Search for pair production of resonances decaying to top quark + jet in the dilepton final state with the CMS detector

Gala Nicolas Kaufman

Cornell University

US LHC Users Organization Annual Meeting November 6-8, 2013

Introduction

- Top quark has large coupling to new particles in certain BSM scenarios
- Search for pair-produced resonances decaying to a top quark and light parton
 - R-parity violating $\tilde{b} \rightarrow t + \bar{s}$ (SUSY with MFV: Csaki, Grossman, and Heidenreich, arXiv:1111.1239)
 - Spin-3/2 top excitation $t^* \rightarrow t + gluon$

(Dicus et al., arXiv:1208.5811)

- Signature in dilepton channel
 - two light flavor jets
 - two b-jets
 - two leptons
 - missing transverse energy $(E_{\rm T}^{\rm miss})$

Event selection and backgrounds

– Analysis based on 19.6 fb⁻¹ of data at 8 TeV recorded by CMS detector in 2012

- Event selection

- Dilepton triggers
- Two isolated leptons (e or μ) with $p_{\rm T} > 20 \text{ GeV}$
- Two b-tagged jets (CSV tagger) with $p_{\rm T} > 30 \text{ GeV}$
- Two light flavor jets (CSV anti-b-tagged) with $p_{\rm T} > 30~{\rm GeV}$
- Low dilepton mass resonance veto $m_{\ell^+\ell^-} > 15 \text{ GeV}$
- Z veto in ee, $\mu\mu$ channels
- Backgrounds
 - t \bar{t} + ISR/FSR (95%)
 - Drell–Yan (2%)
 - Single top (2%)
 - Diboson, $t\bar{t} + V$

Signal and background discrimination

- Need to tell signal apart from large $t\bar{t}$ background
- Signal isolated using three characteristics
 - Signal events contain mass resonances decaying to top quarks and light jets
 - Two light jets from signal have relatively high $p_{\rm T}$

Analysis strategy

- Reconstruct BSM resonance
 - Reconstruct four-momenta of neutrinos from leptonic
 W[±] decays with kinematic method
 (Sonnenschein, arXiv:hep-ph/0603011 and Cheng et al., arXiv:0707.0030;
 CMS top mass measurement, arXiv:1209.2393)
 - Combine neutrinos with visible decay products of BSM particles – leptons, b-jets and light jets
- Perform shape analysis
 - Parameterize mass and light jet $p_{\rm T}$ spectra in signal and background
 - Construct unbinned extended maximum likelihood from mass and 2D light jet $p_{\rm T}$ shapes
 - Normalization determined from 2D light jet $p_{\rm T}$ fit
 - Calculate confidence intervals on signal cross section

Results

- Upper limits on $\tilde{\mathbf{b}}$ and \mathbf{t}^* are set
 - R-parity violating $\tilde{\mathbf{b}}$ excluded between 250 and 333 GeV
 - First LHC result on this model
 - -t* excluded between 300 and 703 GeV
 - Consistent with previous CMS t* search in lepton+jets channel $_{\rm (B2G-12-014)}$

Backup

Details of the mass reconstruction procedure

– Assumptions

- All decays occur on-shell
- Top and W mass are known
- All missing energy comes from leptonic W^{\pm} decays
- Conservation of four-momentum reduces to quartic equation
 - Two possible pairings of leptons and b-jets \Rightarrow up to 8 solutions
 - Solve for neutrino four-momenta \Rightarrow reconstruct top quarks
- If no real solution exists, use resampling method
 - Vary all jets independently within resolution and re-solve quartic equation
 - Repeat 1000 times and choose sampling with least χ^2 that has neutrino solution
- Combine top quarks and light jets to reconstruct BSM particle candidates
 - Two possible pairings of top quarks and jets \Rightarrow up to 16 solutions
 - Choose solution with smallest mass separation

Light jet $p_{\rm T}$ spectrum

- Background
 - Light jets produced via ISR/FSR
 - Typically one high- $p_{\rm T}$ light jet
 - Assume light jets are sampled from same steeply falling distribution with long tail, and ordered by $p_{\rm T}$
- Signal
 - Both jets can have high $p_{\rm T}$
 - Allow for correlations between light jets

Mass spectrum

- Signal
 - Spectrum peaks at mass of BSM particle
- Background
 - Non-resonant production
 - Event selection sculpts peak
- Mass shape is binned in four regions of 2^{nd} leading light jet p_T
 - Four independent copies of mass shape
 - Normalization in each bin determined from 2D light jet $p_{\rm T}$ fit

Statistical analysis

- Define unbinned extended maximum likelihood using
 - 3D pdf from reconstructed mass and 2D light jet $p_{\rm T}$ distributions
 - Constraint function incorporating systematic effects
- Maximize likelihood for signal+background and background-only hypotheses, scanning over signal cross section
 - Pseudo-experiments generated from best fit values for both hypotheses
 - Test statistic is profile likelihood ratio
 - Construct unified intervals on the cross section
- Observation is consistent with background-only expectation; set limits on both models

Signal + background fit results

Results of likelihood maximization with signal cross section set to observed cross section upper limit

