LHCb Charm Mixing and CPV Measurements Mixing and CPV from Wrong-Sign $D^0 \rightarrow K\pi$

Adam Davis USLUO Annual Meeting 2013

University of Cincinnati On Behalf of the LHCb Collaboration

November 7, 2013

Mixing in a Nutshell

- ▶ Neutral Mesons produced as flavor eigenstates $(|D^0\rangle, |\overline{D}^0\rangle)$
- Time Evolution:

$$i\hbar \frac{\partial}{\partial t} \left(\begin{array}{c} |D^0\rangle\\ |\overline{D}^0\rangle \end{array} \right) = \left(\mathbf{M} - \frac{i}{2} \mathbf{\Gamma} \right) \left(\begin{array}{c} |D^0\rangle\\ |\overline{D}^0\rangle \end{array} \right)$$

- ▶ Mass/Lifetime Eigenstates: $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$, $|p|^2 + |q|^2 = 1$
- $m_{1,2}$ and $\Gamma_{1,2}$ are eigenvalues of mixing Hamiltonian
- ▶ Mixing occurs when mass/lifetime≠flavor eigenstates

$$x = \frac{m_2 - m_1}{\Gamma} \quad y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}, \ \Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$$

• CPV in mixing occurs when $\left|\frac{q}{p}\right| \neq 1$ and/or $\phi = \arg\left(\frac{q}{p}\right) \neq 0$

A. Davis

LHCb Charm Mixing and CPV Measurements

Why Charm?	LHCb	The Result	Impact

- Only up-type quark system with mixing/CPV
- Mixing enters at 1 loop level in SM. GIM and CKM suppressed
- Non-perturbative long-range effects may dominate short-range interactions, difficult to calculate
- ▶ $x, y \leq \mathcal{O}(10^{-3})$ in short distance, max ~ $\mathcal{O}(10^{-2})$ in long distance
- CPV expected to be $\leq O(10^{-3})$ in SM c
- ▶ If CPV observed at O(10⁻²) \rightarrow New Physics (NP)

A. Davis

Why Charm?	LHCb	The Result	Impact
CPV Fit Stragegy	/	$6 (a) D^0 \rightarrow P$	(π
► For small <i>x</i> &	y, $R(t) = rac{WS(t)}{RS(t)} =$		+ LHCb
$R_D + \sqrt{R_D} y' \left(\right)$	$\left(\frac{t}{\tau}\right) + \frac{\left(x'^2 + y'^2\right)}{4} \left(\frac{t}{\tau}\right)^2$	≈ 4 	
$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{c} cc\\ -s\end{array}\right)$	$\left(\begin{array}{cc} \operatorname{sin}\delta & \operatorname{sin}\delta \\ \operatorname{sin}\delta & \cos\delta \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right)$	$6 \xrightarrow{(b)} \overline{D}^0 \rightarrow k$	$(\pi$
Split sample in	to $D^0(D^{*+})$ and $\overline{D}^0(D^{*-})$		• CPV allowed No direct CPV - No CPV -
• $R(t)^{\pm} = \left(\frac{WS(t)}{RS(t)}\right)^{\pm}$	$\left(\frac{t}{t}\right)^{\pm} =$		
$R_D^{\pm} + \sqrt{R_D^{\pm}} y'^{\pm}$	$=\left(rac{t}{ au} ight)+rac{(x^{\prime\pm})^2+(y^{\prime\pm})^2}{4}\left(rac{t}{ au} ight)^2$		
• Direct CPV \rightarrow	$R_D^+ eq R_D^-$		
Indirect CPV -	$ ightarrow \left(x^{\prime 2+},y^{\prime +} ight) eq \left(x^{\prime 2-},y^{\prime -} ight) $	0 2 4	6 20
• $K\pi$ detection a	asymmetry and secondary dec	cay	t/τ

A. Davis LHCb Charm Mixing and CPV Measurements

accounted for in fit

Results

Results consistent with CP Conservation

A. Davis

LHCb Charm Mixing and CPV Measurements

The Impact: World Average, All-CPV allowed

April 2013

(w/ LHCb 2011 1 fb $^{-1}$

September 2013

(LHCb 2011+2012, 3 fb⁻¹

 $D^0 \rightarrow K\pi$

For the second s

 0.91 ± 0.10

Indirect CPV

 In the case of Indirect CPV, *φ* and |*q*/*p*| are related (superweak constraint)

$$\tan\phi = \left(1 - \frac{q}{p}\right)\frac{x}{y}$$

Dataset	q/p [%]	$\phi[^{\circ}]$	
HFAG April 2013	100.4 ± 6.5	-1.6 ± 2.5	
LHCb $D^0 \rightarrow K\pi$ CPV	100.0 ± 1.6		
(no other CPV params)	100.9 ± 1.0	-0.5 ± 0.0	
LHCb CPV	00.2 ± 1.2	$\downarrow 0.4 \pm 0.7$	
+ prior measurements	99.3 ± 1.3	$\pm 0.4 \pm 0.7$	

Why Charm?	LHCb	The Result	Impact

Summary

- ▶ We are in the era of precision neutral charm mixing and CPV
- LHCb is leading the way (as it is in many other flavor physics measurements)

Backup Slides

The Impact: Comparison to other experiments

HFAG-like Fit: Formalism

• Construct χ^2 for combining all results

$$\chi^2 = \vec{\epsilon}^{\,\mathcal{T}} \sigma^{-1} \vec{\epsilon} \tag{1}$$

- ▶ $\vec{\epsilon} = \vec{m} \vec{p}$, where m_i is a measurement and p_i is the proposed value.
- σ = e_ic_{ij}e_j is N × N matrix, N is number of measurements
 e is each individual error and c_{ij} is the correlation coefficient.
- If uncorrelated, get $\sum_i \chi_i^2$