

1

Search for W' \rightarrow tb in the hadronic final state

November 7, 2013

Introduction

- What is W'?
 - A new, heavy, Standard-Model-like gauge boson
 - Same charge, and spin as Standard Model W gauge boson
- W' boson is consequence of physics beyond the Standard Model
 - e.g. Extra Dimension model, Little Higgs models, technicolor
- Search channels
 - W' \rightarrow Iv, I = e, μ
 - W' \rightarrow tb
 - W' \rightarrow WZ

proton proto

- W' \rightarrow tb channel
 - Only experimental results on W' \rightarrow tb \rightarrow lvbb, I = e, μ
 - <u>ATLAS limits</u> (14.3 fb⁻¹): 1.74 TeV (W',) and 1.84 TeV (W',)
 - Stay tuned for the coming CMS talk
 - No result on W' \rightarrow tb \rightarrow qqbb yet
 - Advantages: $t \rightarrow Wb \rightarrow qqb$ has three times higher branching ratio than t \rightarrow Wb \rightarrow lvb. Hadronic channel has better mass resolution $_{2}$
 - Disadvantage: enormous QCD background

$W^{\prime} \rightarrow tb$ in hadronic final state search strategy

- Given the current high W' \rightarrow tb mass limit, W' has high mass if exists
 - Top is boosted, decay products of top merged
 - Reconstruct top decay products by large-R jets
 - Use jet substructure information to distinguish top jets from light jets
- Tagged dijet events
 - One top-tagged large-R (R=1.0) jet with P $_{\rm T}$ > 350 GeV and $|\eta|$ < 2.0
 - One b-tagged small-R (R=0.4) jet with P $_{\rm T}$ > 350 GeV and $|\eta|$ < 2.5
- Two channels
 - 1 btag channel: only b-tag high P_{T} recoiling small-R jet
 - 2 btag channel: b-tag an small-R jet inside top jet as well
- Search for a bump in the M_{tb} spectrum
 - Start the search at W' mass > 1.5 TeV
 - Analysis currently blinded at W' mass < 1.3 TeV
- Main background is QCD dijets. ttbar is less than 2% in 1 btag channel and about 10% for 2 btag channel.

Jet substructure variables for top-tagging

- Splitting scale \sqrt{d}_{12} , n-subjettiness $\tau_{_{21}}$ and $\tau_{_{32}}$ are used to distinguish top jets and light jets
 - Splitting scale $\sqrt{d_{12}}$

- Expected value ~M_{jet}/2 for jets that consist of massive particles from 2body decay, and a steeply falling spectrum for light jets
- n-subjettiness τ_m
 - Ratio related to subjet multiplicity
 - Peak at 0 when more likely to have m subjets; peak at 1 when more likely to have n subjets

Cut-based top tagger for boosted hadronic top

- Optimize splitting scale $\sqrt{d_{12}}$, n-subjettiness
 - $\tau_{_{21}}$ and $\tau_{_{32}}$
 - Use $eff_{signal} / \sqrt{eff_{background}}$ for optimization
 - Signal: 2 TeV W[']_L MC
 - Background: PYTHIA QCD dijets with jet P_T between 0.5-1.0 TeV
 - Optimize n-subjettiness after applying \d₁₂ to improve performance over the full jet mass range

• $\sqrt{d_{12}}$ > 40 GeV, τ_{32} < 0.65, τ_{21} > 0.4, τ_{21} < 0.9

Cut-based top tagger: efficiencies

- Top tagging efficiency as a function of truth jet $\mathsf{P}_{_{\mathrm{T}}}$
 - Use large-R jets that satisfy ΔR < 0.4 with top quarks from W' sample to obtain top tagging efficiency
 - Top jet with $\rm P_{T}$ of 750 GeV has an efficiency of 47.5% in 2 TeV $\rm W'_{L}$ \rightarrow tb MC
- Top tagging mis-tag rate for light jets as a function of truth jet $\mathsf{P}_{_{\mathrm{T}}}$
 - Use PYTHIA QCD dijet MC
 - 7.2% mis-tag rate for 750 GeV light jets

- Estimations of ttbar
 - Hadronic: MC@NLO+Herwig
 - Semileptonic: Powheg+PYTHIA
- Data-driven ABCD method for QCD dijet background in 1 btag channel
 - Use top tagging criterion on large-R jet and b-tagging criterion on small-R jet (∆R(two jets) > 2.0) to set control regions
 - Correlation is the only systematics, 1.1%±0.7% at M_{tb} < 1.3 TeV by using PYTHIA QCD dijet MC
 - Since the same object is reconstructed as both large-R and small-R jets, defining control region A and B is ambiguous
 - Select large-R jet with lower jet mass to be the large-R jet, and the higher jet mass one to be small-R jet
 - Work in progress for 2 btag channel

	not b-tagged	b-tagged
not top-tagged	N _A	N _B
top-tagged	N _c	N _{Signal}

Background estimation: ABCD method for 1btag channel

- ABCD method
 - Scale N_C by factor obtained from comparing N_A and N_B, and extrapolate into signal region
 - ABCD extrapolation = $N_{c}(N_{B}/N_{A})$
 - Bin-by-bin scaling
 - Here shows example by using MC

	not b-tagged	b-tagged
not top-tagged	N _A	N _B
top-tagged	N _c	N _{Signal}

ABCD extrapolation VS. signal in MC

Summary

- W' → tb is a well-motivated, interesting, and unique search channel for many theories beyond the Standard Model
- Top from W' is boosted given the current high W' mass limit
 - Reconstruct top decay products as one large-R jet
 - Use jet substructure information to distinguish top from light jets
- Looking for dijets events with one jet top-tagged and the other one btagged
 - 2 btag channel: additional b-tagged small-R jet inside top
- QCD dijets is the main background and is estimated by data-driven ABCD method in 1 btag channel
- Work on-going, hopefully result will come out soon :)
- Thank you!

backup

Splitting scale

 $Vd_{12} = min(pT(1), pT(2)) \times dR(1, 2)$

- If the distance between the subjets is large, Vd_{12} is large.
- If the softer of the two subjets in the last clustering has high pT, then Vd₁₂ is large.
- Both these things indicate large Vd_{12} in symmetric two body decays.

N-subjettiness

- If constituent k is within, or close to, a subjet, the d_k will be small.
- Sum over all the d_k , and divide by $d_0 = \Sigma(p_T(k) \times R)$, where R is the initial jet radius.
- Now Σd_k / d₀ is the two-subjettiness, τ₂. If this is small, the jet is very two-subjetty. If it is close to 1 (or above- see note * below) then it is not.
- To get τ₁, demand a single subjet. To get τ₃, demand exactly three, and take the minimum of the three dR(i,k) values.

* Note: the min(dR(1,k),dR(2,k) can be larger than R. If the average min is larger than R $_2$ (unlikely but possible), we get a value for τ_2 that is larger than 1.