WW+2 jets Analysis

Will Parker University of Wisconsin – Madison 03/04/13

Update

- First few 0J NN variables presented in order of significance
- In 1 jet region W+jets is more energetic relative to WW
- WW tends to be caught between W+jets and ttbar
- LRWW remarkably unimportant (assume it's using with NN variables)
- Fixed Njets plot (problem with loading of neural nets)
- 19% difference between WW MC and Data Bkg matches other plots
- Examined Nevents as a function of Njets (should have used unfolded jets)

U.W. Madison

Ht

Discrimination spoiled by ttbar, W+jets seems to have larger tail

Will Parker

3

U.W. Madison

Pt(12)

Same as Ht

Will Parker

4

U.W. Madison

LRWW

5

M(II)

Same as Ht

Will Parker

6

U.W. Madison

Jet Multiplicity

Will Parker

U.W. Madison

Counting Events

	0 Jet	0J σ	1 Jet	1J σ	2+ Jet	2+J σ
MC Bkg	370.5	52.26	237.5	30.17	72.1	8.80
Data	1272	35.67	441	21	123	11.09
Data - MC Bkg	901.5	87.93	203.5	51.17	50.9	19.89
WW	738.9	72.9	178.7	22.44	28.6	7.18

To Do: Fix this slide and look at leading jet Et distribution

Will Parker

Off by ~20 events. Debugging.

Also assumes WW and Bkg uncertainties are uncorrelated (minor correction, will be fixed eventually)

0 Jet is within 1.5 $\sigma,$ 1 and 2 are within 1 $\sigma.$

U.W. Madison