Higgs spin and parity measurements from CMS

Yi Chen (Caltech) Nov. 8, 2013 US LUO Meeting

Physics reach

- CMS and ATLAS discovered a Higgs-like boson
- The next big question: is this *the* standard model Higgs?
 - What is the J^{CP} property?
 - If there is a small deviation from SM, are we able to detect it?
 - Interference effects deepens amount of phenomenology in this channel
 CMS Vs = 7 (8) TeV, L = 5.1 (12.2) fb⁻¹
- H→ZZ→4l channel allows us to probe the HZZ vertex very cleanly
 - Great S/B ratio, very clean sample for property measurement

Hypothesis testing and f_{a3}

- We are able to distinguish different cases through hypothesis testing
 - Excluded a lot of models!
- As well as measure the amount of mixture from CP-odd coupling to ZZ through higher-order operator on top of SM

$$\begin{split} L \sim v^{-1} X (A_1^{ZZ} m_z^2 Z_\mu Z^\mu + A_2^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_3^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \\ + A_2^{ZA} Z_{\mu\nu} F^{\mu\nu} + A_3^{ZA} Z_{\mu\nu} \tilde{F}^{\mu\nu} \\ + A_2^{AA} F_{\mu\nu} F^{\mu\nu} + A_3^{AA} F_{\mu\nu} \tilde{F}^{\mu\nu}) \\ \end{split}$$

$$\begin{aligned} * \text{ Couplings involving photons are} \end{split}$$

usually not considered in the 4l channel

Yi Chen @ US LUO

Possible next steps

- One natural extension is to measure other couplings arxiv: 1
- Some complementary approaches are possible

arxiv: 1309.4819 arxiv: 1310.1397

- Extending fa3 measurement to measure other pairs of couplings
 - Having advantage of being a natural extension of a wellestablished analysis
 - Easier to implement, but has some limitations
- Construct likelihood and perform a fit to data to directly extract all effective couplings
 - A novel approach: requires a lot of work and thinking
 - Would allow us to extract as many parameters as we want at once
 - More details in the next page

Documentation: in preparation, coming soon

- It's a very ambitious project
 - Both in terms of physics reach and computing
- Construct a continuous detector-level likelihood function as a continuous function of Lagrangian parameters
 - The function is 12 dimensional
 - It includes all interference effects between different couplings
- This is done by convoluting differential cross section with detector effects $P(\vec{X}^{reco} | \vec{A}^{lagrangian}) = Differential cross section \otimes Detector$
 - Through numerical integration (not MC integration)
- Once the likelihood is built it is conceptually straightforward to perform unbinned fit to data and extract parameters

- We take lepton response functions roughly similar to CMS, and smear samples (+efficiency) generated by Madgraph
- Construct likelihood and perform fits to extract result for one pseudo-experiment of 5000 events, floating all parameters at the same time

Parameter	True value	Fitted value	Covariance and correlation matrices
A_2^{ZZ}/A_1^{ZZ}	3.85	3.754 ± 0.073	5.380e-03 2.042e-03 2.120e-04 -1.556e-04 2.319e-05 -1.502e-05 2.042e-03 4.053e-02 -2.874e-04 1.199e-04 -5.645e-05 1.361e-06 2.120e-04 -2.874e-04 1.736e-04 -4.836e-05 1.712e-05 -4.103e-06
A_3^{ZZ}/A_1^{ZZ}	5.05	5.08 ± 0.20	-1.556e-04 1.199e-04 -4.836e-05 3.325e-04 -4.654e-06 2.357e-05 2.319e-05 -5.645e-05 1.712e-05 -4.654e-06 2.279e-05 -2.889e-06
A_2^{ZA}/A_1^{ZZ}	0	-0.005 ± 0.013	-1.502e-05 1.361e-06 -4.103e-06 2.357e-05 -2.889e-06 1.728e-05 PARAMETER CORRELATION COEFFICIENTS
A_3^{ZA}/A_1^{ZZ}	0	0.0006 ± 0.018	NO. GLOBAL 1 3 5 7 9 11 1 0.28386 1.000 0.138 0.219 -0.116 0.066 -0.049 3 0.20259 0.138 1.000 -0.108 0.033 -0.059 0.002
A_2^{AA}/A_1^{ZZ}	0	-0.0012 ± 0.0048	5 0.39476 0.219 -0.108 1.000 -0.201 0.272 -0.075 7 0.36730 -0.116 0.033 -0.201 1.000 -0.053 0.311
A_3^{AA}/A_1^{ZZ}	0	-0.0013 ± 0.0042	9 0.30440 0.066 -0.059 0.272 -0.053 1.000 -0.146 11 0.33779 -0.049 0.002 -0.075 0.311 -0.146 1.000

• The fit is seen to be stable in toy studies, and uncertainty is seen to behave reasonably as a function of dataset size

Summary

- We have reached the milestone of discovering the new particle, now it's time to characterize it
- A lot has been learned about it so far
- We strive to learn as much as we can from data, and with different novel approaches we can do a lot more than before
 - For example study if SM fluctuations can be faked by combinations of different operators
 - Many interesting features in this model space can be probed for the first time with full detector effects
- Exciting physics awaits!

