



### Measurement of WW/WZ→lvjj

ATLAS-CONF-2012-157

Brian Lindquist Stony Brook University

> USLUO Annual Meeting November 8, 2013

# Why WW/WZ $\rightarrow$ Ivjj?

- Measure WW/WZ → Ivjj
- Why interested in dibosons?
  - Verification of SM
  - New Physics in anomalous triple gauge couplings (TGC)
  - Step towards measurement of WW scattering (how is unitarity restored)
- Advantages compared to fully leptonic decays
  - Higher σxBF (Ivjj ~6x larger than IvIv)
  - Better kinematic constraints (only 1 v instead of 2)
- Disadvantage compared to fully leptonic:
  - Much higher backgrounds
  - W→jj from WW and Z→jj from WZ can't be distinguished due to the resolution of the dijet mass



## Analysis strategy



- Biggest problem: measuring signal on top of the enormous W+jets background (S/B<3%)</li>
  - Understanding m<sub>ii</sub> shape of backgrounds is critical

## MC-data agreement

- Dijet-mass spectrum well described by signal+background model
- W/Z+jets background (no true W/Z→jj) peaks close to the signal (true W/Z→jj)





## Jet Performance

- Jet p<sub>T</sub> resolution ~15% in analysis phase-space
- Jet energy scale (JES) uncertainty 3-5%
  - Includes effect from pile-up





#### ATLAS-CONF-2013-004

# Fitting procedure

- Perform binned maximum-likelihood fit to m<sub>ii</sub> in interval [25-250] GeV.
- Fit separately and simultaneously the e and  $\mu$  channels



- 3 backgrounds: W/Z+jets, top, and multi-jet. First 2 allowed to float, constrained by large sidebands
- Fit for  $\mu = \sigma$ (fitted)/ $\sigma$ (SM),  $\sigma$ (SM) at NLO using MCFM

## **Incorporation of Systematics**

- Systematics can affect both the shapes and normalization of histograms in the m<sub>ii</sub> fit
- Shape systematics: float nuisance parameters  $\alpha_j$  that interpolate between nominal and modified histogram shapes

### <u>Shape</u>

- MC statistics (mainly W/Z+jets) -- 18%
- Jet energy scale 12%
- Jet energy resolution 6%
- Multi-jet shape/normalization 5%

### **Normalization**

- W/Z+jets normalization 11%
- Top normalization 6%
- Luminosity -- 3.9%

### Total systematics: 28%

 MC statistics and JES systematic not profiled in fit; instead, varied up and down in a toy MC method

### Fit result

- $\sigma(\text{fitted})/\sigma(\text{SM}) = 1.13 \pm 0.34$
- σ(WW+WZ) = 72 ± 9 (stat) ± 15 (syst) ± 13 (MC stat) pb
- SM prediction:  $\sigma = 63.4 \pm 2.6$  pb



## **Background subtracted**



### Summary

- Evidence (3.3 sigma) for WW/WZ process in the challenging semileptonic channel at ATLAS (4.7 fb-1 at 7 TeV)
- Signal/SignalSM =  $1.13 \pm 0.34$
- σ(WW+WZ) = 72 ± 9 (stat) ± 15 (syst) ± 13 (MC stat) pb
- Consistent with SM: 63.4 ± 2.6 pb



## Significance

- Calculate significance using toy MC method
- Use profile-likelihood ratio
  λ as test-statistic
- Compute λ for both bkgonly and sig+bkg toys to estimate expected significance
- Includes systematics

Expected: 3.0 sigmaObserved: 3.3 sigma



### Data vs expectation

- Breakdown of expected backgrounds
- Expected signal+background agrees with data

| Process                                                        | е                            | μ                            |
|----------------------------------------------------------------|------------------------------|------------------------------|
| WW                                                             | $1250 \pm 60$                | $1360 \pm 70$                |
| WZ                                                             | $276 \pm 19$                 | $306 \pm 21$                 |
| W + light jets                                                 | $(67 \pm 13) \times 10^3$    | $(71 \pm 14) \times 10^3$    |
| W/Z + heavy flavor jets                                        | $(19 \pm 4) \times 10^3$     | $(20 \pm 4) \times 10^3$     |
| $t\bar{t}$                                                     | $(24.8 \pm 2.5) \times 10^2$ | $(24.6 \pm 2.5) \times 10^2$ |
| single top                                                     | $(13.5 \pm 1.3) \times 10^2$ | $(13.7 \pm 1.4) \times 10^2$ |
| multijet                                                       | $(50 \pm 15) \times 10^2$    | $(39 \pm 12) \times 10^2$    |
| Z + jets                                                       | $(35 \pm 7) \times 10^2$     | $(32 \pm 6) \times 10^2$     |
| $W\gamma + ZZ$                                                 | $383 \pm 19$                 | $464 \pm 23$                 |
| Total SM prediction                                            | $(100 \pm 14) \times 10^3$   | $(103 \pm 15) \times 10^3$   |
| Total Data                                                     | 100055                       | 103627                       |
| Signal efficiency for $60 < m_{jj} < 120 \text{ GeV}$          | 0.7%                         | 0.9%                         |
| Signal to background ratio for $60 < m_{jj} < 120 \text{ GeV}$ | 2.6%                         | 2.8%                         |

(errors in table are from cross-section uncertainties only)

### MC-data agreement

- Plots show kinematic distributions of jets forming the W/Z→jj candidate
- Data well described by MC, within systematic uncertainties
- Yellow error band gives effect of Jet Energy scale (JES) only



## **Event Selection**

- 4.7 fb<sup>-1</sup> at 7 TeV
- Use single-electron/muon triggers

- 1 isolated lepton with  $p_T > 25 \text{ GeV}$
- Veto event if extra lepton with  $p_T > 20 \text{ GeV}$
- p<sub>T</sub>(j<sub>1</sub>)> 30 GeV, p<sub>T</sub>(j<sub>2</sub>)> 25 GeV
- Veto event if >2 jets with p<sub>T</sub>>20 GeV ←
- m<sub>T</sub> > 40 GeV
- Missing E<sub>T</sub>>30 GeV
- Lepton matched to primary vertex
- ∆φ(MET,j1)>0.8
- ∆R(j,ℓ)>0.5
- ∆η(j1,j2)<1.5 and ∆R(j1,j2)>0.7

**Reduce ttbar** 

**Reduce multi-jet** 

# **Background and Signal Model**

- W/Z+jets
  - Alpgen+Herwig+Jimmy
  - W+Heavy Flavor modeled separately
- ttbar
  - MC@NLO+Herwig
- Single-top
  - MC@NLO
- Multi-jet
  - Data-driven later in this talk
- Signal (WW/WZ)
  - Herwig (LO)
  - Normalization from MCFM (NLO)

Normalizations from fit to data

## Data-driven multi-jet estimate

- Multi-jet background is due to fake leptons (jets faking electrons, or heavy-flavor jets decaying semileptonically)
- Control regions enhanced in multijet fakes:
  - Electron: fake electron without Transition Radiation signal
  - Muon: invert muon vertexmatching requirement
- Obtain MET templates from control regions
- Fit full MET distribution to extract multi-jet component
  - Simultaneously extract scalefactors for W/Z+jets used for data-MC comparison





## Incorporation of Systematics

- Systematics can affect both the shapes and normalization of histograms in the m<sub>ii</sub> fit
- Shape systematics: float nuisance parameters  $\alpha_i$  that interpolate between nominal and modified histogram shapes

$$h_{jk}(x) = h_{jk}^0(x) + \alpha_j \left( h_{jk}^+(x) - h_{jk}^0(x) \right), \ \alpha_j \ge 0 \,,$$

JES

|             | $n_{jk}(x) - \alpha_j \left( n_{jk}(x) - n_{jk}(x) \right), \ \alpha_j < 0$ | ).                       |            |
|-------------|-----------------------------------------------------------------------------|--------------------------|------------|
| JES         | Source of Systematic                                                        | Туре                     | Profiled   |
| systematic  | W/Z+jets rate<br>W/Z+jet modeling                                           | Norm.<br>Shape           | yes<br>ves |
| not fitted; | $t\bar{t}$ +single t rate<br>ISR/ESR for $t\bar{t}$                         | Norm.                    | yes        |
| varied up   | multijet rate                                                               | Norm.                    | no         |
| and down in | PDF all processes but multijet                                              | Norm.                    | no         |
| toys        | JES uncertainty all processes but multijet<br>JES uncertainty signal        | Shape<br>Norm.           | no<br>no   |
|             | JER uncertainty background except multijet<br>JER uncertainty WW/WZ         | Shape<br>Norm, and Shape | yes<br>ves |
|             | lepton reconstruction all processes except multijet                         | Norm.                    | no         |
|             | MC statistics all processes                                                 | Norm. and Shape<br>N.A.  | yes<br>no  |

 $h^{0}(x) = \alpha \left(h^{-}(x) - h^{0}(x)\right) = \alpha < 0$ 

## Systematics table

|                 | Source                                               | $\Delta\sigma/\sigma[\%]$ |
|-----------------|------------------------------------------------------|---------------------------|
| Mainly W+jets   | Data Statistics                                      | ±12                       |
| MC statistics — | → MC Statistics                                      | ±18                       |
|                 | $\rightarrow$ W/Z+jets normalization                 | ±11                       |
|                 | W/Z jets shape variation                             | ±5                        |
|                 | Multijet shape and normalization                     | ±5                        |
|                 | Top normalization                                    | ±6                        |
|                 | Top ISR/FSR                                          | ±1                        |
|                 | → Jet energy scale (all samples)                     | ±12                       |
|                 | → Jet energy resolution (all samples)                | ±6                        |
|                 | Lepton reconstruction (all samples)                  | ±1                        |
|                 | WW/WZ ISR/FSR                                        | ±2                        |
|                 | $\rightarrow$ JES uncertainty on WW/WZ normalization | ±6                        |
|                 | PDF (all samples)                                    | ±2                        |
|                 | Luminosity                                           | ±3.9                      |
|                 | Total systematics                                    | ±28                       |