

Cross-Section Measurement of $Z(\nu\nu)\gamma$ in the ATLAS Detector

Benjamin Auerbach (Argonne National Laboratory)

Why Bother?

- It has been used as a background for exotic photon + met analyses
 - but (!) Hadn't been measured at ATLAS before
- > If we can collect a pure sample Z(vv)y events can help constrain limits on aTGC more than Z(II)y
- Small W(lv) y excess over predictions from previous Z(ll)y and W(lv)y analysis
- Is the excess just Wy? Or did we not have enough Zy events?

Thursday, November 7, 13

Data Sample and Kinematic Cuts

- Used full 7 TeV dataset = 4.64 fb⁻¹
- Lowest energy, non-prescaled single photon trigger:
 - photon with $E_T > 80 \text{ GeV}$
- Photon Cut: $E_T > 100 \text{ GeV}$
 - Chosen to be consistent with Wy and Z(II)y
- Exactly 0 electrons, and exactly 0 muons
- Require Missing $E_T > 90 \text{ GeV}$
 - Negative vector sum of all energy deposits
- Largest SM backgrounds:
 - W(ev): electron is misidentified as a photon
 - W(Iv)y: do not detect the charged lepton
 - Z(vv)+jets: jet -> photon
- Performed two simultaneous measurements:
 - Requiring exactly 0 jets (exclusive), and any number of jets (inclusive)

Putting Everything Together in Tables

USLUO Lightning Round B Auerbach

Data-Driven

Measuring the W(ev) background

- Know that electrons can and do fake photons
- Z(ee) events reconstructed as Z(ey) gives a perfect control sample
- Need at least one electron or the photon to have $E_T > 100 \text{ GeV}$
- Use two regions for the higher E_T object $|\eta| < 1.37$ and $1.52 < |\eta| < 2.47$

Thursday, November 7, 13

Jets misidentified as photons

- Can construct a 2-D grid:
- tight and (loose and !tight) and isolation energies
- Assessing the amount of Z(vv)
 +jets -> photon + MET
- Can calculate the amount in A = B*C/D * correlation
- correlation factor comes from Z(vv)+jets MC
- A,B,C, and D corrected from SM processes with real photons
 - γ +jets, W γ , Z(II) γ , ...

Use a region with large statistics to extrapolate into a signal region

USLUO Lightning Round B Auerbach

Measured cross sections in fiducial phase space

	$\sigma^{ m ext-fid}[m pb]$	$\sigma^{ m ext-fid}[m pb]$
	Measurement	MCFM Prediction
	$N_{ m jet} \geq 0$	
$e^+e^-\gamma$	$1.30 \pm 0.03 \text{ (stat)} \pm 0.13 \text{ (syst)} \pm 0.05 \text{ (lumi)}$	1.18 ± 0.05
$\mu^+\mu^-\gamma$	$1.32 \pm 0.03 \text{ (stat)} \pm 0.11 \text{ (syst)} \pm 0.05 \text{ (lumi)}$	1.18 ± 0.05
$\ell^+\ell^-\gamma$	$1.31 \pm 0.02 \text{ (stat)} \pm 0.11 \text{ (syst)} \pm 0.05 \text{ (lumi)}$	1.18 ± 0.05
$\nu \bar{\nu} \gamma$	$0.133 \pm 0.013 \text{ (stat)} \pm 0.020 \text{ (syst)} \pm 0.005 \text{ (lumi)}$	0.156 ± 0.012
	$N_{ m jet}=0$	
$e^+e^-\gamma$	$1.07 \pm 0.03 \text{ (stat)} \pm 0.12 \text{ (syst)} \pm 0.04 \text{ (lumi)}$	1.06 ± 0.05
$\mu^+\mu^-\gamma$	$1.04 \pm 0.03 \text{ (stat)} \pm 0.10 \text{ (syst)} \pm 0.04 \text{ (lumi)}$	1.06 ± 0.05
$\ell^+\ell^-\gamma$	$1.05 \pm 0.02 \text{ (stat)} \pm 0.10 \text{ (syst)} \pm 0.04 \text{ (lumi)}$	1.06 ± 0.05
$\nu \bar{\nu} \gamma$	$0.116 \pm 0.010 \text{ (stat)} \pm 0.013 \text{ (syst)} \pm 0.004 \text{ (lumi)}$	0.115 ± 0.009

Phys. Lett. B 717 (2012) 49-69

Zy measurements are all consistent with MCFM predictions

How does data compare to simulation?

Inclusive jets sample, shows agreement

Agreement in the Missing E_T sample

USLUO Lightning Round B Auerbach

Phys. Lett. B 717 (2012) 49-69

Photon E_T in the Z(vv)y

USLUO Lightning Round B Auerbach

Phys. Lett. B 717 (2012) 49-69

Conclusions

- Zy cross sections have been measured in both inclusive and exclusive jet multiplicity
- See very good agreement between Zy and theoretical predictions
- Improvements to selection and analysis have been identified

1-Dimensional Limit Setting on aTGC

Thursday, November 7, 13