Holography and DEWSB at the LHC

Veronica Sanz Boston University

with Johannes Hirn and Adam Martin (Yale)

hep-ph/0712.3783 + work in progress

What we know:

- Strong interactions are difficult!
- Rescaled QCD models are <u>ruled out</u>:

$$\begin{array}{rccc} f_{\pi} & \to & v \\ \\ \pi_{a} & \to & W_{L}, Z_{L} \\ \\ \rho, a_{1} & \to & \rho_{T}, a_{T} \end{array}$$

S parameter: S > 0, O(1)

Peskin-Takeuchi'90

- EW scale strong interactions must be very different from QCD -- But then how do we calculate?
- Many attempts have been made...

Common feature: TeV scale spin-1 resonances (ρ_T, W_{KK})

Common feature: TeV scale spin-1 resonances (ρ_T, W_{KK})

Moving beyond Models: Proposal

• Most general $\mathcal{L}(SM + spin - 1)$ has $\mathcal{O}(100)$ parameters way too many for practical pheno!

Need an organizing principle

Start by <u>extending holographic techniques</u>; Can we expose new + distinct features?

- NOT a new model, RATHER an organizing scheme
- Implement this scheme into matrix-element generator No models currently implemented!

Moving beyond Models: Proposal

• Most general $\mathcal{L}(SM + spin - 1)$ has $\mathcal{O}(100)$ parameters way too many for practical pheno!

Need an organizing principle

a DEWSB equivalent of what mSUGRA is for MSSM

Start by <u>extending holographic techniques</u>; Can we expose new + distinct features?

- NOT a new model, RATHER an organizing scheme
- Implement this scheme into matrix-element generator No models currently implemented!

Moving beyond Models: Proposal

• Most general $\mathcal{L}(SM + spin - 1)$ has $\mathcal{O}(100)$ parameters way too many for practical pheno!

Need an organizing principle

a DEWSB equivalent of what mSUGRA is for MSSM

Start by <u>extending holographic techniques</u>; Can we expose new + distinct features?

- NOT a new model, RATHER an organizing scheme
- Implement this scheme into matrix-element generator No models currently implemented!

Higgsless Basics:

- AdS/CFT inspired 5D version of strong DEWSB
- 5D interval $z \in (\ell_0, \ell_1)$; containing $SU(2)_L \otimes SU(2)_R$ gauge fields.
- Bulk geometry usually: $\frac{\ell_0^2}{z^2}(\eta_{\mu\nu}dx^{\mu}dx^{\nu}-dz^2)$
- BC break EWS → KK tower of states; zero modes are γ, W[±], Z⁰ +Vector, Axial resonances (not quite!): W[±]_n, Z_n
 Resonance couplings: g_{ABC} ∝ ∫^{ℓ₁}_{ℓ₀} dz ^{ℓ₀}/_z φ_A(z)φ_B(z)φ_C(z)

Higgsless cont.

- small $g_5 \longleftrightarrow$ large N_{TC}
- Spectrum: tower of narrow, weakly interacting
 resonances (large N_{TC})
 Jarge coupling to W_L, Z_Lcomes from plugging
 in polarizations
 exchange of many resonances delays unitarity
 violation
- BUT, 5D+bifundamental leads to QCD-like spectrum S>0, O(1); Small perturbations don't help

Models can be made viable at the expense of $g_{ffV} \cong 0$

Phenomenology

(Agashe et al '07)

Our scheme: Modifying Holography

- How can we extend the Holographic framework to incorporate new features?
- Effective warp factors:

$$\mathcal{L} = -\frac{1}{2g_5^2} \int dx \,\,\omega_V(z) F_{V,NM} F_V^{NM} + \omega_A(z) F_{A,MN} F_A^{MN}$$
$$\omega_{V,A}(z) = \frac{\ell_0}{z} \exp\left(o_4^{V,A} \left(\frac{z}{\ell_1}\right)^4\right) \quad o_V, o_A < 0$$
(Hirn, Sanz '06,'07)

Our scheme: Modifying Holography

- How can we extend the Holographic framework to incorporate new features?
- Effective warp factors:

$$\mathcal{L} = -\frac{1}{2g_5^2} \int dx \, \omega_V(z) F_{V,NM} F_V^{NM} + \omega_A(z) F_{A,MN} F_A^{MN}$$

$$\omega_{V,A}(z) = \frac{\ell_0}{z} \exp\left(o_4^{V,A} \left(\frac{z}{\ell_1}\right)^4\right) \quad o_V, o_A < 0$$

(Hirn, Sanz '06,'07)
Positive definite
Positive definite
unimportant

$$\mathcal{L} = -\frac{1}{2g_5^2} \int dx \, \omega_V(z) F_{V,NM} F_V^{NM} + \omega_A(z) F_{A,MN} F_A^{MN}$$

$$\omega_{V,A}(z) = \frac{\ell_0}{z} \exp\left(o_4^{V,A} \left(\frac{z}{\ell_1}\right)^4\right) \quad o_V, o_A < 0$$

(Hirn, Sanz '06,'07)
Acts like condensate

$$\Pi_{V,A} \sim \frac{o_{V,A}}{(Q\ell_1)^4}$$

- Added only 2 new parameters, no new fields
- Couplings g_{W_1WZ} , etc. will also vary with ℓ_1, o_V, o_A

- Added only 2 new parameters, no new fields
- Couplings g_{W_1WZ} , etc. will also vary with ℓ_1, o_V, o_A

- Added only 2 new parameters, no new fields
- Couplings g_{W_1WZ} , etc. will also vary with ℓ_1, o_V, o_A

- Added only 2 new parameters, no new fields
- Couplings g_{W_1WZ} , etc. will also vary with ℓ_1, o_V, o_A

- Added only 2 new parameters, no new fields
- Couplings g_{W_1WZ} , etc. will also vary with ℓ_1, o_V, o_A

- Added only 2 new parameters, no new fields
- Couplings g_{W_1WZ} , etc. will also vary with ℓ_1, o_V, o_A

What do we gain?

- Parameter space contains non-QCD like spectrum
- WSRs and simple resonance models S ameloriated when $M_{W_1} \cong M_{W_2}$ de Rafael-Knecht '97 Appelquist-Sannino '98
- Whenever $\omega_V \neq \omega_A$; unconventional triboson, 4-boson couplings

 $g_{W_{1}^{-}WZ} = g_{1}\partial_{[\mu}W_{1\nu]}^{-}(W_{[\mu}^{+}Z_{\nu]}^{0}) + g_{2}\partial_{[\mu}W_{\nu]}^{-}(Z_{[\mu}^{0}W_{1\nu]}^{-}) + g_{3}\partial_{[\nu}Z_{\nu]}^{0}(W_{[1\nu}^{-}W_{\nu]}^{+})$ $g_{1} \supset \int_{\ell_{0}}^{\ell_{1}} dz \ \omega_{V}(V_{1}A_{W^{+}}A_{Z}) \cdots \neq g_{3} \supset \int_{\ell_{0}}^{\ell_{1}} dz \ \omega_{A}(V_{1}A_{W^{+}}A_{Z}) \cdots \neq g_{2}$ Same region degenerate (non-QCD)
mixed photon coupling $g_{W_{1}^{-}W^{+}\gamma}$

New pheno. and a new twist on old pheno.

- Parameter space contains non-QCD like spectrum
- WSRs and simple resonance models S ameloriated when $M_{W_1} \cong M_{W_2}$ de Rafael-Knecht '97 Appelquist-Sannino '98
- Whenever $\omega_V \neq \omega_A$; unconventional triboson, 4-boson couplings

 $g_{W_{1}^{-}WZ} = g_{1}\partial_{[\mu}W_{1\nu]}^{-}(W_{[\mu}^{+}Z_{\nu]}^{0}) + g_{2}\partial_{[\mu}W_{\nu]}^{-}(Z_{[\mu}^{0}W_{1\nu]}^{-}) + g_{3}\partial_{[\nu}Z_{\nu]}^{0}(W_{[1\nu}^{-}W_{\nu]}^{+})$ $g_{1} \supset \int_{\ell_{0}}^{\ell_{1}} dz \ \omega_{V}(V_{1}A_{W^{+}}A_{Z}) \cdots \neq g_{3} \supset \int_{\ell_{0}}^{\ell_{1}} dz \ \omega_{A}(V_{1}A_{W^{+}}A_{Z}) \cdots \neq g_{2}$ Same region degenerate (non-QCD)
mixed photon coupling $g_{W_{1}^{-}W^{+}\gamma}$

Exploring O_V and O_A :

Along $o_A = 0, o_V < 0$

What about SM fermions?

- Coupling of fermions to the new resonances will determine the best production methods at the LHC
- Full 5D treatment of fermions would re-introduce many parameters...

For starters: one more parameter g_{ffV} $g_{ffW} = g_{SM}$

• We can study several models of fermion interactions $g_{ffV} = \kappa g_{ffW}$ $g_{ffV} \cong 0$ ideally delocalized $g_{t_Rt_RV} \gg g_{ffV}$ mostly composite t_R

Constraints:

- Parameter count: $\ell_1, \ell_0, g_5, \tilde{g}_5, o_V, o_A, g_{ffV}$
- For a given $\ell_1: o_V, o_A$ constrained by anomalous $g_{WW\gamma}$, g_{WWZ} couplings (LEP).

• LEP, Tevatron constrain fermion-resonance coupling contact interactions: $\frac{(\bar{f}f)(\bar{f}'f')}{\Lambda^2}$ direct bounds: $\sigma(p\bar{p} \to Z'(W') \to \ell^+ \ell^-(\ell\nu))$ indirect bounds: # high p_T objects (Z^0, γ)

- Parameter count: $\ell_1, M_Z, M_W, \alpha_{em}, o_V, o_A, g_{ffV}$
- For a given $\ell_1: o_V, o_A$ constrained by anomalous $g_{WW\gamma}$, g_{WWZ} couplings (LEP).

• LEP, Tevatron constrain fermion-resonance coupling contact interactions: $\frac{(\bar{f}f)(\bar{f}'f')}{\Lambda^2}$ direct bounds: $\sigma(p\bar{p} \to Z'(W') \to \ell^+ \ell^-(\ell\nu))$ indirect bounds: # high p_T objects (Z^0, γ)

Our Scheme: Review

Our Scheme: Review

For Collider Pheno, see Adam's talk in 15 mins!