Search for SUSY with Razor kinematic variables in 0 -lepton channel

Anton Kravchenko
Univ. of South Carolina

Physics process being studied

- R parity conserved, strong direct gluino pair production with the gluino decaving to the LSP via the emission of two (top) quarks (0-lepton only)
- Assume BF $\left(\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}\right)=100 \%$
- On-shell requirement: $\mathrm{m}_{\text {gluino }}-\mathrm{m}_{\text {LSP }}>2 * \mathrm{~m}_{\text {top }}$
- Signature: multijets + missıng energy
- 78 different mass scenarios are considered $\mathrm{q} \overline{\mathrm{q}}, \mathrm{gg} \rightarrow \tilde{\mathrm{g}} \tilde{\mathrm{g}} \rightarrow \mathrm{t} \overline{\mathrm{t}} \tilde{\chi}_{1}^{0} \mathrm{t} \bar{\chi}_{1}^{0}$

Razor variables. [Plots are signal MC.]

Razor variables:

mass variables: $M_{R}^{\prime}, M_{T}^{R}$
discriminator: R $\mathrm{R}=\frac{\mathrm{M}_{\mathrm{T}}^{\mathrm{R}}}{\mathrm{M}_{\mathrm{R}}^{\prime}} \sim \frac{\mathrm{E}_{\mathrm{T}}^{\text {miss }}}{\mathrm{H}_{\mathrm{T}}}$

Tends to be flat for signal and peaks at low values for background
arXiv:1006.2727
$M_{\mathrm{T}}^{R}=\left[\frac{1}{2} \times\left|\mathbf{E}_{\mathrm{T}}^{\text {miss }}\right| \times\left(\left|\mathbf{j}_{\mathbf{1}, \mathbf{T}}\right|+\left|\mathbf{j}_{\mathbf{2}, \mathbf{T}}\right|\right)\right.$

$$
\left.-\frac{1}{2} \times \mathbf{E}_{\mathrm{T}}^{\text {miss }} \cdot\left(\mathbf{j}_{1, \mathbf{T}}+\mathbf{j}_{2, \mathbf{T}}\right)\right]^{1 / 2},
$$

$$
M_{R}^{\prime}=\sqrt{\left(j_{1, E}+j_{2, E}\right)^{2}-\left(j_{1, z}+j_{2, z}\right)^{2}}
$$

E_{T} miss,M_{T}^{R} will take on
small
values
$\mathrm{m}_{\text {gluino }}=1000 \mathrm{GeV}, \mathrm{m}_{\tilde{\chi}_{1}^{0}}=100 \mathrm{GeV}$

longitudinal info allows to probe different kinematic phase space


```
MR
measure the
same mass
scale, one as
an end-
point and the
other as a
peak
```


Signal, Backgrounds in R vs. MR plane

W+jets and ttbar+ jets peak at M_{R} values partially determined by the W and top quark masses, respectively.

Initial estimates of the background distributions are obtained from the individual simulated background components, but their shape and normalization are then corrected using data.

Search Regions in R vs MR plane

Baseline Selection (in back-up) sample is split into two statistically independent regions: b-veto and b-tag. Then, using R vs $M R$ as an optimization plane, one can identify regions with high $\mathrm{N}_{\text {sig }} / \mathrm{sqrt}\left(\mathrm{N}_{\text {bkg }}\right)$ - call them Signal Regions (SRs); based on the MC event yields one can further select regions that are enriched in specific background and have minimal signal contamination - call them Control Regions (CRs); additionally, Validation Region (VRs) are constructed to evaluate the agreement between data and MC simulation.

Multijet Control Region MR distributions

By design, the multijet background is dominant in these regions. The small contributions from ttbar and $\mathrm{W}+\mathrm{jets}$ are constrained by other CRs in simultaneous fit.

Under dominant Multijets background B-veto channel has more of $\mathrm{W}+\mathrm{jets}$, and B-tag - more of Top, as one would expected.
Important: Data and MC have good MR shape agreement. Other distributions ($\mathrm{N}_{\text {jets }}$ and $\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}$ in back up) don't have a bias.

W+jets and Top Control Region R distributions

electron channel

muon channel

Low R regions are dominated by fake backgrounds, and at moderate -tohigh R they are dominated by W+jets.

Low R regions are dominated by fake backgrounds, and at moderate -tohigh R they are dominated by ttbar.

Signal Regions: MR distributions

Fit is done using shape of MR'. MET and HT distribution are shown in backup. NO bump is present on top of falling Standard Model backgrounds in MR', MET and HT distributions. The biggest deviation is -1.4 sigma is created in the last two bins of MR' in b-tag channel.

ATLAS

Region

Signal Region
Had. b-veto
Had. b-tag

Deviation

$-2 \sigma=1 \sigma \quad+1 \sigma+2 \sigma$

Signal region	Had. b-veto Had. b-tag	
Observed events	4 -	$30-2$ Dãta
Fitted background events	5.5 ± 15	
	Fitted background decomposition	
Fitted top events	0.40 ± 0.14	21 ± 3
Fitted W/Z events	4.9 ± 1.3	3.8 ± 0.7
Fitted W W diboson events	0.03 ± 0.02	0.029 ± 0.010
Fitted multijet events	0.25 ± 0.10	14 ± 5
Fitted charge flip events	0 ± 0	0 ± 0
Fitted fake lepton events	0 ± 0	0 ± 0
Expected background events	6.7	55
	Expected background decomposit	
MC exp. top events MC exp. W/Z evisefore Fit		30
		4.0
MC exp. W W diboson events	0.04	0.046
MC exp. multijet events	0.20	21
Charge flip events (estimated from data)	0	0
Fake lepton events (estimated from data)	0	0
Tight M_{R}^{\prime} cut (GeV) 600 1100 Discovery Cut		
Observed events		
Background events $<\underline{-6.2} \pm 1.8-\underline{13} \pm \overline{3} \geq \mathrm{M}$		
p_{0}-value (Gauss. σ) Model=	$0.72(-0.57)$	0.91 (-1.35)
Upper limit on $N_{\text {BSM }}$ independen	$5.2\left(6.3_{\downarrow 4.3}^{+9.4}\right)$	6.5 (9.3 $3_{\downarrow 6.9}^{\dagger 12.9}$)
$\underline{\text { Upper limit on } \sigma \text { (fb) } 1 \mathrm{limin} \text { (t! }}$	$1.1\left(1.3_{\downarrow 0.9}^{\dagger 2.0}\right)$	$1.4\left(2.0{ }_{\downarrow 1.5}^{\dagger 2 .}\right)$

- With $20.3 \mathrm{fb}^{-1}$ ATLAS data, and using a new Razor analysis, limits should improve!
- Will add simplified direct productio squark model:
- Monojet: add Dark Matter model (CMS theory paper Phys. Rev. D 86, 015010 (2012) claiming the Razor is the best for DM search)

Extras

SUSY-like event from Razor point of view

A high- $M_{R}{ }^{\prime}$ event in the all-hadronic b-tagged jet veto signal region, run 184169, event 74479248. $M_{R}{ }^{\prime}=1125 \mathrm{GeV}, \mathrm{R}=0.45$. Six jets with $p_{T}>20 \mathrm{GeV}$ are present in the event. The leading jet has $\left(p_{T}, \eta, \varphi\right)=(270 \mathrm{GeV}, 1.36,1.27)$. The sub-leading jet has $\left(p_{T}, \eta, \varphi\right)=(270 \mathrm{GeV},-0.54,2.92)$. The missing transverse momentum in the event is 445 GeV at $\varphi=-0.86$. A muon that fails the baseline selection cuts is visible near $\eta=0$.

SUSY-like event from Razor point of view

A high- $M_{R}{ }^{\prime}$ event in the all-hadronic b-tagged jet signal region, run 189194, event 33828762. $M_{R}{ }^{\prime}=735 \mathrm{GeV}, \mathrm{R}=0.70$. Six jets with $p_{T}>20 \mathrm{GeV}$ are present in the event. The leading jet has $\left(p_{T}, \eta, \varphi\right)=(338 \mathrm{GeV},-0.76,1.52)$. The sub-leading jet has $\left(p_{T}, \eta, \varphi\right)=$ ($150 \mathrm{GeV},-1.57,-0.52$). The missing transverse momentum in the event is 467 GeV at $\varphi=-2.24$. The event has two baseline electrons that fail the signal isolation and shower shape requirements.

Baseline, CRs, SRs, VRs selection

Baseline Selection:

GRL, Cleaning Cuts (against cosmic muons and beam backgrounds),
EF j100 ht400 is fired and efficient, $N_{\text {jets }}>5, N_{\text {elec }}=0$ (or pelec ${ }_{\mathrm{T}}<25 \mathrm{GeV}$), $N_{\text {muon }}=0$ (or $p^{\text {muon }}{ }_{\mathrm{T}}<20 \mathrm{GeV}$)
For W+jets and Top+jets CRs, VRs: EF e20 medium requires a single electron with ET > 20 GeV , EF mu18, requires a single muon with $\mathrm{pT}>18 \mathrm{GeV}$

Name	Leptons	$\cdots-\bar{b}$-jets	$N_{\text {Jets }}$	R range	M_{R}^{\prime} range	Number of bins
CControl regions ${ }^{\text {- }}$						
Had. \bar{b}-veto $\overline{\text { Multijet }}$	0 leptons	$=0$	>5	$0.3<R<0.4$	$800<M_{R}^{\prime}<2000 \mathrm{GeV}$	12 in M_{R}^{\prime}
Had. b-tag Multijet	0 leptons	>0	>5	$0.2<R<0.3$	$1000<M_{R}^{\prime}<2000 \mathrm{GeV}$	10 in M_{R}^{\prime}
$e W+$ jets	1 electron	$=0$	>5	$0<R<0.7$	$300<M_{R}^{\prime}<400 \mathrm{GeV}$	7 in R
$\mu W+$ jets	1 muon	$=0$	>5	$0<R<0.7$	$300<M_{R}^{\prime}<400 \mathrm{GeV}$	7 in R
$e t \bar{t}$	1 electron	>0	>5	$0<R<0.7$	$400<M_{R}^{\prime}<650 \mathrm{GeV}$	7 in R
$\mu t \bar{t}$	1 muon	>0	>5	$0<R<0.7$	$400<M_{R}^{\prime}<650 \mathrm{GeV}$	7 in R
Signal regions						
Had. b-veto	0 leptons	$=0$	>5	$R>0.70$	$600<M_{R}^{\prime}<1200 \mathrm{GeV}$	3 in M_{R}^{\prime}
Had. b-tag	0 leptons	>0	>5	$R>0.40$	$900<M_{R}^{\prime}<1500 \mathrm{GeV}$	3 in M_{R}^{\prime}
Validation regions						
Had. \bar{b}-veto Multijet	0 leptons	$=0$	>5	$0.4<R<0.6$	$800<M_{R}^{\prime}<2000 \mathrm{GeV}$	N/A
Had. b-tag Multijet	0 leptons	>0	>5	$0.3<R<0.4$	$1100<M_{R}^{\prime}<2000 \mathrm{GeV}$	N/A
1-lep b-veto $W+$ jets	1 lepton	$=0$	>5	N/A	$400<M_{R}^{\prime}<550 \mathrm{GeV}$	N/A
1-lep b-tag $t \bar{t}$	1 lepton	>0	>5	N/A	$700<M_{R}^{\prime}<850 \mathrm{GeV}$	N/A

MR

Njets

MET

R

Njets

MR'

