

The CP violating semileptonic asymmetry in *B_s* decays

Christos Hadjivasiliou *Syracuse University*

Young Physicist Lightning Round US LHC Users Organization

A little bit of theory

Neutral B mesons (B_s, B_d) can transform into their anti – particles before they decay. The time dependent mixing of the flavor eigenstates is governed by the Schrodinger equation:

$$i\frac{d}{dt}\left(\begin{array}{c} \left|B_{q}^{0}(t)\right\rangle\\ \left|\overline{B}_{q}^{0}(t)\right\rangle\end{array}\right) = \left(M^{q} - \frac{i}{2}\Gamma^{q}\right)\left(\begin{array}{c} \left|B_{q}^{0}(t)\right\rangle\\ \left|\overline{B}_{q}^{0}(t)\right\rangle\end{array}\right)$$

with mass eigenstates: $\left|B_{L,H}^{q}\right\rangle = p\left|B_{q}^{0}(t)\right\rangle \pm q\left|\overline{B}_{q}^{0}(t)\right\rangle$ and $a_{s} = 1 - \left|\frac{q}{p}\right|^{2}$
 $a_{s} = 1 - \left|\frac{q}{p}\right|^{2}$
 $a_{s} = 1 - \left|\frac{q}{p}\right|^{2}$

 Observable quantities are masses and differences in decay widths. We can access a_s by measuring asymmetries in flavor specific final states (for example semileptonic decays):

$$a_{sl}^{s} = \frac{\Gamma\left(\overline{\mathrm{B}}_{s}^{0} \to D_{s}^{-}\mu^{+}\nu\right) - \Gamma\left(\mathrm{B}_{s}^{0} \to D_{s}^{+}\mu^{-}\overline{\nu}\right)}{\Gamma\left(\overline{\mathrm{B}}_{s}^{0} \to D_{s}^{-}\mu^{+}\nu\right) + \Gamma\left(\mathrm{B}_{s}^{0} \to D_{s}^{+}\mu^{-}\overline{\nu}\right)} = \frac{1 - (1 - a_{s})^{2}}{1 + (1 - a_{s})^{2}} \sim a_{s}$$

What we measure

Key elements of the analysis

 Determination of the signal yields using Magnet Up (447pb⁻¹) and Magnet Down (595pb⁻¹) data samples of almost equal size, which allows us to average out residual charge asymmetries in detection efficiency

- Analysis relies on muon system in several ways, thus we study the asymmetry in the fine kinematic binning in muon phase space with two different schemes: (p_x, p_y) and also using (p_T, ϕ)
- Detailed analysis of background sources: Prompt charm production, fake muons associated with real D_s particles produced in b-hadron decays, and B→DD_s decays where the D hadron decays semileptonically.

Data driven corrections (I)

• The μ and π charge tracks have very similar reconstruction efficiencies. Partially reconstructed $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^- \pi^+(\pi^+)$ demonstrated that tracking efficiency ratio $\epsilon(\pi^+)/\epsilon(\pi^-)$ does not depend upon particle momentum and p_T . Since π and μ have opposite charges in $D_s\mu$, the tracking asymmetries almost cancel out.

Using $\varepsilon(\pi^+)/\varepsilon(\pi^-)$, we determine A_{track} by adding the contributions from KK and $\mu\pi$ pairs.

Data driven corrections (II)

- Determination of $\varepsilon(\mu^+)/\varepsilon(\mu^-)$ measure relative MuID and trigger efficiencies
 - <u>Kinematically Selected</u> $J/\psi \rightarrow \mu^+\mu^-$ decays in samples triggered (TOS) by hadronic B decays not including J/ψ in the final state
 - <u>Muon Selected</u> $J/\psi \rightarrow \mu^+\mu^-$ where a detached J/ψ is found by combining one track (probe) with an opposite sign track that is well identified as a muon (tag)

• $B \rightarrow D^+\mu^- X$ with $D^+ \rightarrow K^-\pi^+\pi^+$ for software trigger checks

Muon corrected asymmetry and A_{meas}

$$a_{sl}^{s} = (-1.33 \pm 0.58)\%$$

 $a_{sl}^{d} = (-0.09 \pm 0.29)\%$

 a_{sl} according to D0

- 3.1 σ from Standard Model prediction using also $\mu^+\mu^+$ versus $\mu^-\mu^-$
- *Source*: Borrisov talk, CERN Oct. 29 2013

Anomalous CP violation in B_0 decays:

LHCb and B-factories results

