Spin determination of a narrow resonance near 125 GeV with the two-photon decay channel at ATLAS

Andrew S. Hard

The University of Wisconsin-Madison
US LHC User Organization Annual Meeting
November 8, 2013

Motivation

A new particle has been observed by ATLAS and CMS!
\rightarrow Need to measure the properties (spin, parity, mass, etc.)

Di-photon decay indicates the new particle is a boson

- Landau-Yang theorem excludes the spin 1 hypothesis
- Other integer spins remain as possibilities

Separate the standard model ($J^{P}=0^{+}$) signal hypothesis from "graviton-like" models (specifically $g g \rightarrow J^{P}=2^{+}$)

- Remaining model dependence lies in the coupling strengths of the spin 2 particle to the SM fields
- Focus on gg production. Also possible to set limits on $q q$ production (appendix slides)

Study the resonance properties using di-photon events

Separate signal from background with fit to the YY mass

- Excellent mass resolution (1.77 GeV)
- Fit a narrow signal peak near 125.5 GeV on top of exponentially decreasing background

Signal model from MC

Standard Model Higgs ($\mathrm{J}^{\mathrm{P}}=\mathrm{O}^{+}$)

- NLO predictions from POWHEG + PYTHIA8 parton showering.
- Destructive interference with nonresonant di-photon background
- Tuned to reproduce the re-summed p_{T} calculation of the HqT program

Spin 2 Model ($\mathrm{J}^{\mathrm{P}}=\mathbf{2}^{+}$)

- LO predictions from JHU generator + PYTHIA parton showering
- Transverse momentum comes from parton showering in the initial state
- Large impact of Higgs p_{T} on $\boldsymbol{\operatorname { c o s }}\left(\theta^{*}\right)$
- Reweight p_{T} to POWHEG prediction:

$$
w\left(p_{T}\right)=\frac{1}{\sigma_{\text {POWHEG }}} \frac{d \sigma_{\text {POWHEG }}}{d p_{T}} / \frac{1}{\sigma_{\text {PYTHIA }}} \frac{d \sigma_{\text {PYTHIA }}}{d p_{T}}
$$

$p_{T}{ }^{\gamma \gamma}$

Separate spin hypotheses: $\cos \left(\theta^{*}\right) \operatorname{cs}$

Separate 0+ and 2+ spin hypotheses using the angular correlation of the two photons

Relative p_{T} cuts on the photons remove most correlation with $\boldsymbol{m}_{y r}$

Collins-Soper frame used to get reference axis z^{\prime} for $\cos \left(\theta^{*}\right)$

- z-axis bisects angle between the momenta of colliding hadrons
- Minimizes impact of ISR
- Better $0^{+} / 2^{+}$discrimination

Side-bands

Events are divided into Yy mass sidebands and signal region

Side-bands: 1D fit in $m_{\gamma y}$

- Background: O(5) Bernstein polynomial
- Constrains the background shape

Signal region: 2D $m_{y y}-\cos \left(\theta^{*}\right)$ fit

- Multiple of two 1D shapes
- Signal: Crystal ball + Gaussian mass peak, $\cos \left(\theta^{*}\right)$ shape from MC
- Background: $\cos \left(\theta^{*}\right)$ shape from m_{yy} sidebands

Method assumes minimal correlation between mass and $\cos \left(\theta^{*}\right)$ in background

Statistical result

Construct a likelihood ratio teststatistic to separate hypotheses

$$
q=\log \frac{L\left(J^{P}=0^{+}, \hat{\hat{\mu}}_{0^{+}}, \hat{\hat{\theta}}_{0^{+}}\right)}{L\left(J^{P}=2^{+}, \hat{\hat{\mu}}_{2^{+}} \hat{\hat{\theta}}_{2^{+}}\right)}
$$

Generate pseudo-experiments to get expected distribution of the test-statistic

$$
C L\left(J^{P}=2^{+}\right)=1-\frac{p_{0}\left(2^{+}\right)}{1-p_{0}\left(0^{+}\right)}
$$

Exclude the $J^{P}=2^{+}$hypothesis in favor of $J^{P}=0^{+}$at $99.3 \% C L$

Expected distributions of the test statistics $g_{0+}(q)$ and $g_{2+}(q)$ from pseudo-experiments.

Conclusions

The $H \rightarrow \gamma y$ channel provides a useful tool for studying the properties of a Higgs-like boson.
$20.7 \mathrm{fb}^{-1}$ of 8 TeV data were used to set limits on graviton-like $g g \rightarrow J^{P}=2^{+}$models

Fit (points) and 0^{+}expectation (line)

Fit (points) and $g g \rightarrow 2^{+}$expectation (line)

References

ATLAS and CMS Conference Notes and Publications

1a Evidence for the spin-0 nature of the Higgs boson using ATLAS data http://arxiv.org/abs/1307.1432

1b Evidence for the spin-0 nature of the Higgs boson using ATLAS data (auxiliary plots)
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-01/
2 Study of the spin of the Higgs-like boson in the two photon decay channel using $20.7 \mathrm{fb}^{-1}$ of pp collisions collected at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ with the ATLAS detector https://cds.cern.ch/record/1527124
3 Properties of the observed Higgs-like resonance decaying into two photons (CMS) https://cds.cern.ch/record/1558930? In=en
4 Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb -1 of proton-proton collision data http://cds.cern.ch/record/1523698

5 Measurements of the Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC http://arxiv.org/abs/1307.1427

Additional References

6 L. J. Dixon and M. S. Siu, Resonance continuum interference in the diphoton Higgs signal at the LHC, Phys. Rev. Lett. 90 (2003) 252001, arXiv:hep-ph/ 0302233 [hep-ph] http://arxiv.org/pdf/hep-ph/0302233.pdf

Appendix

$20.7 \mathrm{fb}^{-1}$ of data at $\sqrt{\mathrm{s}}=8 \mathrm{TeV}$ from the LHC in 2012

Photon reconstruction

- Energy scale calibrations (and smearing for MC) from $Z \rightarrow e e$
- $p_{T}>25 \mathrm{GeV}$
- $|\eta|<2.37$ excluding $1.37<|\eta|<1.56$ (excluding calo. transition region)
- $\quad \eta$ corrections from electromagnetic calorimeter pointing.
- Rectangular "tight" ID cuts on calorimeter shower shapes.
- Isolation:

$$
\begin{aligned}
& \sum E_{T}^{C a l o}(\Delta r=0.4)<6.0 \mathrm{GeV} \\
& \Sigma p_{T}^{\text {Track }}(\Delta r=0.2)<2.6 \mathrm{GeV}
\end{aligned}
$$

Event selection

- Trigger: EF_g35_loose_g25_loose
- Vertex reconstruction with artificial neural network, using pointing capabilities of the ATLAS EM calo.
- $\quad p_{T, 1} / \mathrm{m}_{\mathrm{YY}}>0.35, \quad p_{T, 2} / \mathrm{m}_{\mathrm{YY}}>0.25$
- $105 \mathrm{GeV}<\mathrm{m}_{\mathrm{YY}}<160 \mathrm{GeV}$

Correlation between $m_{v y}$ and $\cos \left(\theta^{*}\right)$

Analysis method \#1 assumes no correlation between the two observables \rightarrow check assumption in data sample

Compare the 1D×1D expectation to the observed events
Gaussian distribution of fluctuations away from the $m_{y Y} \times \cos \left(\theta^{*}\right)$ expectation \rightarrow correlations between the two variables are small

Signal can be produced by $q q \rightarrow X$ as well as $g g \rightarrow X$
Look at $J^{P}=2^{+}$signal from $q q$ and $g g$ in different fractions
Observations favor 0^{+}hypothesis over 2^{+}at every $f_{q q}$ point

