Collider Phenomenology of Minimal Walking Technicolor Using Lanhep/Calchep

Mads Toudal Frandsen

Madison, April 29th 2008

In collaboration with:

Alexander Belyaev

Roshan FOADI

Matti O. JÄRVINEN

Alexander PUKHOV

Francesco SANNINO

크

Model implementation based on

- 1. Minimal Walking Technicolor models (Sannino and Tuominen 05)
- 2. Effective theory (Foadi, M.T.F, Ryttov, and Sannino 07)
 - Parameter space constraints from LEP and unitarity (Dietrich, Sannino and Tuominen 05; Foadi, M.T.F and Sannino 07; Foadi and Sannino 08)
- See also the talks by Foadi, Jarvinen and Kouvaris in this conference and comprehensive review by Sannino (Sannino 08)

LanHep/Calchep (A.Semenov/A.Pukhov)

- 1. LanHep (A.Semenov) allows automatic generation of Feynman rules from 'paper' Lagrangian. Checks for:
 - ► Hermiticity
 - ▶ BRST invariance
 - ▶ Electromagnetic charge conservation
 - Diagonalization of fields
- 2. CalcHep (A.Pukhov) allows immediate model implementation using LanHep and a user friendly graphical interface
 - Unitary and Feynman gauge implementations provide important cross checks

Model Content

- 1. Particles:
 - ► A Higgs boson.
 - ▶ Spin-1 vector and an axial resonances.
 - Eaten pions.
 - ▶ This is a complete description in NMWT. More bound states in MWT, due to the larger chiral symmetry and a new lepton doublet due to Witten anomaly.
- 2. Input parameters are M_H , M_A , \tilde{g} , γ , $r_1 + s$
 - ► S estimated from underlying theory.
 - M_V, r_2, r_3 fixed.
 - r_1 , s independent in the MWT model.

Model and Implementation

- 1. Next to Minimal Walking Technicolor implemented in LanHep/CalcHep (A.Semenov/A.Pukhov)
 - Check decoupling limit: large vector masses and S = 0.
 - Check degenerate BESS limit:

 $M_V = M_A, r_1 = r_2 = r_3 = s = 0$ (Casalbuoni, De Andrea, De Curtis, Dominici, Gatto, Grazzini 95).

- Compare decay widths with analytical computations.
- Compare unitary gauge and 't Hooft-Feynman gauge implementations.
- 2. Minimal Walking Technicolor implementation in LanHep/CalcHep in progress.
- 3. Minimal Walking Technicolor implementation in Sherpa in progress (w/ J. Ferland and F.Krauss)

Signatures of (Next to) Minimal Walking Technicolor

- 1. Drell-Yan production of heavy vector bosons
- 2. Vector Boson Fusion production of heavy vectors
- 3. Associate Higgs Production (Zerwekh 05)
- 4. Higgs $\rightarrow \gamma\gamma$ (Belyaev, Blum, Chivukula and Simmons 05)
- 5. Further signatures of MWT model
 - DM candidates (Gudnason, Kouvaris and Sannino 05; Kainulainen, Tuominen, Virkajarvi 06; Kouvaris 07)
 - New lepton family
 - Extra scalars

(日本)(日本)(日本)(日本)

Vector-Axial Mass Splitting

Within the LHC reach, $M_V > M_A$ for small values of S.

Vector-Axial Mass Splitting

Within the LHC reach, $M_V > M_A$ for small values of S.

- 1. The vector can be much wider than the axial because of the decay $R^0 \to A^+A^-$.
- 2. If $M_{R^0} < 2M_{A^0}$, both vector and axial are very narrow.

A B K A B K

1. This changes when γ is different from zero.

Vector Resonance Branching Ratios

- 1. The BR in WW drops to zero and rises: consequence of small S (minimality of the theory).
- 2. BR to fermions drops for large \tilde{g} and for γ parameter close to -1.

Vector Resonance Branching Ratios

Compare BRs for different Higgs masses.

Axial Resonance Branching Ratios

Vector and Axial Direct Production

Associate Higgs Production

- 1. Notice the vanishing for finite values of the axial mass: consequence of small S.
- 2. Early analysis in a simpler Technicolor model. (Zerwekh 05)

(3)

Mass bumps in DY process for NMWT

(4) (3) (4) (4) (4)

...and in MWT using Sherpa - very preliminary!

Summary

1. Minimal Walking Technicolor implementation

- NMWT model has been implemented in LanHeP/Calchep in unitary gauge and feynman gauge
- ▶ MWT model is being implemented into LanHep/Calchep.
- ▶ MWT model is being implemented into Sherpa.
- 2. Collider phenomenology will appear soon.
 - LHC signatures for heavy vectors and Higgs production in NMWT
 - Richer phenomenology in MWT including DM candidates, composite scalars and a new lepton family

• • = • • = •