Instructions for background benchmarks

v0.1 May 14, 2015

Getting and compiling the LZSim

 LZSim codes, with the benchmark source location can be downloaded from

https://drive.google.com/drive/folders/0By5fsgVyD-m2YVI0c2QwQUFyQ1U/0B78hucv6TzbjbzJzS2dHX0k5Szg/0B6alFQnXFxARanRpb1g1MWwxeDQ

- It works w/ GEANT4.9.5
 - Make sure your CLHEP are linked, i.e. do not use the one which comes by default
- To make the executable
 - \$> make clean
 - \$> make

bla bla until you see that LUXSimExecutable is created

Running the LZSim

- The macros to be used are in LUXSimMacros folder and are named LZ_benchmark_<phyiscs_process>.mac
- The default ones have the point-like source located at 0 0 0 mm, corresponding to the center of the cathode grid.
- If you use a cluster, you can submit the job to a queue system, running different locations and/or different phyiscs_process in parallel

Running the LZSim

Before submitting the job try with

LUXSimExecutable LUXSimMacros/LZ_benchmark_test.mac

commenting/uncommenting the part you are interested in.

This will also give a visual representation of the particles.

The new command

To use the command you can do

/LUXSim/source/set <source name> <positionX> <positionY> <positionZ> <extra arguments>

- The coordinates x, y, z are in mm.
- <extra arguments> refers to any additional parameters as normally in the /LUXSim/source/set command
- Only one position and one isotope can be simulated in the same macro

ER background generation

U238 and Th232

- These use the DecayChain method
- The age of the source is set in a way to reach the secular equilibrium
- The radioactivity is set to 1 mBq, which is then assumed to be the radioactivity of the point-like source

K40 and Co60

- These use the SingleDecay method
- The radioactivity is set to 1 mBq, which is then assumed to be the radioactivity of the point-like source

NR background generation

- U238 and Th232
 - These use the SingleParticle method
 - The spectrum comes from the Cu evaluated with SOURCES and the early and late parts of the chain are considered at equilibrium
 - The spectrum includes both S.F. and (α,n)
 - The spectrum is in energy bin of 0.1 MeV and the rate for each is in Bq (i.e. in cts/second)

ER background analysis

 The output .bin file the name and the directory can be changed within the macro with the commands

> /LUXSim/io/outputDir /LUXSim/io/outputName

To convert the .bin into .root use

LUXRootReader.cc

i.e. make the executable and run

LUXRootReader /path_to_binfiles/file_name.bin

ER and NR analyses

- For ER you may like to look at as a template cryoti_electronic.cc
- For NR ou may like to look at as a template cryoti_nuclear.cc

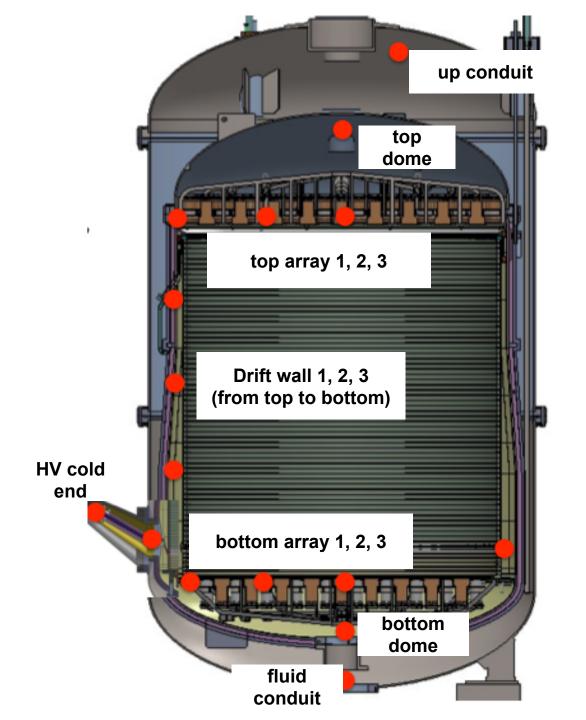
However, if you build your own code that will be better.

ER and NR analyses

- The key outputs are the dru [cts/kg/day/keV] histograms
 - kg is the mass of the LXe considered, i.e. of your fiducial volume (the current one is given in gr_fidvol_5.6ton.root)
 - day correspond to the simulated live days
 - keV means that you practically divide but the bin width of the histogram

ER and NR analyses

- day correspond to the simulated live days
 - For ER these are calculated as


```
(time last - time first)/1e9 /60./60./24
```

where time_first is the time of the first decay and time_last the one of the last decay, both in ns. Those info are stored in the .root TTree.

For NR these are calculated as

iEvtN/ neutron_yield/Bq /60./60./24.;

where iEvtN is the number of generated events in the simulation, neutron_yield is the n/s, i.e. the integral of the spectrum used in the macro (this value is also reported in the macro itself), Bq is the radioactivity of the source volume

Benchmark points

Benchmark point	х	у	Z	Name	Statu s	ER cts/exp	NR cts/exp
Up conduit				Tom/Paolo			
Top dome				Kelsey/Slava(?)			
Top array (1, 2, 3)				Kelsey/Slava(?)			
Drift wall (1, 2, 3)				Jim, Elena, Sally			
HV cold end				Jim, Elena, Sally			
Bottom array (1, 2, 3)				Bhawna			
Bottom dome				Bhawna			
Fluid conduit				Tom/Paolo			