Search for the Standard Model Higgs Boson Decaying to $\mu^+\mu^-$ in *pp* Collisions at $\sqrt{s} = 7$ and 8 TeV with the CMS Detector CMS-PAS-HIG-13-007

> Justin Hugon University of Florida

November 8th, 2013

Outline

Motivation

- Outline of the Search
- Results

Conclusions

Justin Hugon, University of Florida

Motivation

Why Search for $H \rightarrow \mu^+ \mu^-$?

- Smallest Coupling Directly Observable at LHC
- Probe 2nd Generation Fermion Coupling
- Precisely Predicted in SM
- Enhanced in Some New Physics Models <u>CMS-PAS-HIG-12-011</u>
- Very Clean Final State

Narrow Signal Peak on a Smoothly Falling Background

Justin Hugon, University of Florida

Search Overview

- Analyze $5.0 \pm 0.1 \, \mathrm{fb^{-1}}$ at 7 TeV & $19.7 \pm 0.5 \, \mathrm{fb^{-1}}$ at 8 TeV
- Select Events with Single Isolated Muon Trigger
- Require 2 High-p_T Isolated Opposite-Sign Muons
- Divide Events into 2 Categories:
 - 0 or 1-Jet:
 - Large Acceptance for Gluon Fusion (GF) Higgs
 - ≥ 2-Jet:
 - Larger S/B for Vector Boson Fusion (VBF) Higgs
- Further Sub-Categorize To Increase Sensitivity
- For each Sub-category, Perform Unbinned Shape Fit
 - Signal Yield & Shape Estimated from MC Corrected to Data
 - Background Yield & Shape Fit to Data

Justin Hugon, University of Florida

0,1-Jet Sub-Categories

First, Split by $p_T(\mu\mu)$

- 0,1-Jet Tight: $p_T(\mu\mu) \ge 10 \,\text{GeV/c}$
- 0,1-Jet Loose: $p_T(\mu\mu) < 10 \, {
 m GeV/c}$
- Reduced Drell-Yan Background in 0,1-Jet Tight

Sub-categorize by Muon $|\eta|$ Based on p_T Resolution

- Barrel: $|\eta| < 0.8$
- Overlap: $0.8 < |\eta| < 1.6$
- \blacksquare Endcap 1.6 $< |\eta| < 2.1$
- Central Dimuons Have Better Mass Resolution

Signal Peak FWHM at $m_H = 125 \,\text{GeV/c}^2$: 3.8-5.9 $\,\text{GeV/c}^2$

Justin Hugon, University of Florida

Search for the Standard Model Higgs Decaying to $\mu^+\mu^-$ with the CMS Detector, CMS-PAS-HIG-13-007

Tight BB & BO Most Powerful 0,1-Jet Categories

0,1-Jet Category Control Plots

Background Drell-Yan Dominated

GF Higgs Peaks at Higher $p_T(\mu\mu)$

Justin Hugon, University of Florida

2-Jet Sub-categories

- VBF Higgs Production Mode Enhanced in 2-Jet Category
- VBF Tight Sub-Category:
 - M(jj)> 650 GeV/c²
 - |Δη(jj)| > 3.5
- GF Tight Sub-Category:
 - M(jj)> 250 GeV/c²
 - $p_T(\mu\mu) > 50 \,\mathrm{GeV/c}^2$
- Loose: All Remaining Events

Large Increase in S/B Due to Jet Requirements

Justin Hugon, University of Florida

Dimuon Mass Distribution: Example 0,1-Jet Categories

Two Categories with Best Mass Resolution

Justin Hugon, University of Florida

Dimuon Mass Distribution: Example 2-Jet Categories

S/B Higher Than 0,1-Jet Background Statistical Uncertainty Also Higher

Justin Hugon, University of Florida

Results: Limits

- 95% CL_s Limit on σ/σ_{SM} for $m_H = 125 \text{ GeV/c}^2$:
 - Expected: 5.1^{+2.3}_{-1.5}×SM
 - Observed: 7.4×SM
 - Limit at m_H = 125 GeV/c² Confirmed by Independent Analysis
- For Best Estimate CMS Higgs Mass¹, 125.7 GeV/c²: ■ $\sigma/\sigma_{SM} = 2.9^{+2.8}_{-2.7}$

¹CMS-PAS-HIG-13-005

Justin Hugon, University of Florida

Results: Significance

 1σ Excess Observed Near 125 GeV/c²

- Driven by 0,1-Jet Tight BB Category
- Not Observed in 2-Jet Categories
- Not Very Significant
- Wide Excess Observed Near 150 GeV/c²
 - Local Significance: 2.3σ
 - Global Significance: **0.8**σ
 - Not Very Significant

No Significant Excess Found

Justin Hugon, University of Florida

Conclusions

- Search Performed for Higgs Decays to $\mu^+\mu^-$
- Increase Sensitivity by Categorizing Events According to Production Mode, $p_T(\mu\mu)$, Muon $|\eta|$, and Di-jet Variables
- \blacksquare Most Significant Excess Found $\sim 1\sigma$
- 95% CL_s Limit on σ/σ_{SM} for $m_H = 125 \, \text{GeV/c}^2$:
 - Expected: 5.1^{+2.3}_{-1.5}×SM
 - Observed: 7.4×SM
 - Limit Confirmed by Independent Analysis
- Best Fit σ/σ_{SM} for $m_H = 125.7 \,\text{GeV/c}^2$:

•
$$\sigma/\sigma_{SM} = 2.9^{+2.8}_{-2.7}$$

Justin Hugon, University of Florida

Backup

Justin Hugon, University of Florida

Muon Selection: 2 Opposite-Sign Isolated Muons, $|\eta| < 2.1$ Leading Muon $p_T > 25 \text{ GeV/c}$, Sub-Leading Muon $p_T > 15 \text{ GeV/c}$

Jet Definition: Particle-Flow Jets, $p_T>30\,{\rm GeV/c},\ |\eta|<$ 4.7, Anti- κ_T , R=0.5

 $p_T^{Miss} \equiv |\vec{p}_T(\mu\mu) + \vec{p}_T(jj)|$

After Muon Selection, All Events Divided into Categories:

- 2-Jet: Leading Jet p_T > 40 GeV/c, Sub-leading Jet p_T > 30 GeV/c, p_T^{Miss} < 40 GeV/c
- 0,1-Jet: All Remaining Muon-Selected Events

Justin Hugon, University of Florida

Table of Categories

0,1-Jet	Tight	BB (Barrel-Barrel)	
	$p_T(\mu\mu) \ge 10 { m GeV/c}$	BO (Barrel-Overlap)	
		BE (Barrel-Endcap)	
		OO (Overlap-Overlap)	
		OE (Overlap-Endcap)	
		EE (Endcap-Endcap)	
	Loose	BB	
	$p_T(\mu\mu) < 10 ~{ m GeV/c}$	BO	
		BE	
		00	
		OE	
		EE	
2-Jet	VBF Tight		
	$M(jj) > 650~{ m GeV/c}^2$ and $ \Delta\eta(jj) > 3.5$		
	GF Tight (not VBF Tight selected)		
	$M(jj)>250~{ m GeV/c^2}$ and $p_T(\mu\mu)>50~{ m GeV/c}$		
	Loose (not VBF Tight and not GF Tight selected)		

Justin Hugon, University of Florida

Control Plots: 2-Jet

Justin Hugon, University of Florida

Control Plots: 2-Jet

Justin Hugon, University of Florida

Control Plots: 2-Jet

Justin Hugon, University of Florida

Dimuon Mass Shapes

Fit Dimuon Mass from 110-160 ${\rm GeV/c}^2$ Signal:

Modeled by a Sum of 2 Gaussians Fit to MC

Background:

 Modeled by an Exponential Divided by a Polynomial Fit to Data:

 $\frac{\exp(\mathbf{p}_1 \cdot \mathbf{M}(\mu\mu))}{(\mathbf{M}(\mu\mu) - \mathbf{p}_2)^2}$

Justin Hugon, University of Florida

Dimuon Mass Distribution: Example 0,1-Jet Categories

Justin Hugon, University of Florida

Dimuon Mass Distribution: Example 0,1-Jet Categories

Justin Hugon, University of Florida

Dimuon Mass Distribution: Example 2-Jet Categories

Justin Hugon, University of Florida

p-Values Per-Category

Justin Hugon, University of Florida

Analysis B Selection

Analysis B Performed Only for $m_H = 125 GeV/c^2$ Muon Selection: 2 Opposite-Sign Isolated Muons $p_T > 25 \text{ GeV/c}, |\eta| < 2.1$

Jet Definition: Jet-Plus-Track Reconstruction, Anti- κ_T , R=0.5

$$p_T > 20 \text{ GeV/c}, |\eta| < 2.6, p_T > 25 \text{ GeV/c}, 2.6 < |\eta| < 4.7, p_T^{Miss} \equiv |\vec{p}_T(\mu\mu) + \vec{p}_T(jj)|$$

After Muon Selection, All Events Divided into Categories:

- 0-Jet
- 1-Jet

$$\blacksquare \ge 1$$
-Jet

Justin Hugon, University of Florida

Analysis B Table of Categories

Analysis B Performed Only for $m_H = 125 GeV/c^2$

0-Jet	$Tight\;(p_{\mathcal{T}}(\mu\mu) \geq 15\mathrm{GeV/c})$		
	Loose $(p_T(\mu\mu) < 15 \mathrm{GeV/c})$		
1-Jet	no subcategories		
2-Jet	VBF Tight		
	$ M(jj)>500{ m GeV/c^2}$ and $ \Delta\eta(jj) >$ 4, for 7 TeV $ \Delta\eta(jj) >$ 3		
	VBF Loose (not VBF Tight selected)		
	$M(jj) > 300 { m GeV/c^2}$ and $ \Delta \eta(jj) > 3$		
	category used only for $\sqrt{s} = 8$ TeV		
	non-VBF (not VBF Tight and not VBF Loose selected)		

Justin Hugon, University of Florida

Analysis B Dimuon Mass Distribution: 0-Jet & 1-Jet Categories

Justin Hugon, University of Florida

Analysis B Dimuon Mass Distribution: Example 2-Jet Categories

Justin Hugon, University of Florida

$\sqrt{s} = 14$ TeV Projections

Exclude SM with 175^{+150}_{-75} fb⁻¹

	$300\mathrm{fb}^{-1}$	$3000{\rm fb}^{-1}$
Significance	2.5σ	7.9σ
Error on σ/σ_{SM} Scenario 1	42%	20%
Error on σ/σ_{SM} Scenario 2	40%	14%
Error on k_μ Scenario 1	23%	8%
Error on k_{μ} Scenario 2	23%	7.5%

- Scenario 1: All Uncertainties Same as Current Analysis
- Scenario 2: Experimental Uncertainties Scale 1/\(\sum \mathcal{L}\), Theoretical Uncertainties Cut in Half

8 TeV Analysis & Samples, with Cross-Sections Rescaled for $\sqrt{s} = 14$ TeV, See: arXiv:1307.7135 [hep-ex]

Justin Hugon, University of Florida

$\sqrt{s} = 14$ TeV Projections

Justin Hugon, University of Florida

$\sqrt{s} = 14$ TeV Projections

 $\sqrt{s} = 14$ TeV, See: arXiv:1307.7135 [hep-ex]

Justin Hugon, University of Florida