

Spin determination of a narrow resonance near 125 GeV with the two-photon decay channel at ATLAS

Andrew S. Hard The University of Wisconsin-Madison

US LHC User Organization Annual Meeting November 8, 2013

Motivation

A new particle has been observed by ATLAS and CMS! → Need to measure the properties (spin, parity, mass, etc.)

Di-photon decay indicates the new particle is a boson

- Landau-Yang theorem excludes the spin 1 hypothesis
- Other integer spins remain as possibilities

Separate the standard model ($J^P=0^+$) signal hypothesis from "graviton-like" models (specifically $gg \rightarrow J^P=2^+$)

- Remaining model dependence lies in the coupling strengths of the spin 2 particle to the SM fields
- Focus on gg production. Also possible to set limits on qq production (appendix slides)

Study the resonance properties using di-photon events

Separate signal from background with fit to the yy mass

- Excellent mass resolution (1.77 GeV)
- Fit a narrow signal peak near 125.5 GeV on top of exponentially decreasing background

Signal model from MC

Standard Model Higgs (*J*^P=0⁺)

- NLO predictions from POWHEG + PYTHIA8 parton showering.
- Destructive interference with nonresonant di-photon background
- Tuned to reproduce the re-summed p_T calculation of the HqT program

Spin 2 Model (J^P=2⁺)

- LO predictions from JHU generator + PYTHIA parton showering
- Transverse momentum comes from parton showering in the initial state
- Large impact of Higgs p_T on cos(θ*)
- Reweight p_T to POWHEG prediction:

$$w(p_T) = \frac{1}{\sigma_{POWHEG}} \frac{d\sigma_{POWHEG}}{dp_T} / \frac{1}{\sigma_{PYTHIA}} \frac{d\sigma_{PYTHIA}}{dp_T}$$

Separate 0+ and 2+ spin hypotheses using the angular correlation of the two photons

Collins-Soper frame used to get reference axis z' for $cos(\theta^*)$

- z-axis bisects angle between the momenta of colliding hadrons
- Minimizes impact of ISR
- Better 0⁺ / 2⁺ discrimination

Fit method

Events are divided into yy mass sidebands and signal region

Side-bands: 1D fit in m_{vv}

- Background: O(5) Bernstein polynomial
- Constrains the background shape

Signal region: 2D m_{vv} -cos(θ^*) fit

- Multiple of two 1D shapes
- Signal: Crystal ball + Gaussian mass peak, $\cos(\theta^*)$ shape Events / 2 GeV from MC
- **Background:** $cos(\theta^*)$ shape from m_{vv} sidebands

Method assumes minimal correlation between mass and $cos(\theta^*)$ in background

2000

Events - Fitted bkg

Construct a likelihood ratio teststatistic to separate hypotheses

$$q = \log \frac{L(J^{P} = 0^{+}, \hat{\hat{\mu}}_{0^{+}}, \hat{\hat{\theta}}_{0^{+}})}{L(J^{P} = 2^{+}, \hat{\hat{\mu}}_{2^{+}}, \hat{\hat{\theta}}_{2^{+}})}$$

Generate pseudo-experiments to get expected distribution of the test-statistic

$$CL(J^{P} = 2^{+}) = 1 - \frac{p_{0}(2^{+})}{1 - p_{0}(0^{+})}$$

Exclude the $J^P=2^+$ hypothesis in favor of $J^P=0^+$ at 99.3% *CL*

Expected distributions of the test statistics $g_{0+}(q)$ and $g_{2+}(q)$ from pseudo-experiments.

Conclusions

The $H \rightarrow \gamma \gamma$ channel provides a useful tool for studying the properties of a Higgs-like boson.

20.7 *fb*⁻¹ of 8 *TeV* data were used to set limits on graviton-like $gg \rightarrow J^P = 2^+$ models

Exclude the $gg \rightarrow J^P = 2^+$ models in favor of 0⁺ with 99.3% CL

Fit (points) and 0⁺ expectation (line)

Fit (points) and $gg \rightarrow 2^+$ expectation (line)

ATLAS and CMS Conference Notes and Publications

- 1a Evidence for the spin-0 nature of the Higgs boson using ATLAS data <u>http://arxiv.org/abs/1307.1432</u>
- 1b Evidence for the spin-0 nature of the Higgs boson using ATLAS data (auxiliary plots) <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-01/</u>
- 2 Study of the spin of the Higgs-like boson in the two photon decay channel using 20.7fb⁻¹ of pp collisions collected at √s=8 TeV with the ATLAS detector <u>https://cds.cern.ch/record/1527124</u>
- *3* Properties of the observed Higgs-like resonance decaying into two photons (CMS) <u>https://cds.cern.ch/record/1558930?ln=en</u>
- 4 Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb-1 of proton-proton collision data http://cds.cern.ch/record/1523698
- 5 Measurements of the Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC http://arxiv.org/abs/1307.1427

Additional References

6 L. J. Dixon and M. S. Siu, *Resonance continuum interference in the diphoton Higgs* signal at the LHC, Phys. Rev. Lett. **90** (2003) 252001, arXiv:hep-ph/ 0302233 [hep-ph] http://arxiv.org/pdf/hep-ph/0302233.pdf

20.7 *fb*⁻¹ of data at $\sqrt{s} = 8$ *TeV* from the LHC in 2012

Photon reconstruction

- Energy scale calibrations (and smearing for MC) from *Z→ee*
- *p_T*> 25 GeV
- Iηl<2.37 excluding 1.37<Iηl<1.56 (excluding calo. transition region)
- η corrections from electromagnetic calorimeter pointing.
- Rectangular "tight" ID cuts on calorimeter shower shapes.
- Isolation: $\Sigma E_T^{Calo} (\Delta r=0.4) < 6.0 \ GeV$ $\Sigma p_T^{Track} (\Delta r=0.2) < 2.6 \ GeV$

Event selection

- Trigger: EF_g35_loose_g25_loose
- Vertex reconstruction with artificial neural network, using pointing capabilities of the ATLAS EM calo.
- $p_{T,1} / m_{\gamma\gamma} > 0.35$, $p_{T,2} / m_{\gamma\gamma} > 0.25$

Correlation between m_{vv} and $\cos(\theta^*)$

Analysis method #1 assumes no correlation between the two observables \rightarrow check assumption in data sample

Compare the 1D×1D expectation to the observed events

Gaussian distribution of fluctuations away from the $m_{\gamma\gamma} \times \cos(\theta^*)$ expectation \rightarrow correlations between the two variables are small

Toy test statistics for mixed *gg/qq* production modes

Results for various $qq \rightarrow 2^+$ production fractions

Signal can be produced by $qq \rightarrow X$ as well as $gg \rightarrow X$ Look at $J^P=2^+$ signal from qq and gg in different fractions Observations favor 0⁺ hypothesis over 2⁺ at every f_{qq} point