Pheno 2008 – April 28, 2008

Christoph Luhn (University of Florida)

in collaboration with Pierre Ramond

Anomaly-free discrete family symmetries

arXiv:0805.xxxx [hep-ph]

Tri-bimaximal mixing

- leptonic mixing measured in neutrino oscillation experiments
- two large and one small angle

MNSP-angles	3σ exp.	tri-bimax.
$\sin^2 \theta_{12}$:	0.24 - 0.40	0.33
$\sin^2 \theta_{23}$:	0.34 - 0.68	0.50
$\sin^2 heta_{13}$:	≤ 0.041	0

$$U_{\rm MNSP} \approx U_{T\mathcal{B}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

 \implies structure might originate in non-Abelian discrete symmetry \mathcal{G}

Possible discrete symmetries

- symmetry group: $\mathrm{SM} \times \mathcal{G}$
- three families
- $\bullet~\mathcal{G}$ should have two- or three-dimensional irreps
- \mathcal{G} is a finite subgroup of either
 - \circ SU(3) e.g. $\mathcal{PSL}_2(7), \ \mathcal{Z}_7 \rtimes \mathcal{Z}_3, \ \Delta(27), \ \mathcal{S}_4, \ \mathcal{A}_4, \ \mathcal{D}_5, \ \mathcal{S}_3$
 - \circ SO(3) e.g. \mathcal{S}_4 , \mathcal{A}_4 , \mathcal{D}_5 , \mathcal{S}_3
 - \circ SU(2) e.g. \mathcal{T}'

$$\begin{array}{ll} \underline{\text{example:}} & \mathcal{A}_4 \quad (\text{irreps } \mathbf{1}, \, \mathbf{1'}, \, \overline{\mathbf{1'}}, \, \mathbf{3}) \\ & \\ & L \sim \mathbf{3} \,, \quad E^c \sim \mathbf{1} + \mathbf{1'} + \overline{\mathbf{1'}} \,, \quad N^c \sim \mathbf{3} \end{array}$$

Gauging discrete symmetries

- discrete symmetries violated by quantum gravity effects
- unless they are remnants of a gauge symmetry

 \longrightarrow "discrete gauge symmetry"

$$G_f \supset \mathcal{G}$$

gauge symmetry

discrete symmetry

ANOMALIES

Potential anomalies

 $SU(3)_C \times SU(2)_W \times U(1)_Y \times G_f$

• $G_f = U(1)$

 $SU(3)_C - SU(3)_C - U(1) \qquad U(1)_Y - U(1)_Y - U(1)$ $SU(2)_W - SU(2)_W - U(1) \qquad U(1)_Y - U(1) - U(1)$ Gravity - Gravity - U(1) U(1) - U(1) - U(1)

 \longrightarrow constraints on possible $\mathcal{Z}_N \subset U(1)$ symmetries

• $G_f = SU(3)$

SU(3) - SU(3) - SU(3) $SU(3) - SU(3) - U(1)_Y$

 \longrightarrow What can we extract in this case?

Irreps ρ of G_f and their indices

cubic index:
$$\operatorname{Tr}\left(\left\{T_{a}^{[\boldsymbol{\rho}]}, T_{b}^{[\boldsymbol{\rho}]}\right\} T_{c}^{[\boldsymbol{\rho}]}\right) = A(\boldsymbol{\rho}) \frac{d_{abc}}{2}$$

quadratic index: $\operatorname{Tr}\left(\left\{T_{a}^{[\boldsymbol{\rho}]}, T_{b}^{[\boldsymbol{\rho}]}\right\}\right) = \ell(\boldsymbol{\rho}) \delta_{ab}$

Irreps $\boldsymbol{\rho}$ of $SU(3)$	$\ell(oldsymbol{ ho})$	$A(oldsymbol{ ho})$
(10): 3	1	1
(20): 6	5	7
(11): 8	6	0
(30): 10	15	27
(21): 15	20	14

anomaly freedom:

Irreps
$$\rho$$
 of $SO(3)$
 $\ell(\rho)$

 3
 1

 5
 5

 7
 14

 9
 30

 11
 55

$$\sum_{\rho} A(\rho) = 0$$

 $\sum_{\rho} \ell(\rho) \cdot Y(\rho) = 0$

Irreps r_i of ${\boldsymbol{\mathcal{G}}}$ and their indices

- \bullet use of irreps $\mathbf{r_i}$ of $\mathcal G$ in flavor model building
- $\mathbf{r_i}$ can originate from different irreps $\boldsymbol{\rho}$ of G_f

$$\boldsymbol{\rho} \longrightarrow \sum_{i} a_{i} \mathbf{r_{i}} \qquad (a_{i} = \text{multiplicities})$$

• define "discrete indices" $\widetilde{A}(\mathbf{r_i}), \, \widetilde{\ell}(\mathbf{r_i})$ such that:

$$A(\boldsymbol{\rho}) = \sum_{i} a_{i} \widetilde{A}(\mathbf{r}_{i}) \mod N_{A}$$
$$\ell(\boldsymbol{\rho}) = \sum_{i} a_{i} \widetilde{\ell}(\mathbf{r}_{i}) \mod N_{\ell}$$

Embedding \mathcal{A}_4 into SU(3)

discrete	indices	of	\mathcal{A}_{4} :
	maioob	U I	• •4•

Irreps $\mathbf{r_i}$ of \mathcal{A}_4	$\widetilde{\ell}(\mathbf{r_i}) \\ (N_{\ell} = 12)$	$\widetilde{A}(\mathbf{r_i}) \\ (N_A = 2)$
1	0	0
1 '	2	0
$\overline{1'}$	2	0
3	1	1

ρ	$\sum_i a_i {f r_i}$	$\ell(oldsymbol{ ho})$	$\sum_{i} a_i \widetilde{\ell}(\mathbf{r_i})$	$A(\boldsymbol{\rho})$	$\sum_{i} a_i \widetilde{A}(\mathbf{r_i})$
3	3	1	1	1	1
6	$1+1'+\overline{1'}+3$	5	5	7	1
8	$1' + \overline{1'} + 2 \cdot 3$	6	6	0	2
10	$1 + 3 \cdot 3$	15	3	27	3
15	$1 + \mathbf{1'} + \overline{\mathbf{1'}} + 4 \cdot 3$	20	8	14	4

Embedding \mathcal{A}_4 into SO(3)

discrete indices of \mathcal{A}_4 :

Irreps $\mathbf{r_i}$ of \mathcal{A}_4	$\widetilde{\ell}(\mathbf{r_i})$ $(N_{\ell} = 12)$	
1	0	
1 '	2	
$\overline{1'}$	2	
3	1	

ρ	$\sum_i a_i {f r_i}$	$\ell(oldsymbol{ ho})$	$\sum_{i} a_i \widetilde{\ell}(\mathbf{r_i})$	
3	3	1	1	
5	$1' + \overline{1'} + 3$	5	5	
7	$1 + 2 \cdot 3$	14	2	
9	$1 + 1' + \overline{1'} + 2 \cdot 3$	30	6	
11	$1' + \overline{1'} + 3 \cdot 3$	55	7	

Discrete anomaly conditions

family symmetry G_f particles live in irreps ρ

$$\sum_{\rho} A(\rho) = 0 \qquad \sum_{\rho} \ell(\rho) \cdot Y(\rho) = 0$$

family symmetry \mathcal{G}

particles live in irreps $\mathbf{r_i}$

- some acquire masses (heavy)
- some don't (light)

$$\sum_{i=\text{light}} \widetilde{A}_i + \sum_{i=\text{heavy}} \widetilde{A}_i = 0 \mod N_A$$
$$\sum_{i=\text{light}} \widetilde{\ell}_i Y_i + \sum_{i=\text{heavy}} \widetilde{\ell}_i Y_i = 0 \mod N_\ell$$

An \mathcal{A}_4 example

- all hypercharges are integer
- hypercharge normalization $Y_Q = 1$

$$\sum_{i=\text{light}} \widetilde{A}_i = 0 \mod 1$$
$$\sum_{i=\text{light}} \widetilde{\ell}_i Y_i = 0 \mod 12$$

- maybe \mathcal{A}_4 is a special feature of the lepton sector
- quarks transform as singlets under \mathcal{A}_4
- only leptons contribute to discrete anomaly

$$L \sim \mathbf{3}, \qquad E^c \sim \mathbf{1} + \mathbf{1'} + \overline{\mathbf{1'}}, \qquad N^c \sim \mathbf{3}$$

$$2 \times 1 \cdot (-3) + 4 \cdot 6 + 1 \cdot 0 = 18 \neq 0 \mod 12$$