2}
\end{gather*}
$$

- where sing of λ are choosen to ensure SSB, and

$$
\mathrm{F}_{\pi}=\sqrt{2}\langle\sigma\rangle ; \mu^{2}=\frac{1}{2} m_{\sigma b}^{2}, \quad \lambda=\frac{m_{\sigma b}^{2}}{2\langle\sigma\rangle^{2}}
$$

- The Higgs sector Φ can be written as

$$
\begin{equation*}
\Phi=\binom{i \pi^{+}}{\frac{\sigma-i \pi^{0}}{\sqrt{2}}} \tag{3}
\end{equation*}
$$

- Lagrangian, Eq. (1) is written

$$
\begin{equation*}
\mathcal{L}=\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi+\mu^{2} \Phi^{\dagger} \Phi-\lambda\left(\Phi^{\dagger} \Phi\right)^{2} \tag{4}
\end{equation*}
$$

Here as notation $v=\langle\sigma\rangle=\frac{F_{\pi}}{\sqrt{2}}=0.0655$. In the EW theory, $v=0.246 \mathrm{TeV}$, about 2656 times the value in the low energy QCD

Unitarized LSM

- The contribution for $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}$coming from contact term, s channel and the crossed Higgs boson exchange.
- The $\mathrm{I}=\mathrm{J}=0$ partial wave amplitude at tree level is

$$
\begin{equation*}
\left[T_{0}^{0}\right]_{\text {tree }}(s)=\alpha(s)+\frac{\beta(s)}{m_{\sigma b}^{2}-s} \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
\alpha(s)= & \frac{\sqrt{1-\frac{4 m_{\pi}^{2}}{s}}}{32 \pi F_{\pi}^{2}}\left(m_{\sigma b}^{2}-m_{\pi}^{2}\right) \times \\
& {\left[-10+4 \frac{m_{\sigma b}^{2}-m_{\pi}^{2}}{s-4 m_{\pi}^{2}} \ln \left(\frac{\mathrm{~m}_{\sigma \mathrm{b}}^{2}+\mathrm{s}-4 \mathrm{~m}_{\pi}^{2}}{\mathrm{~m}_{\sigma \mathrm{b}}^{2}}\right)\right] } \tag{6}\\
\beta(s)= & \frac{3 \sqrt{1-\frac{4 m_{\pi}^{2}}{s}}}{16 \pi F_{\pi}^{2}}\left(m_{\sigma b}^{2}-m_{\pi}^{2}\right)^{2} \tag{7}
\end{align*}
$$

Unitarized LSM

- The S matrix given by

$$
\begin{equation*}
S_{0}^{0}(s)=1+2 i T_{0}^{0}(s) \tag{8}
\end{equation*}
$$

has some problems the Amplitude diversge at $s=m_{\sigma b}^{2}$.

- One solution is

$$
\begin{equation*}
\frac{1}{m_{\sigma b}^{2}-s} \longrightarrow \frac{1}{m_{\sigma b}^{2}-s-i m_{\sigma b} \Gamma} \tag{9}
\end{equation*}
$$

- We use K-Matrix unitrization

$$
\begin{equation*}
S_{0}^{0}(s)=\frac{1+i\left[T_{0}^{0}\right]_{\text {tree }}(s)}{1-i\left[T_{0}^{0}\right]_{\text {tree }}(s)} \tag{10}
\end{equation*}
$$

- Hence

$$
\begin{equation*}
T_{0}^{0}(s)=\frac{\left[T_{0}^{0}\right]_{\text {tree }}(s)}{1-i\left[T_{0}^{0}\right]_{\text {tree }}(s)} \tag{11}
\end{equation*}
$$

Unitarized LSM

Unitarized LSM

- Including the third flavour

PhysicsI Mass and Width of Sigma

- How nonperturpative LSM in low energy QCD

$$
\begin{equation*}
\lambda=\frac{m_{\sigma b}^{2}}{2 v^{2}} \gg 1 \tag{12}
\end{equation*}
$$

PhysicsI Mass and Width of Sigma

- How nonperturpative LSM in low energy QCD

$$
\begin{equation*}
\lambda=\frac{m_{\sigma b}^{2}}{2 v^{2}} \gg 1 \tag{12}
\end{equation*}
$$

- Taking $m_{\sigma b} \simeq 0.85$ we get $\lambda=42$, so it seems fair to say that the theory lies outside the perturbative region

PhysicsI Mass and Width of Sigma

- How nonperturpative LSM in low energy QCD

$$
\begin{equation*}
\lambda=\frac{m_{\sigma b}^{2}}{2 v^{2}} \gg 1 \tag{12}
\end{equation*}
$$

- Taking $m_{\sigma b} \simeq 0.85$ we get $\lambda=42$, so it seems fair to say that the theory lies outside the perturbative region
- In a non-perturbative regime one might expect the physical parameters like the sigma mass and width to differ from their "bare" or tree-level values.
To see this we look at the σ pole in

$$
\begin{equation*}
T_{0}^{0}(s)=\frac{\left(m_{\sigma b}^{2}-s\right) \alpha(s)+\beta(s)}{\left(m_{\sigma b}^{2}-s\right)[1-i \alpha(s)]-i \beta(s)} \tag{13}
\end{equation*}
$$

PhysicsI Mass and Width of Sigma

- How nonperturpative LSM in low energy QCD

$$
\begin{equation*}
\lambda=\frac{m_{\sigma b}^{2}}{2 v^{2}} \gg 1 \tag{12}
\end{equation*}
$$

- Taking $m_{\sigma b} \simeq 0.85$ we get $\lambda=42$, so it seems fair to say that the theory lies outside the perturbative region
- In a non-perturbative regime one might expect the physical parameters like the sigma mass and width to differ from their "bare" or tree-level values.
To see this we look at the σ pole in

$$
\begin{equation*}
T_{0}^{0}(s)=\frac{\left(m_{\sigma b}^{2}-s\right) \alpha(s)+\beta(s)}{\left(m_{\sigma b}^{2}-s\right)[1-i \alpha(s)]-i \beta(s)} \tag{13}
\end{equation*}
$$

- The pole position z_{0} is then given as the solution of:

$$
\begin{equation*}
\left(m_{\sigma b}^{2}-z_{0}\right)\left[1-i \alpha\left(z_{0}\right)\right]-i \beta\left(z_{0}\right)=0 \tag{14}
\end{equation*}
$$

PhysicsI Mass and Width of Sigma

For treating both the low energy QCD as well as the standard electroweak situation it is convenient to introduce the scaled quantities :

$$
\begin{equation*}
\bar{m}=\frac{m_{\sigma b}}{F_{\pi}}=\frac{m_{\sigma b}}{\sqrt{2} v} ; \quad \bar{z}_{0}=\frac{z_{0}}{F_{\pi}^{2}}=\frac{z_{0}}{2 v^{2}} . \tag{15}
\end{equation*}
$$

We have $\bar{z}_{0} \approx \frac{352}{3} \frac{\pi^{2}}{\bar{m}^{2}}-8 \pi i$. Fitting; $m_{\sigma b} \simeq 0.85 \mathrm{GeV}, \bar{m} \simeq 6.5$; $m_{\sigma-\text { physical }} \simeq 0.46 \mathrm{GeV}$

Figs. 3

Figs. 4

PhysicsI Mass and Width of Sigma

For treating both the low energy QCD as well as the standard electroweak situation it is convenient to introduce the scaled quantities :

$$
\begin{equation*}
\bar{m}=\frac{m_{\sigma b}}{F_{\pi}}=\frac{m_{\sigma b}}{\sqrt{2} v} ; \quad \bar{z}_{0}=\frac{z_{0}}{F_{\pi}^{2}}=\frac{z_{0}}{2 v^{2}} . \tag{15}
\end{equation*}
$$

We have $\bar{z}_{0} \approx \frac{352}{3} \frac{\pi^{2}}{\bar{m}^{2}}-8 \pi i$. Fitting; $m_{\sigma b} \simeq 0.85 \mathrm{GeV}, \bar{m} \simeq 6.5$; $m_{\sigma-\text { physical }} \simeq 0.46 \mathrm{GeV}$

Figs. 3

Figs. 4

Application to the $\mathrm{SU}(2) \times \mathrm{U}(1)$ Electroweak Model

- Lagrangian Eq. (1), characterized by the scale $v=\frac{0.131}{\sqrt{2}} \mathrm{GeV}$. Same Lagrangian Eq. (4), characterized by the scale $v=0.246 \mathrm{TeV}$
- Clearly it is desirable to consider a model, like the present one, which has the possibility of describing the scattering amplitude around the energy of the Higgs boson even if it were to exist in a non-perturbative scenario.
- The discussion of the $\pi \pi$ scattering amplitude T_{0}^{0}, above, can also be used to treat the high energy scattering of the longitudinal components of the W and Z bosons in the electroweak theory by making use of the Goldstone boson equivalence theorem
- Goldstone boson equivalence theorem states that: at high energy the amplitude of longtudinally massive gauge bosons equal to the amplitude of the Goldstone boson that was eatean by the gause boson. Here $\left(W_{L}^{+} W_{L}^{-}\right.$and $\left.\pi^{+} \pi^{-}\right)$

Application to the $\mathrm{SU}(2) \times \mathrm{U}(1)$

$$
\begin{align*}
\operatorname{amp}\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right) & =\operatorname{amp}\left(\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}\right)+\mathcal{O}\left(\frac{m_{W}}{E_{W}}\right) \\
\operatorname{amp}\left(W_{L}^{+} W_{L}^{-} \rightarrow Z_{L} Z_{L}\right) & =\operatorname{amp}\left(\pi^{+} \pi^{-} \rightarrow \pi^{0} \pi^{0}\right)+\mathcal{O}\left(\frac{m_{W}}{E_{W}}\right) \tag{d}
\end{align*}
$$

Application to the $\mathrm{SU}(2) \times \mathrm{U}(1)$

- The Higgs pole positions can be gotten from Figs. 3 and 4 using the scaled quantities defined in Eq. (15). $m_{\sigma b} \simeq 0.85 \mathrm{GeV}, \bar{m} \simeq 6.5$. This value of \bar{m} corresponds to a bare Higgs mass value of $m_{\sigma b}=2.26 \mathrm{TeV}$. At that value, the measure of the physical Higgs mass, $\sqrt{\operatorname{Re}\left(z_{0}\right)}$ would be about 1.1 TeV and $\sqrt{-\operatorname{Im}\left(z_{0}\right)}$ would be about 1.3 TeV

Amplitudes in K matrix and Briet-Wigner schemes

2HDM

The most general form for the potential of 2HDM is

$$
\begin{aligned}
V\left(\Phi_{1}, \Phi_{2}\right)= & m_{11}\left|\Phi_{1}\right|^{2}+m_{22}\left|\Phi_{2}\right|^{2}+\left(\beta_{1} \Phi_{1}^{*} \Phi_{2}+\text { h.c. }\right)+ \\
& +\lambda_{1}\left|\Phi_{1}\right|^{4}+\lambda_{2}\left|\Phi_{2}\right|^{4}+\lambda_{3}\left|\Phi_{1}\right|^{2}\left|\Phi_{2}\right|^{2} \\
& +\left[\beta_{2}\left(\Phi_{1}^{*} \Phi_{2}\right)^{2}+\text { h.c. }\right]+\left[\beta_{3}\left(\Phi_{1}^{*} \Phi_{2}\right)\left|\Phi_{1}\right|^{2}+\text { h.c. }\right] \\
& +\left[\beta_{4}\left(\Phi_{1}^{*} \Phi_{2}\right)\left|\Phi_{2}\right|^{2}+\text { h.c. }\right]+\lambda_{4}\left(\Phi_{1}^{*} \Phi_{2}\right)\left(\Phi_{2}^{*} \Phi_{1}\right) .
\end{aligned}
$$

It has 14 parameters (6 real +4 complex). with 2 types of dimensions.

- Some symmetries can be imposed to reduce the number of parameters.
- For example Z_{2} symmetry $\Phi_{1} \rightarrow \Phi_{1}, \Phi_{2} \rightarrow-\Phi_{2}$, hence terms contains odd power of Φ_{2} wil not appear, we end up with 6 parameters.
- Z_{2} symmetry avoids FCNC
- Hard violation of Z_{2} means $\beta_{3} \neq 0, \beta_{2} \neq 0$
- Soft violation of $Z_{2}\left(\beta_{2}=\beta_{2}=0\right)$

LSM via 2HDM

- Let

$$
\Phi_{i}=\binom{i \pi_{i}^{+}}{\frac{\sigma_{i}-i \pi_{i}^{0}}{\sqrt{2}}} \quad \text { and } \quad \mathbf{M}_{i}=\sigma_{i} I+i \tau \cdot \boldsymbol{\pi}_{i}
$$

\mathbf{M}_{i} can take the form $\mathbf{M}_{i}=\left(i \tau_{2} \Phi_{i}^{*} \Phi_{i}\right)$

- We have
- $\quad \operatorname{tr}\left(\mathbf{M}_{1} \mathbf{M}_{1}^{+}\right)=4 \Phi_{1}^{+} \Phi_{1}$
- $\quad \operatorname{tr}\left(\mathbf{M}_{2} \mathbf{M}_{2}^{\dagger}\right)=4 \quad \Phi_{2}^{\dagger} \Phi_{2}$

$$
\operatorname{tr}\left(\mathbf{M}_{1} \mathbf{M}_{2}^{\dagger}\right)=\operatorname{tr}\left(\mathbf{M}_{2} \mathbf{M}_{1}^{\dagger}\right)=\mathbf{4} \operatorname{Re}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)
$$

- \mathbf{M}_{i} transforms as $\mathbf{M}_{i} \rightarrow U_{L} \mathbf{M}_{i} U_{R}^{+}$
- In taht case the The QCD Lagrangian has custodial symmetry, meaning no $\operatorname{Im}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)$ term.

LSM and 2 HDM

- The QCD Lagrangian that describes σ_{i} and π_{i} is

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \operatorname{Tr}\left(\partial_{\mu} M_{1} \partial^{\mu} M_{1}^{+}\right)+\frac{1}{2} \operatorname{Tr}\left(\partial_{\mu} M_{2} \partial^{\mu} M_{2}^{\dagger}\right)-V\left(M_{1}, M_{2}\right), \tag{17}
\end{equation*}
$$

where

$$
\begin{align*}
V\left(M_{1}, M_{2}\right)= & \alpha_{1} I_{1}+\alpha_{2} I_{2}+\alpha_{3} I_{3}+\alpha_{4} I_{1}^{2}+\alpha_{5} I_{2}^{2}+\alpha_{6} I_{3}^{2} \\
& +\alpha_{7} I_{1} I_{2}+\alpha_{8} I_{1} I_{3}+\alpha_{9} I_{2} l_{3} \tag{18}\\
I_{1}= & \frac{1}{2} \operatorname{Tr}\left(M_{1} M_{1}^{+}\right)=\sigma_{1}^{2}+\pi_{1}^{2} \tag{19}\\
I_{2}= & \frac{1}{2} \operatorname{Tr}\left(M_{2} M_{2}^{+}\right)=\sigma_{2}^{2}+\pi_{2}^{2} \tag{20}\\
I_{3}= & \frac{1}{2} \operatorname{Tr}\left(M_{1} M_{2}^{+}\right)=\sigma_{1} \sigma_{2}+\pi_{1} \pi_{2} \tag{21}
\end{align*}
$$

LSM and 2 HDM

－We can impose Z_{2} symmetry $M_{1} \rightarrow M_{1}, M_{2} \rightarrow-M_{2}$ ．
－This equivelent to Parity Conservation in QCD．
－For example take $\sigma_{2}=\eta$ and $\pi_{2}=\mathbf{a}$ hence $\Phi_{2}=\left[\begin{array}{c}-i a^{+} \\ \frac{\eta+i a^{0}}{\sqrt{2}}\end{array}\right]$
－In that case the low energy QCD Lagrangian should conserve partity， hence

$$
\begin{align*}
V\left(M_{1}, M_{2}\right)= & \alpha_{1} I_{1}+\alpha_{2} I_{2}+\alpha_{4} I_{1}^{2}+\alpha_{5} I_{2}^{2}+\alpha_{6} I_{3}^{2} \\
& +\alpha_{7} I_{1} I_{2} \tag{22}
\end{align*}
$$

－After straightforward calculations

LSM and 2 HDM

- Easy to see

$$
\begin{equation*}
\left\langle\pi_{i}\right\rangle=0 ; \quad\left\langle a_{i}\right\rangle=0 ; \quad\left\langle\sigma^{2}\right\rangle=-\frac{\alpha_{1}}{\alpha_{3}} \tag{23}
\end{equation*}
$$

- Masses

$$
\begin{align*}
& \left\langle\frac{\partial^{2} V}{\partial \sigma^{2}}\right\rangle=8 \alpha_{3}\langle\sigma\rangle^{2} ; \quad\left\langle\frac{\partial^{2} V}{\partial \eta^{2}}\right\rangle=2 \alpha_{2}+2\left(\alpha_{5}+\alpha_{6}\right)\langle\sigma\rangle^{2} ; \\
& \left\langle\frac{\partial^{2} V}{\partial \pi_{i} \partial \pi_{j}}\right\rangle=0 ;\left\langle\frac{\partial^{2} V}{\partial a_{i} \partial a_{j}}\right\rangle=2 \delta_{i j}\left[\alpha_{2}+\alpha_{6}\langle\sigma\rangle^{2}\right] \tag{24}
\end{align*}
$$

LSM and 2 HDM

- In case of $\langle\eta\rangle=0$ we have the following contributions

The unitized amplitude

- $A\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right)=\frac{x\left[x-i\left(1+2 x^{2}\right)\right]}{\left(1+x^{2}\right)\left(1+4 x^{2}\right)} \quad$ where $x=\frac{s}{16 \pi v^{2}}$
- The Cross section for this process is

$$
\begin{equation*}
\sigma\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right)=\frac{1}{v^{2}} \frac{x\left[x^{2}+\left(1+2 x^{2}\right)^{2}\right]}{\left(1+x^{2}\right)^{2}\left(1+4 x^{2}\right)^{2}} \tag{25}
\end{equation*}
$$

LSM and 2 HDM Uder Progress

－In case of $\langle\eta\rangle \neq 0$ more terms will be included Uder progress

Summary

- If LHC didn't detect SM Higgs, then Higgs could be very heavy.
- For heavy Hggs WW interactions become strong at TeV scales.
- It could be possiblity for resonance or some new physics
- We gave a comaprsion between scalar sectot of LSM and EW Higgs sector in Case of 1 and 2 HD .
- LSM of 2 nonets has Custodial symmetry by its construction
- K matix usnirization has been used to get $A\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right)$
- More results are under progress.

