Search for Supersymmetry at CDF using Trileptons

Sourabh Dube, Rutgers University for the CDF collaboration

PHENO 2008 SYMPOSIUM
 Madison, April $29^{\text {th }} 2008$

Supersymmetry

Proposes a new symmetry Fermions \leftrightarrow Bosons

Supersymmetry solves the hierarchy problem
Also provides an excellent dark matter candidate $\left(\mathrm{R}_{\mathbf{p}}\right.$ conservation \rightarrow LSP)
Gauge couplings are unified much better

27\% down, 73% to go!!

mSUGRA

mSUGRA -- minimal SUper GRAvity grand unification why? a) Widely used as a standard candle by Run I, LHC TDR's etc.
b) Manageable due to five parameters

Defined by five parameters
$\mathrm{m}_{0} \quad$: common scalar mass at GUT scale
$\mathrm{m}_{1 / 2} \quad$: common gaugino mass at GUT scale

$$
\mathrm{M}_{1}(\mathrm{GUT})=\mathrm{M}_{2}(\mathrm{GUT})=\mathrm{M}_{3}(\mathrm{GUT})=\mathrm{m}^{1 / 2}
$$

$\tan (\beta)$: ratio of Higgs vacuum expectation values
$\mathrm{A}_{0} \quad$: common trilinear scalar interaction at the GUT scale (Higgs-sfermionR-sfermionL)
$\operatorname{sign}(\mu): \mu$ is the Higgsino mass parameter ($\left|\mu^{2}\right|$ determined by EWSB)

Signal Benchmark Point with parameters : mSUGRA $m_{0}=60 \mathrm{GeV}, \mathrm{m}_{1 / 2}=190 \mathrm{GeV}$, $\tan (\beta)=3, \mathrm{~A}_{0}=0, \mu>0$

Benchmark point Mass Spectrum GeV

$\widetilde{\chi}_{2}$	124
$\widetilde{\chi}_{1}^{ \pm}$	122
$\widetilde{\chi}_{1}^{0}$	66

$\widetilde{\mathbf{e}}_{\mathrm{L}} 149$
$\begin{array}{lll}\widetilde{\mathbf{e}}_{\mathrm{R}} & 101\end{array}$
$\tilde{\tau}_{1} \quad 100$
$\tilde{\tau}_{2} 150$
(ᄌ) 477
$\widetilde{\mathbf{u}}_{\mathbf{R}} 421$
$\tilde{\mathbf{d}}_{\mathrm{L}} 439$

Chargino/Neutralino Trilepton Decay

Charginos/Neutralinos decay via virtual W,Z or sleptons. Observe three leptons + missing energy(MET) from decays of lightest Chargino $\widetilde{\chi}_{1}^{ \pm}$and next-to-lightest Neutralino $\widetilde{\chi}_{2}^{0}$

Supersymmetric Trilepton Event

Signature of Interest

Supersymmetric Trilepton Event

CDF Detector

Total Integrated Luminosity for this result is $2.0 \mathrm{fb}^{\mathbf{- 1}}$

Three Leptons : Types

Leptons

For example, Loose Electron has E/p <2 and HadE/EmE $<5 \%$ Tight Electron has additional requirements based on shower shape of electron in calorimeter, pointing of track to calorimeter shower etc.

Setting up the Analysis

Challenge : Overlapping datasets with multiple trigger paths.
Channels in this analysis are
A) Mutually exclusive and,
B) Ordered in terms of purity (S/B).

Setting up the Analysis

Challenge : Overlapping datasets with multiple trigger paths.
Channels in this analysis are
A) Mutually exclusive and,
B) Ordered in terms of purity (S/B).

S/B

Find three tight leptons
Else, two tight leptons and a loose lepton.

Else, one tight and two loose leptons.
Else, two tight leptons and one isolated track.
Else, one tight, one loose lepton and one isolated track.

SM Backgrounds

Our signature is three leptons + missing energy What SM processes also look like this?

```
Process
    WZ 3 leptons + missing E E
    ZZ 4 leptons
    4 Three Real Leptons
    DY 2 leptons
    WW 2 leptons + missing E 
    top-pair 2 leptons + missing E 
    a) }+\gamma\mathrm{ conversion }&\mathrm{ Two Leptons + 'Fake'
    b) + track from underlying event
    c) + hadron misidentified as lepton
```

$\mathrm{W}+$ jets $\quad 1$ lepton + missing E_{T}
a) + track from jets
b) + hadron misidentified as lepton

Testing Background Predictions

DILEPTONS

High Stat Control Regions
TRILEPTONS

Control Regions : Dileptons

Selection :
2 tight leptons

Control Regions : Trileptons

Reducing Backgrounds

Process
Drell-Yan $+\gamma$
Drell-Yan + track
top-pair production
hadrons faking leptons

Dibosons : WZ,ZZ on-shell contribution of Z can be removed by a invariant mass cut for the Z .
off-shell contribution for $\mathrm{ZZ} \rightarrow$ make MET cut off-shell contribution is irreducible for WZ

Example : Reducing Drell-Yan, ZZ

After all other selections are made

Signal : mSUGRA $m_{0}=60, m_{1 / 2}=190, \tan (\beta)=3, A_{0}=0, \mu>0, M\left(\chi_{1}{ }^{ \pm}\right)=120 \mathrm{GeV} / \mathrm{c}^{2}$

Final Predictions \& Observations

CDF Run II Preliminary $\int \mathcal{L} d t=2.0 \mathrm{fb}^{-1}$			
Channel	Expected Signal	Background	Observed
3tight	$2.3 \pm 0.1 \pm 0.3$	$0.5 \pm 0.04 \pm 0.1$	1
2tight,1loose	$1.6 \pm 0.1 \pm 0.2$	$0.3 \pm 0.03 \pm 0.03$	0
1tight,2loose	$0.7 \pm 0.1 \pm 0.1$	$0.1 \pm 0.02 \pm 0.02$	0
Total trilepton	$4.6 \pm 0.2 \pm 0.6$	$0.9 \pm 0.1 \pm 0.2$	1
2tight,1Track	$4.4 \pm 0.2 \pm 0.6$	$3.2 \pm 0.5 \pm 0.5$	4
1tight,1loose,1Track	$2.4 \pm 0.1 \pm 0.3$	$2.3 \pm 0.5 \pm 0.4$	2
Total dilepton+track	$6.8 \pm 0.2 \pm 0.9$	$5.5 \pm 0.7 \pm 0.9$	6
Total Expected Signal $=\mathbf{1 1 . 4}$ events			

Signal : mSUGRA $\mathrm{m}_{0}=60, \mathrm{~m}_{1 / 2}=190, \tan (\beta)=3, \mathrm{~A}_{0}=0, \mu>0, \mathrm{M}\left(\chi_{1}{ }^{ \pm}\right)=120 \mathrm{GeV} / \mathrm{c}^{2}$

3 Tight Lepton Event

mSUGRA Limits

Summary and Outlook

$>$ We analyzed $2 \mathrm{fb}^{-1}$ of 1.96 TeV p-pbar collisions at CDF. For benchmark mSUGRA parameters, we expected ~ 12 SUSY events.
$>$ Our observation of 7 events is consistent with the standard model expectation of 6.4 events.

- We set limits on mSUGRA Chargino mass well beyond LEP for the first time.
\Rightarrow More data and more channels at the Tevatron will allow us to probe other regions in mSUGRA, and other models - we hope that SUSY is found there!
- If not, there is always the LHC.

Backup

Charginos and Neutralinos

* W's and Z's of Supersymmetry
\star Charginos $\left(\chi^{ \pm}\right) \&$ Neutralinos $\left(\chi^{0}\right)$ are mixtures of the higgsino, binos and winos.
\star There are four neutralinos and two charginos.

Signal Plots M(selectron) vs M(chargino)

Signal Plots : Large m_{0}

Mass(chargino) vs $\tan (\beta)$

Signal Plots $\tan (\beta)$ variation

$\mathrm{E}_{\mathrm{T}} / \mathrm{p}_{\mathrm{T}}$ Cuts

The five exclusive channels :

Channel	$\mathrm{E}_{\mathrm{T}}\left(\mathbf{P}_{\mathrm{T}}\right) \mathrm{GeV}$
3 tight leptons OR 2 tight leptons +1 loose electron	15, 5, 5
2 tight leptons +1 loose muon	15, 5, 10
1 tight lepton +2 loose leptons	20, 8,5 (10 if loose muon)
2 tight leptons +1 Track	15, 5, 5
1 tight lepton, 1loose lepton, 1 Track	20, 8 (10 if loose muon), 5

The five exclusive channels constitute five independent experiments within CDF

Systematic Uncertainties

Backgrounds

hadrons faking leptons
underlying event \rightarrow tracks $\sim 10 \%$

Lepton identification $\sim 2 \%$ Jet energy scale ~ 2 to 5%
Process Cross-section ~5\%

Signal

Signal cross section $\sim 10 \%$

Lepton identification $\sim 4 \%$ Initial/Final State radiation $\sim 4 \%$

$$
\begin{aligned}
& \text { Common to both } \\
& \text { Luminosity } \sim 6 \% \\
& \text { PDF } \sim 2 \%
\end{aligned}
$$

FINAL PREDICTIONS Breakdown of Backgrounds

CDF Run II Preliminary, $\int \mathbf{L d t}=\mathbf{2 . 0} \mathbf{f b}^{-1}$

EVENTS

EVENTS

2 tight muons + 1 Track
$\mathrm{E}_{\mathrm{T}}=34,6,9 \mathrm{GeV}$
MET $=20.4 \mathrm{GeV}$
One jet, Jet $\mathrm{E}_{\mathrm{T}}=22 \mathbf{~ G e V}$

Cross Sections : Tevatron \& LHC

