First observation of single top quark production in tW channel from CMS

Danny Noonan University of Kansas

US LHC Users Organization Annual Meeting November 6-8, 2013

Single Top Production

• Electroweak top quark production

LHC - 8 TeV

- Possible channel for new physics
- Direct measurement of $V_{_{th}}$
- LHC provides first chance for measuring tW production channel $\sigma(pb)$ t-channel s-channel tW channel Tevatron - 1.96 TeV 2.08 1.05 0.22 LHC - 7 TeV 65.9 4.56 15.6

Danny Noonan (Univ. of Kansas)

87.2

5.55

22.2

tW Dilepton Signature

- Top decays into W boson and bottom quark
- Dilepton decay channel:
 - Two leptons
 - B-quark (jet)
 - Two neutrinos (Missing \mathbf{E}_{T})

tW Dilepton Signature

• Very similar to dilepton ttbar production

Only difference is one extra b-quark in the final state

11/8/13

Event Selection

- **Data:** Analysis uses 12.2 fb⁻¹ of data recorded by the CMS detector at 8 TeV
- Event Selection:
 - Dilepton triggers (eµ/µµ/ee)
 - Two oppositely charged leptons with $p_{_{\rm T}} > 20 \text{ GeV}$
 - $~m_{_{\ell\ell}}$ > 20 GeV (all channels) and veto if 81 < $m_{_{\ell\ell}}$ < 101 GeV (in ee and $\mu\mu$ channels)
 - Missing $E_{_{\rm T}}$ > 50 GeV in ee and µµ channels
 - One b-tagged jet (CSV) with $p_T > 30 \text{ GeV}$
- Backgrounds:
 - Largest is tt (245 pb), followed by Z+jets, and then diboson (WW, WZ, ZZ)

Signal and Control Regions

Three regions are used in the analysis:

- Signal region: Exactly 1 jet, b-tagged (1j1t); largely tW and tt, with some Z+jets (~15-20% tW, ~75% tt, ~5% Zjets)
- tt control regions: Exactly 2 jets, with either 1
 b-tagged (2j1t) or both b-tagged (2j2t); dominated by tt

6

Boosted Decision Tree (BDT)

- Trained to distinguish tW signal from $t\bar{t}$ background
- 13 input variables used
 - Having some separation power between signal and background
 - Being well modeled in MC (in various control regions)

BDT Discriminant Fit

- Likelihood fit to BDT discriminant
 - Simultaneous fit across all three dilepton channels (eµ/µµ/ee) and three regions (1j1t signal region, 2j1t and 2j2t control regions)
- Templates for signal and background taken from MC
- Systematic uncertainties taken into account based on change to template, added into the fit as nuisance parameters

Results

- Excess of events is observed above a background-only hypothesis Observed Significance: 6.0σ Expected Significance: $5.4^{+1.5}_{-1.4}\sigma$ Cross Section: $23.4^{+5.5}_{-5.4}$ pb
- V_{tb} matrix element estimated
 - Under assumption that $|V_{tb}| \gg |V_{td}|, |V_{ts}|$

$$|V_{tb}| = \sqrt{\frac{\sigma_{tW}}{\sigma_{tW}^{th}}} = 1.03 \pm 0.12(exp.) \pm 0.04(th.)$$

• Assuming $0 \le |V_{tb}| \le 1$, get a limit at 95% C.L. of $|V_{tb}| > 0.78$

Summary

First observation of tW associated production

Observed Significance: 6.0 σ **Expected Significance:** 5.4^{+1.5}_{-1.4} σ **Measured Cross Section:** 23.4^{+5.5}_{-5.4} pb Theoretical Cross Section: 22.2 ± 0.6 ± 1.4 pb $|V_{tb}| = 1.03 \pm 0.12(exp.) \pm 0.04(th.)$

More details on the analysis can be found in CMS-PAS-TOP-12-040:

http://cds.cern.ch/record/1563135

Thank You

Backup Slides

Previous tW Results

- Tevatron wasn't able to see this channel
- Both ATLAS and CMS saw evidence for tW channel production in 7 TeV data
- CMS: Phys. Rev. Lett. 110, 022003 (2013) 4.0 σ significance, Cross section of 16 +5 -4 pb
- ATLAS: Phys. Lett. B716 (2012) 3.3 σ significance, Cross section of 16.8±2.9±4.9 pb

Cross Checks

- Two cross check analyses done: cut-based and fit to $\boldsymbol{p}_{_{T,sys}}$ distribution
- Same event selection and control regions, with two added cuts:
 - Veto on events with extra b-tagged loose jets ($p_T > 20 \text{ GeV}$)
 - Cut on H_T in eµ channel ($H_T > 160 \text{ GeV}$)

Additional Plots Input Variable Distributions (1j1t)

11/8/13

Additional Plots Input Variable Distributions (1j1t)

11/8/13

BDT Output

 Check the agreement between data and MC in two additional control regions: 1 untagged jet (1j0t) and 2 untagged jets (2j0t)

11/8/13

BDT Output emu channel

BDT Output

11/8/13

Danny Noonan (Univ. of Kansas)

Systematics

- Effect of each systematic estimated based on contribution to uncertainty on cross section $Systematic Uncertainty \Delta \sigma$ (pb) ME/PS matching thresholds 3.25
 - Theory-based systematics are estimated based on setting nuisance parameters to +/- 1 sigma values
 - All other systematics are estimated by fixing the nuisance parameter to central value, and finding the change in the confidence interval
 - "Statistical" uncertainty found by fit with all nuisance parameters fixed and finding remaining uncertainty

Systematic Uncertainty	$\Delta \sigma$ (pb)	$\frac{\Delta\sigma}{\sigma}$
ME/PS matching thresholds	3.25	14%
Q^2 scale	2.68	11%
Top quark mass	2.28	10%
Statistical	2.13	9%
Luminosity	1.13	5%
JES	0.91	4%
$t\bar{t}$ cross section	0.87	4%
Z+jet data/MC scale factor	0.56	2%
tW DR/DS scheme	0.45	2%
PDF	0.33	1%
Lepton identification	0.31	1%
JER	0.27	1%
B-tagging data/MC scale factor	0.20	< 1%
$t\bar{t}$ Spin Correlations	0.12	< 1%
Top Pt Reweighting	0.12	< 1%
Event pile up	0.11	< 1%
$E_{\rm T}^{\rm miss}$ modeling	0.07	< 1%
Lepton energy scale	0.02	< 1%
Total	5.58	24%

Significance

• Pseudo-experiments used for quantifying significance, using as the test-statistic:

-
$$q_0 = \frac{\delta}{\delta\mu} \mathcal{L}(\mu = 0, \hat{\theta_0} | \text{data})$$

- μ is signal strength parameter, θ is set of nuisance parameters
- Evaluated for
 background only and
 signal plus background
 hypothesis
- Theory systematics included in toys, not fit

NLO QCD mixing

• tW signal mixes with pair production at NLO

- **diagram removal (DR)**: remove double resonant diagrams
- diagram subtraction (DS): subtract gauge-invariant term to cancel contribution from tt
- DR scheme used for definition of signal in this analysis
 - The two are consistent within statistical uncertainty and difference is accounted for as systematic uncertainty