ATLAS Highlights and Outlook

Beate Heinemann UC Berkeley and Lawrence Berkeley National Laboratory on behalf of the ATLAS Collaboration

USLUO meeting, Madison/WI, Nov. 7th 2013

The ATLAS Detector

Adelaide, Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, Baku, IFAE Barcelona, Belgrade, Bergen, Berkeley LBL and UC, HU Berlin, Bern, Birmingham, UAN Bogota, Bologna, Bonn, Boston, Brandeis, Bratislava/SAS Kosice, Brazil Cluster, Brookhaven NL, Buenos Aires, Bucharest, Cambridge, Carleton, CERN, Chinese Cluster, Chicago, Chile, Clermont-Ferrand, Columbia, NBI Copenhagen, Cosenza, AGH UST Cracow, IFJ PAN Cracow, SMU Dallas, UT Dallas, DESY, Dortmund, TU Dresden, JINR Dubna, Duke, Edinburgh, Frascati, Freiburg, Geneva, Genoa, Giessen, Glasgow, Göttingen, LPSC Grenoble, Technion Haifa, Hampton, Harvard, Heidelberg, Hiroshima IT, Indiana, Innsbruck, Iowa SU, Iowa, UC Irvine, Istanbul Bogazici, KEK, Kobe, Kyoto, Kyoto UE, Kyushu, Lancaster, UN La Plata, Lecce, Lisbon LIP, Liverpool, Ljubljana, QM London, RH London, UC London, Louisiana Tech, Lund, UA Madrid, Mainz, Manchester, CPPM Marseille, Massachusetts, MIT, Melbourne, Michigan, Michigan SU, Milano, Minsk NAS, Minsk NCPHEP, Montreal, McGill Montreal, RUPHE Morocco, FIAN Moscow, ITEP Moscow, MEPhI Moscow, MSU Moscow, Munich LMU, MPI Munich, Nagasaki IAS, Nagoya, Naples, New Mexico, New York, Nijmegen, Northern Illinois University, BINP Novosibirsk, NPI Petersburg, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Olomouc, Oregon, LAL Orsay, Osaka, Oslo, Oxford, Paris VI and VII, Pavia, Pennsylvania, Pisa, Pittsburgh, CAS Prague, CU Prague, TU Prague, IHEP Protvino, Rome I, Rome II, Rome III, RAL-STFC, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinshu, Siegen, Simon Fraser Burnaby, SLAC, South Africa Cluster, Stockholm, KTH Stockholm, Stony Brook, Sydney, Sussex, AS Taipei, Tbilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Tokyo Tech, Toronto, TRIUMF, Tsukuba, Tufts, Udine/ICTP, Uppsala, UI Urbana, Valencia, UBC Vancouver, Victoria, Warwick, Waseda, Washington, Weizmann Rehovot, FH Wiener Neustadt, Wisconsin, Wuppertal, Würzburg, Yale, Yerevan

FranceSwitzerlandGeorgiaTaiwanGermanyTurkeyGreeceUKIsraelUSAItalyCERNJapanJINR

ATLAS Collaboration

Summary of Run 1 Data Taking

- Run-1 data taking completed in Feb. 2013
- >94% of recorded data used for physics analyses

	√s [TeV]	years	Ldt (rec.)
рр	7	2010-11	5.1 fb ⁻¹
рр	8	2012	21.3 fb ⁻¹
Pb+Pb	2.76	2010-11	160 μb ⁻¹
Pb+p	5	2013	30 nb ⁻¹

 Outstanding performance of LHC machine and ATLAS detector!

Pileup

- Luminosity came with harsh conditions
 - Typically 21 interactions per bunch crossing in 2013
- ATLAS developed techniques to cope

Mean Number of Interactions per Crossing

Performance

Electrons, Photons and Muons

Jets and E_T^{miss}

- Jets and missing E_T well understood at high pileup
 - Techniques developed to reduce resolution degradation at high pileup

Tau ID and B-tagging

- Tau ID and b-tag efficiencies measured with many methods
 - Good agreement among those complementary methods

Recent physics results

New Heavy Ion Results: pPb and PbPb

p

Charged particle multiplicity relative to peripheral collisions

- Particle multiplicity strongly dependent on centrality of pPb collision
 - Increase nearly linear with η

 W charge asymmetry in PbPb data in good agreement with PDFs to within precision of ~5%

Highlights of Standard Model Measurements

Z+jets cross section

Drell-Yan cross section

- Understand if MC models adequately describe data
- Provide data to further improve MC modeling
- Constrain parton distribution functions

13

Top Quark: cross section and mass

172.31 ± 0.23 ± 0.72 ± 1.35

 $173.49 \pm 0.27 \pm 0.33 \pm 0.98$

 $173.29 \pm 0.23 \pm 0.26 \pm 0.88$

 $173.20 \pm 0.51 \pm 0.36 \pm 0.61$

180

± 1.50

± 1.46

± 1.23

182

(iJES) (syst.)

 173.09 ± 0.64

 172.50 ± 0.43

 173.49 ± 0.69

178

176

- **Cross section**
 - Precision measurement using eµ dilepton _ candidates
 - Events with 1 and 2 b-tagged jets
 - Uncertainty: 4.8%
 - Good agreement with theor. Prediction

 $\sigma_{t\bar{t}} = 237.7 \pm 1.7 \text{ (stat)} \pm 7.4 \text{ (syst)} \pm 7.4 \text{ (lumi)} \pm 4.0 \text{ (beam energy) pb}$

- Mass
 - Precision measurements in I+jets and dilepton channels
 - lepton+jets channel uses novel 3D fit to constrain b-jet energy scale in situ
 - Combined with CMS

Single Top Quark Production

- Single top production via different diagrams:
 - t-channel
 - s-channel
 - Wt
- Wt measurement using boosted decision tree

 $\sigma(pp \rightarrow Wt + X) = 27.2 \pm 2.8 \text{ (stat)} \pm 5.4 \text{ (syst) pb}$

15

Summary of SM Measurements

Higgs Boson Physics

Higgs Boson Production

Production rate know to 2-10%

- Various production mechanisms sensitive to different Higgs
- 18 couplings (top quark versus W boson)

Higgs Boson Decay

Higgs Boson Signals

 $\mu_{VBF} / \mu_{qqF+ttH}$

Spin Determination

 $J^{P} = 1^{-} \quad J^{P} = 2^{+}$

 $J^{P} = 0^{-}$

J^P = 1⁺

H→ bb Search

- Associated production:
 - WH->lvbb
 - ZH->IIbb or vvbb
- Difficult backgrounds
 - W/Z+jets, top, single top
- Control channels
 - WZ->lvbb
 - ZZ->IIbb or vvbb

W,Z

W, Z bremsstrahlung

$$\mu_{VZ,Z->bb} = 0.9\pm0.2 \quad (SM=1)$$

$$\mu_{VH,H->bb} = 0.2\pm0.5(stat)\pm0.4(syst)$$

(consistent with both µ=0 and µ=1) 22

Higgs: differential cross-section measurements

- First differential cross section measurements of Higgs production
 - $p_T(\gamma\gamma), |y_{\gamma\gamma}|, |\cos\theta^*|, p_T(j1), N(jets), \Delta\phi(jj), p_T(\gamma\gamma jj)$
 - In fiducial region
- Will help understand accuracy of MC models and QCD calculations
 - Critical for precision measurements!
- Measurements consistent with current state-of-the-art predictions
 - PowHeg, MINLO, HRes1.0

New Physics Searches

ATLAS SUSY Searches* - 95% CL Lower Limits

 $\mathbf{e}, \boldsymbol{\mu}, \boldsymbol{\tau}, \boldsymbol{\gamma}$ lets \mathbf{E}^{miss} (f dt[fb⁻¹]

Status: SUSY 2013 Model

	Model	e, μ, τ, γ	Jets	E ^{miss}	∫£ dt[fb	⁻¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow \tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{1} \rightarrow q q \mathcal{W}^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0} \\ GMSB (\tilde{\ell} NLSP) \\ GMSB (\tilde{\ell} NLSP) \\ GGM (bino NLSP) \\ GGM (mio NLSP) \\ GGM (mio NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ GFavitino LSP \end{array} $	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 5.8 10.5	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. ẽ med.	$\begin{array}{c} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{-1} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{-1} \end{array}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	š 1.2 TeV m($\tilde{\chi}_1^0$)<600 GeV š 1.1 TeV m($\tilde{\chi}_1^0$)<350 GeV š 1.34 TeV m($\tilde{\chi}_1^0$)<400 GeV š 1.3 TeV m($\tilde{\chi}_1^0$)<300 GeV	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{array}{c} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow \tilde{b}_1^{\tilde{\gamma}_1} \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow \tilde{t}_1^{\tilde{\gamma}_1} \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow \tilde{t}_1^{\tilde{\gamma}_1} \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow \tilde{b}_1^{\tilde{\gamma}_1} \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow \tilde{b}_1^{\tilde{\gamma}_1} \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow \tilde{t}_1^{\tilde{\gamma}_1} \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow \tilde{t}_1^{\tilde{\gamma}_1} \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \tilde{t}_1 \rightarrow \tilde{t}_1^{\tilde{\gamma}_1} \\ \tilde{t}_1 \tilde{t}_1 (\text{heatyn}), \tilde{t}_1 \rightarrow \tilde{t}_1^{\tilde{\gamma}_1} \\ \tilde{t}_1 \tilde{t}_1 (\text{ntural GMSB}) \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{array} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 3 \ e, \mu \ (Z) \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{c} \tilde{\ell}_{1,\mathbf{R}}\tilde{\ell}_{L,\mathbf{R}},\tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1} \rightarrow \tilde{\nu}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}Z\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}L\tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ 1 e, μ	0 0 - 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(GMSB, \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}, \log-lived \tilde{\chi}_1^0$ $\tilde{q}, \tilde{\chi}_1^0 \rightarrow q q \mu$ (RPV)	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{\chi}_{1}^{+} \widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{1}^{+} \rightarrow W \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow e \widetilde{v}_{\mu}, e \mu \\ \widetilde{\chi}_{1}^{+} \widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{1}^{+} \rightarrow W \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \tau \tau \widetilde{v}_{e}, e \tau \\ \widetilde{g} \rightarrow q q \\ \widetilde{g} \rightarrow \widetilde{t}_{1} t, \ \widetilde{t}_{1} \rightarrow b s \end{array} $	$ \begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ \tilde{v}_{e} 4 \ e, \mu \\ \tilde{v}_{\tau} 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array} $	- - 7 jets - - 6-7 jets 0-3 <i>b</i>	Yes Yes Yes Yes	4.6 4.7 20.7 20.7 20.3 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-097
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , µ (SS) 0	4 jets 1 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 800 GeV m(χ)<80 GeV, limit of <687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8$ TeV partial data	√s = full	8 TeV data		10 ⁻¹ 1 Mass scale [TeV]	25

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS Preliminary

Direct chargino/neutralino production

- Dominant decay mode depends on details of SUSY model
 - Use simplified models to assess broad range of possibilities
 - Recently first analysis with Higgs in decay chain (difficult!!)
 - Probing up LSP masses between 0 and 300 GeV depending on SUSY parameters

Third Generation Squarks

- Third generation SUSY searches directly related to hierarchy problem
 - Does the stop protect the Higgs?
- Very active area of searches
 - Many decay modes possible depending of mass hierarchies of involved sparticles
- Most recent search
 - Top decay to charm+LSP
 - First search with c-tagging at LHC

Probing stop masses up to ~700 GeV and LSP masses up to 250 GeV

 $m_{\widetilde{\chi}_1^0}$ [GeV]

Exotica Searches Summary

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)

Large ED	(ADD) : monojet + E _{7,miss}	L=4.7 fb ⁻¹ , 7 TeV [1210.4491]			4.37 TeV M _D (δ=2)		
Large ED (ADD	D) : monophoton + $E_{T,miss}$	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]		1.93 TeV	$M_D(\delta=2)$		ATLAS
Large ED (ADD) : d	liphoton & dilepton, m _{yy / II}	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]			4.18 TeV M_{S} (HLZ δ=3,	NLO)	Preliminany
sio	UED : diphoton + $E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]		1.40 TeV Comp	pact. scale R ⁻¹		rienninary
sui	S ¹ /Z ₂ ED : dilepton, m _{il}	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]			4.71 TeV M _{KK} ~ R ⁻¹		
ne	RS1 : dilepton, m	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]		2.47 Te	 Graviton mass (k/M_{PI} 	= 0.1)	
등 RS1	: WW resonance, m _{T,NIV}	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]		1.23 TeV Gravito	n mass (k/M _{PI} = 0.1)	f	4 000 0 -1
σ Bull	k RS : ZZ resonance, m	L=7.2 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-150]	850 Ge	Graviton mass	ss (k/M _{PI} = 1.0)	Lat = (1 - 20) fb
$\frac{1}{2}$ RS $g_{KK} \rightarrow t\bar{t}$ (BF	R=0.925) : tt \rightarrow I+jets, m_{tt}	L=4.7 fb ⁻¹ , 7 TeV [1305.2756]		2.07 TeV	g _{kk} mass		= 7 8 TeV
$\square ADD BH'(M_{TH}/M_{p})$	=3) : SS dimuon, N _{ch. part.}	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]		1.25 TeV M _D (δ=	6)	10	- 7,0 160
ADD BH (MTH /M	$_{\rm D}$ =3): leptons + jets, $\Sigma p_{\rm T}$	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]		1.5 TeV M _D ((8=6)		
Quantum	black hole : dijet, $F_{ij}(m_{jj})$	L=4.7 fb ⁻¹ , 7 TeV [1210.1718]			4.11 TeV M _D (δ=6)		
_ qqqq c	contact interaction : $\chi(m)$	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]			7.6 TeV A	_	
G	qqll CI: ee & µµ, m	L=5.0 fb ⁻¹ , 7 TeV [1211.1150]			13.9 Te	 A (construct 	ive int.)
uutt CI : S	S dilepton + jets + $E_{T,miss}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]		3	. <u>з те</u> Л (С=1)		
	Z' (SSM) : m _{ee/μμ}	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]		2.86	TeV Z' mass		
	Z' (SSM) : m _{ττ}	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]		1.4 TeV Z' ma	ISS		
Z' (leptophobic	topcolor) : $t\bar{t} \rightarrow l+jets, m_{t}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-052]		1.8 TeV Z	mass		
-	W' (SSM) : m _{T,e/µ}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]		2.55 Te	V W' mass		
	VV' (\rightarrow tq, g =1) : m_{tq}	L=4.7 fb ⁻¹ , 7 TeV [1209.6593]	430 GeV W ma	SS			
	$W'_{R} (\rightarrow tb, LRSM) : m_{tb}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-050]		1.84 TeV	V' mass		
α Scalar LQ pair (β =	1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 GeV	1" gen. LQ mass	6		
Scalar LQ pair (β =	=1) : kin. vars. in μμjj, μνjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 GeV	2 ^{ne} gen. LQ mas	SS		
Scalar LQ pair (β	=1) : kin. vars. in ττjj, τνjj	L=4.7 fb ⁻¹ , 7 TeV [1303.0526]	534 GeV 3	gen. LQ mass			
4 th	generation : t't'→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV	ť mass			
3×3 4th generation : D D $\rightarrow 5$	S dilepton + jets + $E_{T,miss}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	720 GeV	b' mass			
Ž Ž Vecto	pr-like quark : $TT \rightarrow Ht+X$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-018]	790 GeV	T mass (isosp	bin doublet)		
Ve	ctor-like quark : CC, mixq	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.1	12 TeV VLQ mas	ss (charge -1/3, coupling	$\kappa_{qQ} = v/m_Q$	
Excited quar	ks : γ-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]		2.46 Te\	/ q* mass		
C Excited qua	arks : dijet resonance, m _{ij}	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]			3.84 TeV q* mass		
Excited b qu	ark : W-t resonance, m	L=4.7 fb ⁻¹ , 7 TeV [1301.1583]	870 Ge	v b* mass (left	t-handed coupling)		
Excited iej	ptons : I-y resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]		2.2 TeV	I* mass ($\Lambda = m(I^*)$)		
Techni-hadrons	(LSTC) : dilepton, m _{ee/µµ}	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 Ge	ν $ρ_{T}/ω_{T}$ mass ($m(\rho_T/\omega_T) - m(\pi_T) = M_W)$		
Techni-hadrons (LSTC) :	WZ resonance (IVII), m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-015]	920 G	ev ρ _T mass (m	$(\rho_{T}) = m(\pi_{T}) + m_{W}, m(a_{T}) =$	= 1.1 <i>m</i> (ρ _τ))	
Major. neutr. (LRSM	, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]		1.5 TeV N m	ass $(m(W_R) = 2 \text{ TeV})$		
Heavy lepton N ⁻ (type III see	saw) : Z-I resonance, mzi	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-019]*	N ⁻ mass (V	= 0.055, V _µ = 0.	$.063, V_{\tau} = 0)$		
6 H_ (DY prod., BR(H_	\rightarrow II)=1) : SS ee (µµ), m	L=4.7 fb ⁻¹ , 7 TeV [1210.5070]	409 Gev H ^{⊥⊥} ma	ss (limit at 398 0	GeV for μμ)		
Color octet sc	alar : dijet resonance, m _{jj}	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]		1.86 TeV S	Scalar resonance mass		
Multi-charged particles (DY prod	 highly ionizing tracks 	L=4.4 fb ⁻¹ , 7 TeV [1301.5272]	490 GeV mas	s (q = 4e)			
Magnetic monopoles (DY prod	 highly ionizing tracks 	L=2.0 fb ⁻¹ , 7 TeV [1207.6411]	862 Ge	w mass			
						I	
		10 ⁻¹		1	10		10 ²
						Maga	
						111111111111111111111111111111111111111	

*Only a selection of the available mass limits on new states or phenomena shown

Future

The LHC roadmap

Run-2 Physics Cross Sections

- Run-2 will most likely see pp collisions at \sqrt{s} =13 TeV
- Large increase in cross section

– Increase ~5 for M=1 TeV and ~10 for M=2 TeV

Discovery potential beyond Run-1 with a few fb⁻¹

Constraints on top squarks

- Constraints ever improving from both ATLAS and CMS
- However, pretty natural scenarios still allowed, e.g

• LHC (and HL-LHC) will be able to discover such scenarios

M(gluino)=1.5 TeV, m(stop)=300 GeV, m(LSP)=200 GeV

What can H(125) tell us about new physics?

From Higgs Snowmass Report (arXiv:1310.8361)

Model	K _V	К _b	κ _ν
Singlet mixing	~ 6%	~ 6%	~ 6%
2HDM	~ 1%	~ 10%	~ 1%
Decoupling MSSM	~-0.0013%	~ 1.6%	~ -0.4%
Composite	~ -3%	~ -(3-9)%	~ -9%
Top Partner	~ -2%	~ -2%	~ +1%

- Run-1 probes couplings with ~30% accuracy
 - No serious challenge for BSM models
- Run-2+Run-3: precision ~10-20%
- HL-LHC required to get ~2-5% precision
 - Will challenge models predicting subtle deviatio
 - Some rare decays (Z γ , $\mu\mu$,...) become only accessible with HL-LHC
- 170M Higgs bosons produced at HL-LHC
 - About 3M useful for precision measurements

New physics at the weak scale

• Even if Nature is finetuned and stop is heavy we have other reasons for new physics at weak scale

- Unification of couplings, Dark Matter, ...

• E.g. in "split-SUSY" other scalars are all heavy but gauginos are at ~low mass of the scalars are all heavy but at the state of the scalars are all heavy but gauginos are at ~low mass.

ATLAS Upgrade Plans

Ongoing: Phase-0 upgrades (LS-1)

Insertable B-Layer

- Production/Integration ongoing
- Installation of IBL in the pixel detector, in the pit: May 2014
- Important ingredient for low mass, radhard construction: 2 cm x 2 cm FE-I4 Pixel Chip, 130 nm CMOS process
- Will stay until Phase-II

b-tagging rejection vs pile-up

New service quarter panels

- At end of run-1 5% of Pixel modules were not working
- New SQPs recovered majority of dead channels: live fraction 95.2% => 98.9%

Phase-1 Upgrades: FTK and L1Topo

- Fast TracKer (FTK)
 - Dedicated, hardware-based track finder
 - Runs after L1, on duplicated Si-detector read-out links
 - Provides tracking input for L2 for the full event
 - Finds and fits tracks (~ 25 µs) in the ID silicon layers at an "offline precision"

- Installation for Run-2
 - L1Topo expected to be ready for 2015
 - ³⁷ FTK: partial system in 2015, full system in 2016

L1Topo

- Topological L1 trigger
- Correlate L1 objects with each other
- E.g. deltaphi(MEt, jet) for ZH→vvbb

Phase-1 Upgrades: NSW and LAr

- New Muon Small Wheels
 - improved tracking and trigger capabilities
 - position resolution < 100 μm
 - Meets Phase-II requirements
 - compatible with $<\mu>=200$, up to L~7x10³⁴ cm⁻²s⁻¹
 - Technology: MicroMegas and sTGCs
 - Reduce muon trigger thresholds

LAr calorimeter

- LAr Calorimeter readout
 - Use higher granularity in trigger
 - In space and in energy resolution
 - Use shower shape variables
 - Improve energy resolution
 - Reduce electron, photon, tau, jet and missing ET trigger thresholds

Installation of both during LS2

Phase-2 Upgrade: New Inner TracKer (ITK)

- Current Inner Detector (ID)
 - Designed to operate for 10 years at L=1x10³⁴ cm⁻²s⁻¹ with <µ>=23, @25ns, L1=100kHz
- Limiting factors at HL-LHC
 - Bandwidth saturation (Pixels, SCT)
 - Too high occupancies (TRT, SCT)
 - Radiation damage: Pixels (SCT) designed for 400 (700) fb⁻¹

Microstrip Stave Prototype

Quad Pixel Module Prototype

New 130nm prototype strip ASICs in production

incorporates L0/L1 logic

Sensors compatible with 256 channel ASIC being delivered

Lol layout new (all Si) ATLAS Inner Tracker for HL-LHC

New Tracking detector cont.

- Studies with LOI layout
 - Robust tracking (14 layers)
 - Occupancy <1% for $<\mu>=200$
 - Reduced material w.r.t. current ID
 - Better tracking performance at <µ>=200 than current ID at <µ>=0
- Prototypes tested to 2x HL-LHC flux
- Solid baseline design
 - Working on further optimisation, e.g. tracking up to |η|=4.0 for tagging vertex of forward jets in VBF processes?

Light jet rejection, ID (w/IBL) and ITk

Conclusions and Outlook

- LHC has delivered large datasets and ATLAS has operated very efficiently
 - Thanks to machine team for outstanding performance!
- 267 publications on collision data submitted by ATLAS
 - Higgs boson discovered at M~125 GeV
 - looks rather SM-like at first glance but higher precision needed
 - Many searches for new physics
 - Severely constrains many models
 - Many precision measurements
 - Improve understanding of theoretical models and tools
- Exciting future prospects
 - Run-2 probes new territory with a few fb⁻¹ of 13 TeV data
 - And probe Higgs boson more deeply
 - HL-LHC will do precision Higgs physics (~2-5% precision on couplings)
 - HL-LHC is Higgs factory: 170M Higgs bosons produced! (3M "useful")
 - HL-LHC will significantly extend reach for many searches
 - Or provide data to explore any new discovery made earlier!!
- Significant upgrades are required to fully explore the future LHC runs
 - Strong technical expertise required from world-wide collaborators

Backup Slides

Trigger system architecture

- New design for Phase II
 - 2-level system, Phase-I L1 becomes Phase-II L0, new L1 includes tracking
 - Make use of improvements made in Phase 1 (NSW, L1Calo) in L0
 - Introduce precision muon and inner tracking information in L1
 - Better muon pT resolution
 - Track matching for electrons,...

L1Track Trigger

• Adding tracking information at Level-1 (L1)

- Move part of High Level Trigger (HLT) reconstruction into L1
- Goal: keep thresholds on $p_{\scriptscriptstyle T}$ of triggering leptons and L1 trigger rates low

Triggering sequence

- L0 trigger (Calo/Muon) reduces rate within 6 µs to ≥ 500 kHz and defines Rols
- L1 track trigger extracts tracking info inside Rols from detector FEs

Challenge

• Finish processing within the latency constraints

New result from monojet signature with a "fat jet" which could be from a W or Z decay Complements earlier "inclusive monojet" searches

Search is for WIMP (χ) pair-production

 \rightarrow missing-E_T signature

Limits placed in context of effective theories of DM interactions with SM particles: spin-independent (D5) and spindependent(D9) with $C(u)=\pm C(d)$ (sign enhances $W\chi\chi$)

arXiv:1309.4017