Search for Supersymmetry at CDF using Trileptons

Sourabh Dube, *Rutgers University* for the CDF collaboration

PHENO 2008 SYMPOSIUM Madison, April 29th 2008

Supersymmetry

Proposes a new symmetry Fermions ↔ Bosons

Supersymmetry solves the hierarchy problem Also provides an excellent dark matter candidate $(R_p \text{ conservation} \rightarrow LSP)$

Gauge couplings are unified much better

2 60 00 10 GO $1/\alpha$. $1/\alpha$, SM MSSM 50 50 40 40 1/02 $1/\alpha$, 30 30 2020 10 10 $1/\alpha$ $1/\alpha_1$ ⁰ 0 15 ¹⁰log Q 0 $\frac{15}{10}\log Q$ 5 10 0 5 10

27% down, 73% to go!!

Sourabh Dube

Chargino-Neutralino Search

mSUGRA

mSUGRA -- minimal SUper GRAvity grand unification
why? a) Widely used as a standard candle by Run I, LHC TDR's etc.
b) Manageable due to five parameters

Defined by five parameters

- m₀ : common scalar mass at GUT scale
- $m_{\frac{1}{2}}$: common gaugino mass at GUT scale M₁(GUT)=M₂(GUT)=M₃(GUT)= m¹/₂
- $tan(\beta)$: ratio of Higgs vacuum expectation values
- A₀ : common trilinear scalar interaction at the GUT scale (Higgs-sfermionR-sfermionL) sign(μ) : μ is the Higgsino mass parameter ($|\mu^2|$ determined by EWSB)

Signal Benchmark Point with parameters : mSUGRA m₀=60 GeV, $m_{\frac{1}{2}}=190$ GeV, tan(β)=3, A₀=0, μ >0

Benchmark point Mass Spectrum GeV 124 122 66 $\widetilde{\mathbf{e}}_{\mathrm{L}}$ 149 $\widetilde{\mathbf{e}}_{\mathbf{R}}$ 101 100 $\tilde{\tau}_2$ 150ğ 477 **ũ_R** 421 3

Chargino-Neutralino Search

Chargino/Neutralino Trilepton Decay

Charginos/Neutralinos decay via virtual W,Z or sleptons. Observe three leptons + missing energy(MET) from decays of lightest Chargino $\tilde{\chi}_1^{\pm}$ and next-to-lightest Neutralino $\tilde{\chi}_2^{0}$

Signature of Interest

CDF Detector

Total Integrated Luminosity for this result is 2.0 fb⁻¹

Three Leptons : Types

For example, Loose Electron has E/p < 2 and HadE/EmE < 5% Tight Electron has additional requirements based on shower shape of electron in calorimeter, pointing of track to calorimeter shower etc.

Setting up the Analysis

Challenge : Overlapping datasets with multiple trigger paths.

- Channels in this analysis are
- A) Mutually exclusive and,
- B) Ordered in terms of purity (S/B).

Setting up the Analysis

Challenge : Overlapping datasets with multiple trigger paths.

- Channels in this analysis are
- A) Mutually **exclusive** and,
- B) Ordered in terms of purity (S/B).

S/B

- Find three tight leptons
 - Else, two tight leptons and a loose lepton.
 - Else, one tight and two loose leptons.
 - Else, two tight leptons and one isolated track.
 - Else, one tight, one loose lepton and one isolated track.

SM Backgrounds

Our signature is three leptons + missing energy – What SM processes also look like this?

Process

WZ	3 leptons + missing E_T
ZZ	4 leptons
DY	2 leptons
WW	2 leptons + missing E_T
top-pair	2 leptons + missing E_T
	a) + γ conversion - Two Leptons + 'Fake'
	b) + track from underlying event
	c) + hadron misidentified as lepton
W+jets	1 lepton + missing E _T One Lepton + 'Fake'
	a) + track from jets + Track
	b) + hadron misidentified as lepton

Testing Background Predictions

DILEPTONS High Stat Control Regions

TRILEPTONS

Control Regions : Dileptons

Control Regions : Trileptons

Reducing Backgrounds

Process		How to reduce?	
Drell-Yan + γ Drell-Yan + track	low MET	make MET cut	
top-pair production hadrons faking leptons	has jets	require no more than 1 jet	
Dibosons : WZ,ZZ	on-shell contribution of Z can be removed by a invariant mass cut for the Z. off-shell contribution for $ZZ \rightarrow$ make MET cut off-shell contribution is irreducible for WZ		

Example : Reducing Drell-Yan, ZZ

Signal : mSUGRA m₀=60, m_{1/2}=190, tan(β)=3, A₀=0, μ >0, M(χ_1^{\pm})=120 GeV/c²

Final Predictions & Observations

CDF Run II Preliminary $\int \mathcal{L}dt = 2.0 f b^{-1}$

Channel	Expected Signal	Background	Observed
3tight	2.3±0.1±0.3	$0.5 \pm 0.04 \pm 0.1$	1
2tight,1loose	1.6±0.1±0.2	$0.3 \pm 0.03 \pm 0.03$	0
1tight,2loose	$0.7{\pm}0.1{\pm}0.1$	$0.1 \pm 0.02 \pm 0.02$	0
Total trilepton	4.6±0.2±0.6	0.9±0.1±0.2	1
2tight,1Track	4.4±0.2±0.6	$3.2 \pm 0.5 \pm 0.5$	4
1tight,1loose,1Track	2.4±0.1±0.3	2.3±0.5±0.4	2
Total dilepton+track	6.8±0.2±0.9	5.5±0.7±0.9	6

Total Expected Signal = 11.4 events

Signal : mSUGRA m₀=60, m_{1/2}=190, tan(β)=3, A₀=0, μ >0, M(χ_1^{\pm})=120 GeV/c² Sourabh Dube Chargino-Neutralino Search

3 Tight Lepton Event

mSUGRA Limits

Summary and Outlook

- We analyzed 2 fb⁻¹ of 1.96 TeV p-pbar collisions at CDF. For benchmark mSUGRA parameters, we expected ~12 SUSY events.
- Our observation of 7 events is consistent with the standard model expectation of 6.4 events.
- We set limits on mSUGRA Chargino mass well beyond LEP for the first time.
- More data and more channels at the Tevatron will allow us to probe other regions in mSUGRA, and other models – we hope that SUSY is found there!
- If not, there is always the LHC.

Charginos and Neutralinos

★ W's and Z's of Supersymmetry

* Charginos(χ^{\pm}) & Neutralinos (χ^0) are mixtures of the higgsino, binos and winos.

* There are four neutralinos and two charginos.

Signal Plots M(selectron) vs M(chargino)

Signal Plots : Large m₀

 E_T/p_T Cuts

The five exclusive channels :

Channel	E _T (P _T) GeV	
3 tight leptons OR 2 tight leptons + 1 loose electron	15, 5, 5	
2 tight leptons + 1 loose muon	15, 5, 10	
1 tight lepton + 2 loose leptons	20, 8, 5 (10 if loose muon)	
2 tight leptons + 1 Track	15, 5, 5	
1 tight lepton, 1loose lepton, 1 Track	20, 8(10 if loose muon), 5	

The five exclusive channels constitute five independent experiments within CDF

Systematic Uncertainties

Backgrounds

hadrons faking leptons underlying event \rightarrow tracks ~ 10% Signal

Signal cross section~ 10%

Lepton identification $\sim 2\%$ Jet energy scale ~ 2 to 5 % Process Cross-section $\sim 5\%$

Lepton identification ~ 4% Initial/Final State radiation ~ 4%

Common to both Luminosity ~ 6% PDF ~ 2%

FINAL PREDICTIONS Breakdown of Backgrounds

CDF Run II Preliminary, $\int Ldt = 2.0 \text{ fb}^{-1}$

EVENTS

EVENTS

2 tight muons + 1 Track $E_T = 34$, 6, 9 GeV MET = 20.4 GeV One jet, Jet $E_T = 22$ GeV

