Event Number: 18279 Event Number: 74566644 Date: 2011-05-30, 06:54:29 CE

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Measuring the Higgs boson properties with the Higgs to 4-lepton final state

Eleni Mountricha

Brookhaven National Laboratory

US LHC Users Organization Annual Meeting November 6-8, 2013

Introduction

 PLB 716(2012) 1-29
 D

 http://arxiv.org/abs/1207.7214
 St

Discovery of the Higgs boson at the LHC Study properties to validate the SM "title"

Properties studies with H→ZZ^(*)→4I: ✓ Mass
✓ Couplings
✓ Spin/CP

08/11/13

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

 $H \rightarrow ZZ^{(*)} \rightarrow 41:$

 $\sigma x BR \sim 2.5 \text{ fb} (m_{\mu} = 125.5 \text{ GeV})$

$110^{<m_{H}} \xrightarrow{<1000GeV} \xrightarrow{H} ZZ^{(*)} \xrightarrow{} 4$

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CET

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Discriminant: m₄₁

S/B: 1.4 for m_H=125 GeV; mass resolution: 1.6 - 2.4 GeV

Background: ZZ, Z-jets, tt

Background estimated from control regions and data

Categories in lepton flavor [4µ, 2µ2e, 2e2µ, 4e]

H→Z(II)Z(I'I'): 2 OS SF isolated lepton (e/µ) pairs $[p_{T}(l_{1},l_{2},l_{3},l_{4})>20,15,10,7/6 \text{ GeV}]$

120<m_<130 [GeV]

32 observed events 15.9 \pm 2.1 expected [m_H=125 GeV] 11.1 \pm 1.3 background expected

08/11/13

https://cds.cern.ch/record/1523699 Mass measurement

124.3 ^{+0.6} (stat) ^{+0.5} (syst) GeV

Signal strength: **1.7** $^{+0.5}_{-0.4'}$ for $m_{H} = 124.3$ GeV [1.5 ± 0.4, for $m_{H} = 125.5$ GeV]

Dominant contribution to the systematic uncertainty from theory (up to 20%) and electron ID/reconstruction (\leq 4%)

08/11/13

https://cds.cern.ch/record/1523699 Couplings

tCut>2.0 Ge

Disentangle production mechanisms: probe fermion vs vector boson couplings; ratio probes production only (BR cancels out)

3 production-enriched categories:

- VBF-like two jets [p_τ>25/30GeV, m_j>350GeV] with large η separation 1 event [125±5GeV]
- VH-like additional leptons [p₁>8GeV]
- and ggF-like the rest 31 events [125±5GeV]

Rates consistent with SM expectation within 2σ

08/11/13

Event Number: 1 Date: 2011-05-3

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts:

Ideal channel to study spin/CP

- Complete reconstruction of the event topology
- High S/B ratio
- Several discriminants: five production and decay angles, m₁₂, m₃₄

Two approaches:

- BDT for each hypothesis
- ME corrected for acceptance and pairing (J^P MELA)

https://cds.cern.ch/record/1523699 Spin/CP

Compare SM spin-0⁺ hypothesis to spin-0⁻, spin-1[±], spin-2⁺_m ("gravitonlike" model with minimal couplings). [115<m.<130 GeV]

Compatibility with SM spin-0⁺; spin-0⁻ and spin-1⁺ states are excluded at the 97.8% CL or higher using CL_s in favour of spin-0⁺

Conclusions

Run Number: 74566644 Event Number: 74566644 Date: 2011-Channel in ATLAS

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells: Tiles, EM Mass measurement: limited by statistics and systematics; more work and data needed $m_{H} = 124.3 +0.6_{-0.5} (stat) +0.5_{-0.3} (syst) GeV$

 Couplings: categories enriched in exclusive production mechanisms; rates within 2σ the SM expectation

• Spin/Parity: SM spin-0⁺ hypothesis has been compared to alternative models; the results favour $J^P = 0^+$

ATLAS combination on Higg boson properties measurements: http://arxiv.org/abs/1307.1432 http://arxiv.org/abs/1307.1427

08/11/13

Backup

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CE

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells:Tiles, EMC

Event display

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CET

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells:Tiles, EMO

LHC and ATLAS performance

Outstanding LHC performance

Date: 2011-05-30, 06:54:29 CET

[Įp ATLAS Online Luminosity $2010 \text{ nn } \sqrt{s} = 7 \text{ Te}$ **Delivered Luminosity** 30 23.3 fb ion < cm 25 20 15 10 Apr Jul Oct lan Month in Year Peak L_{inst}: 7.7x10³³ cm⁻² s⁻¹

Excellent ATLAS performance

Data-taking efficiency: 93%

Good quality data fraction used for analysis: 95.8%

Challenge: harsh pile-up conditions [trigger, computing, reconstruction of physics objects]

Z \rightarrow µµ event with 25 reconstructed vertices

08/11/13

$H \rightarrow ZZ^{(*)} \rightarrow 4I m_{II}$ distribution

$H \rightarrow ZZ^{(*)} \rightarrow 4I$ yields

		4μ		$2\mu 2e/2e2\mu$		4e	
		low mass	high mass	low mass	high mass	low mass	high mass
.0	$\sqrt{s} = 8 \text{ TeV}$ integrated luminosity 20.7 fb ⁻¹						
u io	$ZZ^{(*)}$	12.4 ± 0.6	92.6 ± 6.7	14.7 ± 0.9	144 ± 11	5.4 ± 0.5	55.9 ± 4.5
сп	$Z, Zb\bar{b}, and t\bar{t}$	2.0 ± 0.6	0.5 ± 0.2	6.1 ± 1.5	1.5 ± 0.4	2.5 ± 0.6	0.6 ± 0.2
h.	total Background	14.3 ± 0.8	92.0 ± 6.6	20.8 ± 1.7	143 ± 11	7.9 ± 0.8	55.8 ± 4.4
es	data	27	93	28	169	13	55
	$m_H = 123 \text{ GeV}$	4.4 ± 0.6		5.4 ± 0.8		2.2 ± 0.4	
	$m_H = 125 \text{ GeV}$	125GeV 5.8 ± 0.7		7.0 ± 0.9		2.9 ± 0.4	
	$m_H = 127 \text{GeV}$ 6.7 ± 0.9		8.4 ± 1.2		3.4 ± 0.5		
	$\sqrt{s} = 7 \text{ TeV}$ integr			ated luminosi	ity 4.6 fb ⁻¹		
	$ZZ^{(*)}$	2.2 ± 0.1	16.8 ± 1.2	2.5 ± 0.2	26.6 ± 2.0	0.8 ± 0.1	9.4 ± 0.8
	$Z, Zb\bar{b}, and t\bar{t}$	0.2 ± 0.1	0.05 ± 0.02	2.4 ± 0.5	0.6 ± 0.1	2.0 ± 0.5	0.53 ± 0.1
	total Background	2.4 ± 0.1	16.7 ± 1.2	4.9 ± 0.6	26.8 ± 2.0	2.8 ± 0.5	9.7 ± 0.7
	data	8	23	5	23	2	13
	$m_H = 123 \text{GeV}$	0.7 ± 0.1		0.8 ± 0.1		0.3 ± 0.1	
	$m_H = 125 \text{ GeV}$	1.0 ± 0.1		1.1 ± 0.2		0.4 ± 0.1	
	$m_H = 127 \text{ GeV}$	1.0 ± 0.2		1.2 ± 0.2		0.4 ± 0.1	

low mass: 100<m₄₁<160 GeV high mass: m₄₁>160 GeV

08/11/13

$H \rightarrow ZZ^{(*)} \rightarrow 4I$ expectation yields

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CET

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells:Tiles, EMC

category	$gg \to H, q\bar{q}/gg \to t\bar{t}H$	$qq' \rightarrow Hqq'$	$q\bar{q} \rightarrow W/ZH$	$ZZ^{(*)}$
		$\sqrt{s} = 8 \mathrm{TeV}$		
ggF-like	13.5	0.79	0.65	320.4
VBF-like	0.28	0.43	0.01	3.58
VH-like	0.06	-	0.14	0.69
		$\sqrt{s} = 7 \mathrm{TeV}$		
ggF-like	2.20	0.14	0.11	57.5
VBF-like	0.03	0.06	-	0.44
VH-like	0.01	-	0.03	0.25

A Toroidal LHC ApparatuS

$H \rightarrow ZZ^{(*)} \rightarrow 4I$ resolution

dominated by detector resolution for low m.

08/11/13

Eleni Mountricha (BNI^{4e}

1.90

2.40

124.4

123.7

$H \rightarrow ZZ^{(*)} \rightarrow 4I$ background processes

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CE

normal

data driven

ormalized

main backgroundirreducible

ttbar

ZZ

- leptons from b jets
 Z+heavy flavor jets (Zbb)
 - leptons from b jets
- Z+light jets
 - misidentified jets

WZ

Data-driven estimation:

- Control regions by relaxing/inverting selection
- Extrapolate to signal region using data or MC x-checked with data

ΙΙ+μμ

ll+ee

C 08/11/13

$H \rightarrow ZZ^{(*)} \rightarrow 4I$ reducible background summary

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells:Tiles, EMC

estimate at $\sqrt{s} = 8 \text{ TeV}$	estimate at $\sqrt{s} = 7 \text{ TeV}$
4μ	4μ
$2.4 \pm 0.5 \pm 0.6^{\dagger}$	$0.22 \pm 0.07 \pm 0.02^{\dagger}$
$0.14 \pm 0.03 \pm 0.03^{\dagger}$	$0.03 \pm 0.01 \pm 0.01^{\dagger}$
$0.10 \pm 0.05 \pm 0.004$	-
2e2µ	$2e2\mu$
$2.5 \pm 0.5 \pm 0.6^{\dagger}$	$0.19 \pm 0.06 \pm 0.02^{\dagger}$
$0.10 \pm 0.02 \pm 0.02^{\dagger}$	$0.03 \pm 0.01 \pm 0.01^{\dagger}$
$0.12 \pm 0.07 \pm 0.005$	-
$2\mu 2e$	$2\mu 2e$
$5.2 \pm 0.4 \pm 0.5^{\dagger}$	$1.8 \pm 0.3 \pm 0.4$
$3.9\pm0.4\pm0.6$	-
$4.3 \pm 0.6 \pm 0.5$	$2.8 \pm 0.4 \pm 0.5^{\dagger}$
4	0
4e	4 <i>e</i>
$3.2 \pm 0.5 \pm 0.4^{\dagger}$	$1.4 \pm 0.3 \pm 0.4$
$3.6\pm0.6\pm0.6$	-
$4.2\pm0.5\pm0.5$	$2.5 \pm 0.3 \pm 0.5^{\dagger}$
3	2
	estimate at $\sqrt{s} = 8 \text{ TeV}$ 4μ $2.4 \pm 0.5 \pm 0.6^{\dagger}$ $0.14 \pm 0.03 \pm 0.03^{\dagger}$ $0.10 \pm 0.05 \pm 0.004$ $2e2\mu$ $2.5 \pm 0.5 \pm 0.6^{\dagger}$ $0.10 \pm 0.02 \pm 0.02^{\dagger}$ $0.12 \pm 0.07 \pm 0.005$ $2\mu 2e$ $5.2 \pm 0.4 \pm 0.5^{\dagger}$ $3.9 \pm 0.4 \pm 0.6$ $4.3 \pm 0.6 \pm 0.5$ 4 4e $3.2 \pm 0.5 \pm 0.4^{\dagger}$ $3.6 \pm 0.6 \pm 0.6$ $4.2 \pm 0.5 \pm 0.5$ 3

$H \rightarrow ZZ^{(*)} \rightarrow 4I$ control plots

Event Number: 182796, Event Number: 74566644 Date: 2011-05 Control region: EtCut>0.3 Gev PrCut>2.0 Gisolation/IP Vertex Cuts: Z direction < requirements Rphi < Icm relaxed in the Electron: Bia subleading dileptons

> Data-driven normalization of the background MC expectation

29180 ATLAS Preliminary) 2/160 Events/5 120 $\mu^{+}\mu^{-}/e^{+}e^{-}+\mu^{+}\mu^{-}$ $\sqrt{s} = 7 \text{ TeV}: \int \text{Ldt} = 4.6 \text{ fb}^{-1}$ √s = 8 TeV: ∫Ldt = 20.7 fb⁻¹ • Data Signal (m_H=125 GeV) 100 ZZ Z+jets Z+µµ 80 tī WZ 60 ⊗Syst.Unc. 40 20 0 60 80 100 m₁₂ [GeV] ≥ 9180 • Data Signal (m₁=125 GeV) ATLAS Preliminary $\mu^{+}\mu^{-}/e^{+}e^{-}+\mu^{+}\mu^{-}$ Z+jets $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.6 \text{ fb}^{-1}$ ŴZ √s = 8 TeV: ∫Ldt = 20.7 fb⁻¹ 120 ⊗Syst.Unc. 100 Ζ+μμ 80 60

50

40

20

0

Eleni Mountricha (BNL)

100

m₃₄ [GeV]

$H \rightarrow ZZ^{(*)} \rightarrow 4I$ systematics

• On the measurement of the signal rate rent Number: 74566644 ret: 2011-05-30, 06-4-2 Luminosity [1.8%/3.6% 2011/2012]

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

- Signal cross section [8%/8%/4% QCD scale/PDF gg/PDF qq]
- ZZ^(*) cross section & shape [5%/8%/4% QCD scale/PDF gg/PDF qq]
- Reducible background estimation & shape
- Electron ID and reconstruction efficiency
 - [signal: 9.4%/8.7%/2.4 4e/2µ2e/2e2µ @125 GeV; ZZ^(*): shape]
- Muon ID and reconstruction eff [<1%]</p>
- On the mass measurement
 - Electron energy scale and resolution [<0.4%]
 - Muon momentum scale and resolution [<0.1%]
- Categories
 - VBF: JES <14%; Underlying event <19%; theory <35%</p>
 - VH: VH-specific cuts <8%; theory <30%</p>

08/11/13

$H \rightarrow ZZ^{(*)} \rightarrow 4I \text{ yields [120-130]}$

Run Numbe **120 < m 130 GeV** Event Numb **120 < m 130 GeV** Date: 24 11-05-30, 06:54:29 CFT

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells:Tiles, EMC

		\sqrt{s}	= 8 TeV				
	total signal	signal (in window)	$ZZ^{(*)}$	Z + jets, $t\bar{t}$	S/B	expected	observed
4μ	5.8 ± 0.7	5.3 ± 0.7	2.3 ± 0.1	0.50 ± 0.13	1.9	8.1 ± 0.9	11
2µ2e	3.0 ± 0.4	2.6 ± 0.4	1.2 ± 0.1	1.01 ± 0.21	1.2	4.8 ± 0.7	4
2e2µ	4.0 ± 0.5	3.4 ± 0.4	1.7 ± 0.1	0.51 ± 0.16	1.5	5.6 ± 0.7	6
4 <i>e</i>	2.9 ± 0.4	2.3 ± 0.3	1.0 ± 0.1	0.62 ± 0.16	1.4	3.9 ± 0.6	6
total	15.7 ± 2.0	13.7 ± 1.8	6.2 ± 0.4	2.62 ± 0.34	1.6	22.5 ± 2.9	27
		\sqrt{s}	= 7 TeV				
4μ	1.0 ± 0.1	0.97 ± 0.13	0.49 ± 0.02	0.05 ± 0.02	1.8	1.5 ± 0.2	2
2µ2e	0.4 ± 0.1	0.39 ± 0.05	0.21 ± 0.02	0.55 ± 0.12	0.5	1.0 ± 0.1	1
2e2µ	0.7 ± 0.1	0.57 ± 0.08	0.33 ± 0.02	0.04 ± 0.01	1.6	0.9 ± 0.1	2
_4e	0.4 ± 0.1	0.29 ± 0.04	0.15 ± 0.01	0.49 ± 0.12	0.5	0.9 ± 0.1	0
total	<u>2.5 ± 0.4</u>	2.2 ± 0.3	<u>1.17 ± 0.07</u>	1.12 ± 0.17	1.0	4.3 ± 0.5	_5
		$\sqrt{s} = 8 \text{ TeV}$	and $\sqrt{s} = 7$	TeV			
4μ	6.8 ± 0.8	6.3 ± 0.8	2.8 ± 0.1	0.55 ± 0.15	1.9	9.6 ± 1.0	13
2µ2e	3.4 ± 0.5	3.0 ± 0.4	1.4 ± 0.1	1.56 ± 0.33	1.0	6.0 ± 0.8	5
2e2µ	4.7 ± 0.6	4.0 ± 0.5	2.1 ± 0.1	0.55 ± 0.17	1.6	6.6 ± 0.8	8
_4e	3.3 ± 0.5	2.6 ± 0.4	1.2 ± 0.1	1.11 ± 0.28	1.2	4.8 ± 0.8	6
total	18.2 ± 2.4	15.9 ± 2.1	7.4 ± 0.4	3.74 ± 0.93	1.6	27.0 ± 3.4	32

$H \rightarrow ZZ^{(*)} \rightarrow 4I \text{ m}_{41}$ distribution in the EXPERIMENT final states

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 (

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells:Tiles, EMC

08/11/13

$H \rightarrow ZZ^{(*)} \rightarrow 4I$ invariant mass distributions

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CET

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells:Tiles, EMC

08/11/13

$H \rightarrow ZZ^{(*)} \rightarrow 4I$ limits in high mass

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CE

$H \rightarrow ZZ^{(*)} \rightarrow 4I$ mass per channel

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CET

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells:Tiles, EMC

$\underbrace{AIL}_{H} \xrightarrow{ZZ} \underbrace{ZZ}_{qq} \xrightarrow{ZZ} \xrightarrow{P} 4I f_{qq} \operatorname{scan}$

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CET

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells:Tiles, EMO

Prospects for HL-LHC

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CE

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Huon: blue Electron: Plot

Exp	xpected number of events for each category [3000 fb ⁻¹								
	Category True Origin]		
		ggF	VBF	WH	ZH	ttH	Background		
	ttH-like	3.1 ± 1.0	0.6 ± 0.1	0.6 ± 0.1	1.1 ± 0.2	30 ± 6	1.6 ± 1.0		
	ZH-like	0.0	0.0	0.01 ± 0.01	4.4 ± 0.3	1.3 ± 0.3	0.06 ± 0.06	i i	
	WH-like	22 ±7	6.6 ± 0.4	25 ± 2	4.4 ± 0.3	8.8 ± 1.8	13 ± 0.8		
	VBF-like	41 ± 14	54 ± 6	0.7 ± 0.1	0.4 ± 0.1	1.0 ± 0.2	4.2 ± 1.5		
	ggF-like	3380 ± 650	274 ± 17	77 ± 5	53 ± 3	25 ± 4	2110 ± 50		

Éxpected relative uncertainties on the µ

$\Delta \mu / \mu$	Total	Stat.	Expt. syst.	Theory		
Production mode	300 fb ⁻¹					
ggF	0.152	0.066	0.053	0.124		
VBF	0.625	0.545	0.233	0.226		
WH	1.074	1.064	0.061	0.085		
ttH	0.535	0.516	0.038	0.120		
Combined	0.125	0.042	0.044	0.108		
	3000 fb^{-1}					
ggF	0.131	0.025	0.040	0.124		
VBF	0.371	0.187	0.225	0.226		
WH	0.390	0.375	0.061	0.085		
ZH	0.532	0.526	0.038	0.073		
tĪH	0.224	0.184	0.034	0.120		
Combined	0.100	0.016	0.036	0.093		

The exclusion limits on the non-SM CP-even coupling g_2 and CP-odd coupling g_4 , given the SM Higgs boson signal

Luminosity	f_{g_4}	f_{g_2}
300 fb^{-1}	0.15	0.43
3000 fb^{-1}	0.037	0.20

https://cds.cern.ch/record/1611123

08/11/13