K-Kbar Mixing in R-symmetric SUSY Models

Andrew Blechman University of Toronto PHENO-2008

Based on A.B., S.-P. Ng, arXiv:0803.3811 [hep-ph]

Motivation

- Kribs, Poppitz, Weiner (0712.2039) show that by imposing an unbroken U(1)_R symmetry we can solve SUSY Flavor Puzzle.
- Preference is for heavy gluinos. We suspect this is generic in such models (Blechman, Kaplan, Luty, Weiner, in progress).
- Cannot be truly unbroken, but breaking effects might be made small in a UV Completion.

Motivation

Features of RMSSM:

- No Majorana masses for the gauginos, but there are Dirac masses.
- No A-terms for the scalars; hence no left-right squark/slepton mixing.
- No mu-term, but there is a B-term (complicated Higgs sector).

We will consider QCD corrections to the Kribs, Poppitz, Weiner results. Done in the MSSM by Bagger, Matchev, Zhang, Phys Lett B412, 77 (1997).

Effective Lagrangian

Parametrize mixing: $\delta_L \equiv \frac{m_{\tilde{Q}12}^2}{M_z^2}$ $\delta_R \equiv \frac{m_{\tilde{d}12}^2}{M_z^2}$

The Low-Energy Effective Lagrangian is: $\mathcal{L}_{\text{eff}} = \frac{\alpha_s^2(M_{\tilde{g}})}{216} \left(\frac{M_{\tilde{q}}^2}{M_{\tilde{g}}^4}\right) \sum_n C_n(\mu) \mathcal{O}_n(\mu)$

> $\mathcal{O}_{1} = (\bar{d}_{L}^{i} \gamma^{\mu} s_{L}^{i}) (\bar{d}_{L}^{j} \gamma_{\mu} s_{L}^{j})$ $\mathcal{O}_{4} = (\bar{d}_{R}^{i} s_{L}^{i}) (\bar{d}_{L}^{j} s_{R}^{j})$ $\mathcal{O}_{5} = (\bar{d}_{R}^{i} s_{L}^{j}) (\bar{d}_{L}^{j} s_{R}^{i})$

Intermediate Theory

To resum logs between the gluino and the squarks requires an "Intermediate Theory":

$$\mathcal{L}_{\text{int}} = \frac{g_s^2(M_{\tilde{g}})}{M_{\tilde{g}}^2} \sum_{i=1}^6 D_i(\mu) \mathcal{Q}_i(\mu)$$

 $\begin{aligned} \mathcal{Q}_{1} &= [(i\mathcal{D}_{\mu}\bar{q}_{1})^{i}\bar{\sigma}^{\mu}q_{2}^{i}](\tilde{q}_{3}^{j}\tilde{q}_{4}^{j*}) + [\bar{q}_{1}^{i}\bar{\sigma}^{\mu}q_{2}^{i}]((i\mathcal{D}_{\mu}\tilde{q}_{3})^{j}\tilde{q}_{4}^{j*}) \\ \mathcal{Q}_{2} &= [(i\mathcal{D}_{\mu}\bar{q}_{1})^{i}\bar{\sigma}^{\mu}q_{2}^{j}](\tilde{q}_{3}^{i}\tilde{q}_{4}^{j*}) + [\bar{q}_{1}^{i}\bar{\sigma}^{\mu}q_{2}^{j}]((i\mathcal{D}_{\mu}\tilde{q}_{3})^{i}\tilde{q}_{4}^{j*}) \\ \mathcal{Q}_{3} &= [(i\mathcal{D}_{\mu}\bar{q}_{1})^{i}\bar{\sigma}^{\mu}q_{2}^{i}](\tilde{q}_{3}^{j}\tilde{q}_{4}^{j*}) + [\bar{q}_{1}^{i}\bar{\sigma}^{\mu}(i\mathcal{D}_{\mu}q_{2})^{i}](\tilde{q}_{3}^{j}\tilde{q}_{4}^{j*}) \\ \mathcal{Q}_{4} &= [(i\mathcal{D}_{\mu}\bar{q}_{1})^{i}\bar{\sigma}^{\mu}q_{2}^{j}](\tilde{q}_{3}^{i}\tilde{q}_{4}^{j*}) + [\bar{q}_{1}^{i}\bar{\sigma}^{\mu}(i\mathcal{D}_{\mu}q_{2})^{j}](\tilde{q}_{3}^{i}\tilde{q}_{4}^{j*}) \\ \mathcal{Q}_{5} &= [(i\mathcal{D}_{\mu}\bar{q}_{1})^{i}\bar{\sigma}^{\mu}q_{2}^{i}](\tilde{q}_{3}^{j}\tilde{q}_{4}^{j*}) + [\bar{q}_{1}^{i}\bar{\sigma}^{\mu}q_{2}^{i}](\tilde{q}_{3}^{j}(i\mathcal{D}_{\mu}\tilde{q}_{4}^{*})^{j}) \\ \mathcal{Q}_{6} &= [(i\mathcal{D}_{\mu}\bar{q}_{1})^{i}\bar{\sigma}^{\mu}q_{2}^{j}](\tilde{q}_{3}^{i}\tilde{q}_{4}^{j*}) + [\bar{q}_{1}^{i}\bar{\sigma}^{\mu}q_{2}^{j}](\tilde{q}_{3}^{i}(i\mathcal{D}_{\mu}\tilde{q}_{4}^{*})^{j}) \end{aligned}$

All different combinations of flavor (4 each)

Intermediate Theory

Now each of those operators gets renormalized by the following loops:

Results

The mass difference is given by: $\Delta m_K = 2 \text{Re} \left(\langle K | \mathcal{L}_{\text{eff}} | \bar{K} \rangle \right)$

CP-Violation can be quantified by: $|\epsilon_K| = \frac{\operatorname{Im}\left(\langle K | \mathcal{L}_{eff} | \overline{K} \rangle\right)}{\sqrt{2} \Delta m_K}$

10 000 $\delta_L = \delta_R = 0.03$ $\delta_L = \delta_R = 0.1$ $M_{\widetilde{g}}$ (GeV) $M_{\tilde{g}}$ (GeV) $M_{\tilde{q}}$ (GeV) $M_{\tilde{q}}~({\rm GeV})$ 10 0 00 $M_{ ilde{g}}$ (GeV) $M_{\tilde{g}}$ (GeV) $\delta_L = \delta_R = 0.3$ $\delta_L = \delta_R = 1.0$ $M_{\tilde{q}}~({
m GeV})$ $M_{\tilde{q}}~({
m GeV})$

 $M_{\tilde{q}}({
m GeV})$

 $M_{ ilde{g}}({
m GeV})$

Results: CP Violation

Assuming this contribution saturates the measured bound:

M_g	M_q	delta (L=R)	KPW phase	BN phase
3.5 TeV	400 GeV	0.06	0.15	9.8×10 ⁻³
3.5 TeV	400 GeV	0.25	0.01	5.7×10 ⁻⁴

Conclusions

In the generic case, QCD corrections strengthen bounds by a factor of roughly 3, similar to the MSSM case.

 ${\it \circledcirc}$ For $\delta_R=0$, QCD corrections do almost nothing; could even weaken the bounds a little!

 CP violation is enhanced by QCD corrections by an order of magnitude.