



# Search for heavy particles decaying to top and bottom quarks with the CMS Detector

David Sperka (On Behalf of the CMS Collaboration) USLUO Meeting, November 8th 2013



### **Beyond the Higgs**



 The CMS and ATLAS collaborations have observed a new boson with mass ~125 GeV, consistent with the type predicted by Brout, Englert, Higgs, Guralnik, Hagen, Kibble, et. al. Nobel Prize in Physics, 2013

• Fundamental scalar particles such as the Standard Model Higgs receive divergent corrections to their mass from other SM particles:



• Restricting fine tuning to the 10% level requires new physics which cuts off these divergent contributions [1]:

 $\begin{array}{ll} \Lambda_{top} \lesssim 2 \ TeV & \Lambda_{gauge} \lesssim 5 \ TeV & \Lambda_{Higgs} \lesssim 10 \ TeV \\ \end{array} \\ \mbox{There is strong motivation for beyond the Standard Model} \\ \mbox{new physics at energy scales accessible by the LHC!} \end{array}$ 



### **Motivation for W' particles**

• Many new physics models which explain the light Higgs mass introduce new particles which cancel the divergences of the top, gauge, and self-coupling loops

 Our search focuses on a heavy new charged gauge boson, referred to as a W', which is predicted by many theories, for example:

Little Higgs [1], Extra Dimensions [2,3], Extended Technicolor [4], Left-Right Symmetry [5] We perform a search for a W' boson which decays to a top+bottom quark pair



- Complimentary to searches in other channels such as W'  $\rightarrow$   $\ell v,$  W'  $\rightarrow$  WZ
- Small QCD background compared to light quark decays W' → qq' → The couplings to third generation fermions may also be enhanced [6]
- Extremely important in models with a right-handed neutrino

### Method

 The most general, lowest-order Lagrangian which describes the W' coupling to fermions can be written as [7]:

$$\mathcal{L} = \frac{V_{f_i f_j}}{2\sqrt{2}} g_w \overline{f}_i \gamma_\mu \left( a_{f_i f_j}^R (1 + \gamma^5) + a_{f_i f_j}^L (1 - \gamma^5) \right)^\mu f_j + \text{H.c.}$$

- Both left- and right-handed couplings are allowed, and if the lefthanded coupling is non-zero, the W' will interfere with the SM W
- Interference effects significantly change the shape of the M(tb) distribution
   The full effect of interference surface can be taken into account by simulating three different signal samples with lefthanded, right-handed, or leftand right-handed fermionic couplings [8]







The top quark 4-momentum can be reconstructed by combining the lepton and MET (constrained to the W boson mass), and a jet which gives a mass closest to the nominal top quark mass. The W' 4-momentum is determined by combining the top quark candidate with the highest pt remaining jet

# **Standard Model Backgrounds**

Top pair



W+jets



Top pair + single top: Normalized to ~NNLO cross section, shape taken from simulation and checked in control region

#### W+jets: Shape from MC and checked in a control region, normalization derived from the data

| $b \qquad \qquad$ |                      |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Process                                                                                                                                  | $\sigma$ (pb)        |
| tt                                                                                                                                       | 234 (~NNLO)          |
| Single top $t$ -channel $(tqb)$                                                                                                          | $56.4 ~(\sim NNLO)$  |
| Single top $t$ -channel $(\overline{t}q\overline{b})$                                                                                    | $30.7 ~(\sim NNLO)$  |
| Single top $tW$ -channel                                                                                                                 | $11.1 ~(\sim NNLO)$  |
| Single top $\overline{t}W$ -channel                                                                                                      | $11.1 ~(\sim NNLO)$  |
| $W(\rightarrow)\ell\nu + jets$                                                                                                           | 37509.0 (NNLO)       |
| $Z/\gamma^* (\to \ell \ell) + \text{jets} (M_{\ell \ell} > 50)$                                                                          | 3503.71 (NNLO)       |
| WW                                                                                                                                       | 54.838 (NLO)         |
| Single top $s$ -channel $(t\overline{b})$                                                                                                | $3.79 ~(\sim NNLO)$  |
| Single top $s$ -channel $(\overline{t}b)$                                                                                                | $1.76 \ (\sim NNLO)$ |
|                                                                                                                                          |                      |

 $l^+$ 

# M(tb) after all selection cuts







- To further increase the signal to background ratio, we apply cuts on three additional variables
- Optimized cut values to improve expected sensitivity

130 < m(top) < 210 GeV pt(top) > 85 GeV pt(j1,j2) > 140 GeV

# The tb invariant mass spectrum is also well described by the background prediction $\rightarrow$ no evidence for resonant tb production



Resonant tb production with a cross section greater than the solid black line is disfavored at 95% confidence level

Theoretical cross section is shown in red, for two different right handed neutrino mass hypotheses

# **Combined Limit**





Aside: indirect theoretical limit from neutral kaon mass difference  $ightarrow M_{W_R}\gtrsim 2.4\,{
m TeV}$ David Sperka: USLUO Meeting, Nov. 8th 2013



# **Generalized Couplings Analysis**



• The cross section for pp  $\rightarrow$  W/W'  $\rightarrow$  tb in the presence of a W' boson with left and right handed couplings can be written as:

$$\sigma = \sigma_{SM} + a_{ud}^{L} a_{tb}^{L} (\sigma_{L} - \sigma_{R} - \sigma_{SM}) + \left( \left( a_{ud}^{L} a_{tb}^{L} \right)^{2} + \left( a_{ud}^{R} a_{tb}^{R} \right)^{2} \right) (\sigma_{R}) + \frac{1}{2} \left( \left( a_{ud}^{L} a_{tb}^{R} \right)^{2} + \left( a_{ud}^{R} a_{tb}^{L} \right)^{2} \right) (\sigma_{LR} - \sigma_{L} - \sigma_{R})$$

Construct templates by weighting the signal distributions according this equation
We scan the parameter space and for each set of couplings determine the mass a which the expected / observed limit equals the theoretical cross section and build contours



#### Expected Limits on leftand right-handed coupling strengths

# **Generalized Couplings Limits**





# Limits on coupling strengths can be used to constrain more general models of W' production



### Conclusions



- We have performed a search for W'  $\rightarrow$  tb analysis using the 8 TeV dataset
  - Several new physics models predict this type of resonance
  - For a W' with only right handed couplings, we exclude W' masses below 2.03 TeV, which is represents a significant improvement over the previous result and is the most stringent limit to date in this channel
    - Previous result: M(W') > 1.85 TeV
  - We have also set limits on the W' mass for an arbitrary combination of left- and right-handed coupling strengths
     → CMS is the only LHC experiment doing this analysis
  - Exciting times ahead when the LHC searches will start to be able to probe past the indirect theoretical bounds



### References



M. Schmaltz, D. Tucker-Smith, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229
 T. Appelquist, H.-C. Cheng, B.A. Dobrescu, Phys. Rev. D 64 (2001) 035002
 H.C. Cheng et al, Phys. Rev. D64 (2001) 065007
 R.S. Chivukula, E.H. Simmons, J. Terning, Phys. Rev. D 53 (1996) 5258
 R.N. Mohapatra and J.C. Pati, Phys. Rev. D11 (1975) 566
 E. Malkawi, T. Tait, and C.P. Yuan, Phys. Lett. B385 (1996) 304
 Z. Sullivan, Phys. Rev. D 66 (2002) 075011
 E.E. Boos et. al, Phys. Atom. Nucl. 69 (2006) 1317

#### Backup Slides

[9] CMS Collaboration, CMS-PAS-TOP-12-027
[10] ATLAS Collaboration, ATLAS-CONF-2013-050
[11] CMS Collaboration, Phys. Lett. B (2013) 718
[12] A. Maiezza et al, Phys. Rev. D 82 (2010) 055022
[13] M. Nemevsek et al, Phys. Rev. D 83 (2011) 115014



# **Monte Carlo Validation**



#### Тор

- It has been observed that the pt(top) is not well described by the simulation [9]
- Therefore, we reweight the tibar MC to match the top pt distribution observed in data

#### W+jets

W+jets heavy flavor fractions derived from data using pre b-tag and 0 b-tag samples
The W+jets shape in MC is also validated using the 0-tag sample from data after subtracting the other backgrounds



Uncertainties related to the determination of the background predictions from data are included in the limit setting procedure



# **Event Yields**



| Process                                    | Number of Events |            |       |                 |       |               |       |                 |       |  |
|--------------------------------------------|------------------|------------|-------|-----------------|-------|---------------|-------|-----------------|-------|--|
|                                            | Electrons        |            |       |                 |       | Muons         |       |                 |       |  |
|                                            | b-tagged jets    |            | Ad    | Additional cuts |       | b-tagged jets |       | Additional cuts |       |  |
|                                            | = 1              | $  \geq 1$ |       |                 | = 1   | $\geq 1$      |       |                 |       |  |
| Data                                       | 63050            | 72696      |       | 20238           |       | 62955         | 72820 |                 | 20639 |  |
| Signal:                                    |                  |            |       |                 |       |               |       |                 |       |  |
| s-channel                                  | 176              | 269        | 86    |                 |       | 197           | 299   | 96              |       |  |
| $M(W'_{R} =) 1700 \text{ GeV}$             | 90               | 117        | 84    |                 |       | 77            | 99    | 70              |       |  |
| $M(W'_{R} =) 1900 \text{ GeV}$             | 41               | 52         | 37    |                 |       | 35            | 44    |                 | 31    |  |
| $M(W'_R =) 2100 \text{ GeV}$               | 19               | 24         | 17    |                 |       | 16            | 20    | 14              |       |  |
| Background:                                |                  |            |       |                 |       |               |       |                 |       |  |
| tī                                         | 36169            | 44575      | 14663 |                 |       | 36989         | 45703 |                 | 14923 |  |
| <i>t-</i> channel                          | 2124             | 2484       | 823   |                 | 2287  | 2662          | 866   |                 |       |  |
| <i>t</i> W-channel                         | 2571             | 2934       | 959   |                 | 2659  | 3033          | 979   |                 |       |  |
| $W(\rightarrow \ell \nu)$ +jets            | 19707            | 20263      | 3687  |                 | 19438 | 20108         |       | 3717            |       |  |
| $Z/\gamma^* (\rightarrow \ell \ell)$ +jets | 1492             | 1575       | 271   |                 | 1505  | 1578          |       | 293             |       |  |
| WW                                         | 206              | 216        | 50    |                 | 220   | 226           |       | 49              |       |  |
| Total Background                           | 62269            | 72047      | 20452 |                 | 63098 | 73310         |       | 20826           |       |  |
| MC / Data                                  | 0.988            | 0.991      |       | 1.011           |       | 1.002         | 1.007 |                 | 1.009 |  |

#### **Observed number of events matches well with the background prediction**



# **Limit Setting Procedure**



We perform a binned likelihood analysis to calculate the 95% confidence level upper limits on the W' production cross section
Wide range of systematic uncertainties are incorporated into the limit setting procedure:

### **Systematic Uncertainties**

Dominant sources for the signal: Jet Energy Scale, B-tagging efficiency Dominant sources for the background: W+jets heavy flavor fraction, top pt reweighting

| Source                                    | Rate Uncertainty        | Shape |
|-------------------------------------------|-------------------------|-------|
| Luminosity                                | 4.4%                    | No    |
| Trigger Efficiency                        | $2\%/1\%~(e/\mu)$       | No    |
| Lepton efficiencies                       | 1%                      | No    |
| Jet Energy Scale                          | $\pm 1\sigma(p_T,\eta)$ | Yes   |
| Jet Energy Resolution                     | $\pm 1\sigma(p_T,\eta)$ | Yes   |
| b-tagging (CSVM)                          | $\pm 1\sigma(p_T,\eta)$ | Yes   |
| c-tagging (CSVM)                          | $\pm 1\sigma(p_T,\eta)$ | Yes   |
| light quark mis-tagging (CSVM)            | $\pm 1\sigma(p_T,\eta)$ | Yes   |
| matching and $Q^2$ scale                  | $\pm 1\sigma$           | Yes   |
| Pileup                                    | $\pm 1\sigma$           | Yes   |
| W+ jets Heavy Flavor                      | $\pm 1\sigma$           | Yes   |
| W+jets Shape (data/MC diff using 0-btags) | $\pm 1\sigma$           | Yes   |
| Top $p_T$ reweighting                     | $\pm 1\sigma$           | Yes   |

#### BOSTON UNIVERSITY

# **Previous Results**



- Search by ATLAS with 14.3 fb-1 at sqrt(s)=8 TeV set a limit of 1.84 TeV [10]
- Best published result comes from the CMS experiment at 7 TeV, excluding right-handed W' bosons with masses below 1.85 TeV [11]





# Other Search Channels for right-handed W'







# Low Energy Constraints



There are several low energy observables which would be modified by the presence of a right-handed W' boson [12,13] In the minimal Left-Right model: A. Maiezza et al, Phys. Rev. D 82 (2010) 055022

By restricting the new physics contribution to the neutral kaon  $M_{W_R} \gtrsim 2.4 \,\mathrm{TeV}$ mass difference to be less than the measured difference  $\rightarrow$ 

If neutrinoless double beta decay is observed, it would narrow greatly the allowed parameter space. Limits on lifetime can also set exclusions, along with LFV processes and cosmology, though these are more model dependent

M. Nemevsek et al. Phys. Rev. D 83 (2011) 115014





 $M_{W_{R}}$ 

[GeV]



### **Updated Exclusions**





arxiv1206.0256

David Sperka: USLUO Meeting, Nov. 8th 2013

20