

Search for a Heavy Neutral Higgs Boson of MSSM Decaying to τ Pairs

Isobel Ojalvo for the CMS Collaboration University of Wisconsin Madison November 8th 2013

The Large Hadron Collider

CERN→ 27km in circumference

Recreate the conditions that were present less than a billionth of a second after the universe began Attempt to explain what everything is made of

MSSM Overview

What is SUSY?

A model that introduces a symmetry between Bosons and Fermions

Each particle has a SUSY partner

Why SUSY/MSSM?

- Address important limitations in the Standard Model
- \rightarrow MSSM is applicable down to distances much shorter than the Electroweak scale
- →Possible explanation for Dark Matter and Dark Energy

Detection/Signatures

CMS Detector →14,000 tonnes Detectors + trigger capture a "photograph" of a p-p collision

Trigger system reduces 40million events per second to a few hundred per second

τ-lepton/b-quark Jet ID

Hadronic Tau ID

Identify tau-leptons via their decays to hadrons

Or to lighter leptons (electron, muon) $\tau_{\mu}\tau_{h}, \tau_{e}\tau_{h}, \tau_{h}\tau_{h}, \tau_{e}\tau_{\mu}, \tau_{\mu}\tau_{\mu}$

 \rightarrow 5 combinations used for this analysis

Search for b-Hadrons

→Look for b-Hadron qualities (many tracks associate to the jet, Impact parameters of these tracks, ect.)

 \rightarrow For example, Search for a vertex in the jet which is separated from the primary vertex (due to a ~long life b-Hadron time)

Analysis Techniques

Simulate Events using a variety of Monte Carlo generators

 \rightarrow Model the signal (A/Z/h $\rightarrow \tau\tau$) and backgrounds, W+Jets, Z $\rightarrow \tau\tau$, ttbar, QCD (estimated using data) and check agreement in control regions

Use a variety of fit techniques

Construct the $\tau\tau$ mass (m_{$\tau\tau$}), search for fluctuations consistent with a massive particle decay at high m_{$\tau\tau$}

Model High Mass region and perform Maximum Likelihood Fit for all backgrounds and signals

Results

Comparing expected and observed limit

→Most stringent limits ever set for A/Z/h→ τ τ

→No discoveries in MSSM sector with $\tau\tau$ final state yet...

Isobel Ojalvo

Stay Tuned! Exciting times to come as we perform essential upgrades and begin the 2015 run!