

Resent Results from ATLAS and CMS on the Production of Diboson States Associated with Jets

Kenneth Long University of Wisconsin — Madison for the ATLAS and CMS Collaborations

Outline

- Introduction and Motivation
- Differential results from ATLAS and CMS
 - ZZ at 8 TeV from CMS
 - WZ at 8 TeV from ATLAS
 - WZ at 13 TeV
 - γγ at 7 TeV from CMS
- Exclusive Results and Jet Vetos from ATLAS and CMS
 - WW at 8 TeV
 - WW at 13 TeV
- Conclusions
- Questions and Discussion

Outline

Introduction and Motivation
 Differential results from ATLAS and CMS

- ZZ at 8 TeV from CMS
- WZ at 8 TeV from ATLAS
- WZ at 13 TeV
- γγ at 7 TeV from CMS
- Exclusive Results and Jet Vetos from ATLAS and CMS
 - WW at 8 TeV
 - WW at 13 TeV
- Conclusions
- Questions and Discussion

Motivation

- Important test of theoretical predictions
 - Direct test of pQCD
 - Jet related observables allow direct probe of higher order corrections
 - LO —> NNLO can increase cross section by ~100%
 - ~40% effects in distributions (pT(V), m(VV), mjj, ...)
 - Tests of MC+PS techniques
- Important background: new physics searches, SM measurements
 - New resonances with decays to VV
 - VV+≥2 jets from QCD radiation
 - background to VV VBS and VBF Higgs with diboson decays
- Interplay of theory+experiment
 - Jet vetos or requirements for background rejection in many experimental measurements and searches
 - Large theoretical uncertainty!
 - Experimental constraints improve theory
 - Improved theory improves experimental reach

Outline

- Introduction and Motivation
- Differential results from ATLAS and CMS
 - ZZ at 8 TeV from CMS
 - WZ at 8 TeV from ATLAS
 - WZ at 13 TeV
 - γγ at 7 TeV from CMS
- Exclusive Results and Jet Vetos from ATLAS and CMS
 - WW at 8 TeV
 - WW at 13 TeV
- Conclusions
- Questions and Discussion

CMS ZZ @ 8 TeV — Overview

- New extension of published 8 TeV analysis^[1] with jet-related distributions Analysis Selection
 - 4 leptons, $p_{\tau}^{e(\mu)} > 7$ (5) GeV
 - $|\eta^{e(\mu)}| < 2.5 (2.4)$
 - $m_{\ell^+\ell^-} \in [60, 120]$ GeV for each Z cand.

Background

- Prompt leptons (ttV, VVV, ttVV) from MC
- Non-prompt leptons (Z+jets, tt, WZ) from data
 - "Tight-to-loose" method described in [1]

Kenneth Long

CMS-PAS-SMP-15-012

[1] Physics Letters B 740 (2015) 250-272

CMS ZZ @ 8 TeV — Setup

CMS-PAS-SMP-15-012

- Dominant uncertainties
 - Stats!
 - Systematics
 - Jet Energy Scale, background estimation
- Unfolding via D'Agostini's method
 - MadGraph+MCFM+PHANTOM to build response matrix
 - Response matrix with POWHEG for validation and uncertainty

Overview of Signal Monte Carlo

Process	ME Generator	Order / Merging	PS+Had+UE
	POWHEG v2	NLO inc.	PYTHIA 6
qq/qg/gg → 4ℓ+nj	MG5_aMC@NLO	≤1j@NLO FxFx	PYTHIA 8
	MadGraph 5.1	≤2j@LO MLM	PYTHIA 6
$gg \rightarrow 4\ell$	MCFM 6.7	LO inc.	PYTHIA 6
qq/qg/gg → 4ℓ+2j (EWK)	PHANTOM	LO inc.	PYTHIA 6

ATLAS WZ @ 8 TeV — Overview

- "Matrix method" — inversion of matrix of efficiencies and the misidentification probabilities for prompt and fake leptons

ATLAS WZ @ 8 TeV — Setup

Dominant uncertainties

- Electron and muon ID efficiencies
- Mis-ID background evaluated with comparison to alternative fake rate estimation

Unfolding via D'Agostini's method

- Response matrices built from SHERPA and POWHEG+PYTHIA
- SHERPA (≤3j@LO) used for VBS analysis and jet multiplicity measurement

Phys. Rev. D 93, 092004 (2016)

	eee	μee	$e\mu\mu$	$\mu\mu\mu$	combined
Source		Relati	ve unc	ertainti	ies [%]
e energy scale	0.8	0.4	0.4	0.0	0.3
e id. efficiency	2.9	1.8	1.0	0.0	1.0
μ momentum scale	0.0	0.1	0.1	0.1	0.1
μ id. efficiency	0.0	0.7	1.3	2.0	1.4
$E_{\rm T}^{\rm miss}$ and jets	0.3	0.2	0.2	0.1	0.3
Trigger	0.1	0.1	0.2	0.3	0.2
Pileup	0.3	0.2	0.2	0.1	0.2
Misid. leptons background	2.9	0.9	3.1	0.9	1.3
ZZ background	0.6	0.5	0.6	0.5	0.5
Other backgrounds	0.7	0.7	0.7	0.7	0.7
Uncorrelated	0.7	0.6	0.5	0.5	0.3
Total systematics	4.5	2.6	3.7	2.5	2.4
Luminosity	2.2	2.2	2.2	2.2	2.2
Statistics	6.2	5.4	5.3	4.7	2.7
Total	8.0	6.3	6.8	5.7	4.2

Overview of Signal Monte Carlo

Process	ME Generator	Order / Merging	PS+Had+UE	
	POWHEG	NLO inc.	PYTHIA 8.175	
qq/qg/gg → 3ℓv+nj	aMC@NLO 4.0	NLO inc.	HERWIG+JIMMY	
	SHERPA 1.4.1	≤3j@LO CKKW	SHERPA	

ATLAS WZ @ 8 TeV — Results

Low systematics allow precise comparisons Harder jet spectrum predicted by merged ME predictions via Sherpa favored Expected softer jet spectrum from MC@NLO and POWHEG for $n_i > 1$

$N_{ m jets}$	0	1	2	3	4	≥ 5
$\Delta \sigma_{W^{\pm}Z}^{\text{fid.}}$ [fb]	19.7	9.0	3.7	1.3	0.6	0.15
R	elative	Uncer	tainties	s [%]		
Statistics	3.8	6.3	10.0	16.3	23.6	61.4
All systematics	7.7	8.8	12.8	18.7	27.0	70.4
Luminosity	2.1	2.3	2.5	2.7	3.0	4.8
Total	8.6	10.8	16.3	24.8	35.9	93.4

η < 4.5

ATLAS WZ @ 8 TeV - Results

 Merged LO jet calculations describe data well, but (not shown) theoretical uncertainty still large.

Phys. Rev. D 93, 092004 (2016)

Merged jets @NLO is here but not yet studied in detail for VV+jets

WZ @ 13 TeV — Overview

- WZ cross section and distributions from CMS and ATLAS with 2.3 fb⁻¹ (CMS) and 3.2 fb⁻¹ and 13.1 fb⁻¹ (ATLAS) with small differences from 8 TeV analyses
- Dominant uncertainties
 - Statistics (better for 13.1 fb⁻¹ analysis)
 - Mis-ID background
- Unfolded jet distributions presented by ATLAS with 3.2 fb⁻¹
 - Response matrices built from POWHEG +PYTHIA
- No unfolded distributions from CMS

arXiv:1606.04017 arXiv:1607.06943 **ATLAS-CONF-2016-043**

Experiment	ME Generator	Order / Merging	PS+Had+UE	
CMS	POWHEG v2	NLO inc.	PYTHIA 8	
	SHERPA 2.1.1	NLO+≤3j@LO	SHERPA	
ATLAS	POWHEG v2	NLO inc.	PYTHIA 8.210	
Kenneth Long				14

CMS yy @ 7 TeV — Overview

 Highest statistics test of many aspects of modeling pp collisions

CMS-PAS-SMP-14-021

- Significant contributions from higher pQCD orders (gq channel enters at NLO, strong contribution from gg box diagram at NNLO)
- Contributions from QED radiation and non-perturbative q/g photon fragmentation functions
- Major background to Higgs discovery channel and searches in yy channel
- Analysis Selection: $p_T(\gamma) > 40$, 25 GeV; $\Delta R(\gamma_1, \gamma_2) > 0.45$
- Background:
 - "Non-prompt" photons: decays of natural mesons (π₀, η) inside jets (primarily from γ+jets and Z(ee)+jets, and QCD)
 - Distinguished via shower shape in EM calorimeter and isolation
 - Background vs. signal categorization via 2D binned maximum likelihood fit using isolation

Kenneth Long

CMS yy @ 7 TeV - Setup

CMS-PAS-SMP-14-021

- Dominant uncertainties
 - Modeling of template variable
 - Evaluated using comparison with isolation templates from simulated events
 - 3% and 4% (barrel, endcap) for prompt, 6% and 9% non-prompt
- Unfolding via D'Agostini's method
 - Response matrix constructed with SHERPA

Overview of Signal Monte Carlo

ME Generator	PDF Set	Order/Merging	PS+Had+UE	
SHERPA ^[1]	CT10	≤3j@LO CKKW+gg	PYTHIA 6	
MG5_aMC@NLO ^[1]	NNPDF3.0	≤1j@NLO FxFx	PYTHIA 8	
PRL111 (2013) 222002 ^[2]		$gg+NLO n_j \ge 1$	None*	
PRL 111, 222002 ^[2]		$gg+NLO n_j \ge 2$	None*	
PYTHIA 8	NNPDF3.0	99	PYTHIA 8	
[1] Scaled to $\sigma_{\gamma\gamma}$ calculated at NNLO with 2 γ NNLO [2] Labeled GoSam in plots				

17

Outline

- Introduction and Motivation
- Differential results from ATLAS and CMS
 - ZZ at 8 TeV from CMS
 - WZ at 8 TeV from ATLAS
 - WZ at 13 TeV
 - γγ at 7 TeV from CMS
- Exclusive Results and Jet Vetos from ATLAS and CMS
 - WW at 8 TeV
 - WW at 13 TeV
- Conclusions
- Questions and Discussion

Jet Vetos in Diboson Analyses

- Scale variation can underestimate theoretical uncertainty

Strong interplay between experiment and theory

- Intense study of resummation in WW motivated by high measurements at 7 TeV
- Experiment eager to adopt latest results to reduce theoretical uncertainty from jet counting

Measurements \Leftrightarrow Predictions

 $p_{\rm T}^{\rm jet}$ (GeV)

>20

> 25>30

WW @ 8 TeV — CMS: Results

Comparison with predictions from POWHEG reweighted to p_T(WW) spectrum from NLO Uncertainty on otot +NNLL allows study of jet veto behavior Only statistical error on POWHEG predictions Theoretical error small in total cross section, very small in fiducial region fiducial definition: $n_j = 0$ and $p_{\tau}^{veto}(j)$) $\sigma_{W+W-} = 60.1 \pm 0.9 \text{ (stat)} \pm 3.2 \text{ (exp)} \pm 3.1 \text{ (theo)}$ ±1.6 (lumi) pb $\sigma_{\rm NNLO} = 59.8^{+1.3}_{-1.1}$ pb via Phys. Rev. Lett. 113, 212001

 $\sigma_{\text{zero-jet}}$ measured (pb) $36.2 \pm 0.6 \,(\text{stat}) \pm 2.1 \,(\text{exp}) \pm 1.1 \,(\text{theo}) \pm 0.9 \,(\text{lumi})$

 $40.8 \pm 0.7 \,(\text{stat}) \pm 2.3 \,(\text{exp}) \pm 1.3 \,(\text{theo}) \pm 1.1 \,(\text{lumi})$

 $44.0 \pm 0.7 \,(\text{stat}) \pm 2.5 \,(\text{exp}) \pm 1.4 \,(\text{theo}) \pm 1.1 \,(\text{lumi})$

FDIC 76	(2016)	10
EPJC /0	(2010)	4U .

	Source	Uncertainty (%)
	Statistical uncertainty	1.5
c	Lepton efficiency	3.8
3	Lepton momentum scale	0.5
	Jet energy scale	1.7
	$E_{\rm T}^{\rm miss}$ resolution	0.7
	tt+tW normalization	2.2
	W +jets normalization	1.3
	$Z/\gamma^* \rightarrow \ell^+ \ell^-$ normalization	0.6
I	$\mathrm{Z}/\gamma^* ightarrow au^+ au^-$ normalization	n 0.2
	W γ normalization	0.3
	$\mathrm{W}\gamma^*$ normalization	0.4
	VV normalization	3.0
	$H \rightarrow W^+W^-$ normalization	0.8
C	Jet counting theory model	4.3
	PDFs	1.2
	MC statistical uncertainty	0.9
	Integrated luminosity	2.6
	Total uncertainty	7.9
$\sigma_{\rm z}$	ero-jet predicted (pb)	
	36.7 ± 0.1 (stat)	
	$40.9\pm0.1(ext{stat})$	
	$43.9\pm0.1(ext{stat})$	

includes $\mu_{\rm R}$, $\mu_{\rm F}$, resummation, and underlying event uncertainties ' Kenneth Long 23

WW @ 8 TeV — ATLAS: Overview

- 0 and 1 jet channels separate analyses
 - WW+1j analysis considers only eµ channel
 - o jet
 - Reject top background
 - No b-tagging uncertainty
 - Increased theory uncertainty extrapolation to σ_{tot}

Fiducial cross section (eµ channel)

- ➡Total uncertainty ~7%
- Jet Energy Scale 4%
- W+jets background 3%
- Luminosity 2%
- Theory < 1%

Total cross section — 8.6% uncertainty

jet veto (3.4%), PS+hadronization
 +UE (2.5%)

WW @ 8 TeV — ATLAS: 1 jet

25

- Extend previous analysis, decreasing dependence on jet veto — Add tight b-jet veto
- arXiv:1603.01702

- Reduces theoretical uncertainty
- Reduces uncertainty in fiducial and total cross section
- Improves agreement with NNLO prediction

WW @ 13 TeV — Results

Conclusions

- Measurements of dibosons associated with jets have potential to test many aspects of predictions for LHC collisions
 - A variety analyses with Run I data have controlled systematics to allow detailed comparisons
 - Cross sections and more already measured at 13 TeV in WW,
 WZ, ZZ, Zγ etc.
 - Expanded analyses coming soon
- Strong interplay between theory and experiment
 - Run I diboson results pushing theory
 - NNLO revolution
 - Studies of resummation pushed by WW measurements
 - Experiment quick to adopt new theory developments for comparisons, background modeling, and phase space extrapolation
- With the LHC accumulating 13 TeV data rapidly, precise measurements in a new regime are on the way!

Backup

 $Z\gamma @ 8 \text{ TeV} - \text{Overview}$

- $E_T(\gamma) > 15$ GeV and $\Delta R(I, \gamma) > 0.7$
- Two good OSSF leptons, $(\ell = e, \mu)$
 - ATLAS: p_T(ℓ) > 25 GeV; m_{ℓℓ} > 40 GeV
 - CMS: $p_T(\ell) > 30 \text{ GeV}; m_{\ell\ell} > 50 \text{ GeV}$

Phys. Rev. D 93, 112002 (2016)

JHEP 04 (2015) 164

ATLAS Zy @ 8 TeV — Results

- Compare to fixed-order NLO calculation from MCFM (max 1 jet) and LO merged from Sherpa (≤3j@LO CKKW)
- Sherpa models data well
 - Scale variations large at LO, only statistical error shown

Channel	Measurement [fb]	MCFM Prediction [fb]	NNLO Prediction [fb]				
	$N_{\rm jets} \ge 0$						
$e^+e^-\gamma$	$1510 \pm 15(\text{stat.})^{+91}_{-84}(\text{syst.})^{+30}_{-28}(\text{lumi.})$						
$\mu^+\mu^-\gamma$	$1507 \pm 13(\text{stat.})^{+78}_{-73}(\text{syst.})^{+29}_{-28}(\text{lumi.})$	1345_{-82}^{+66}	1483^{+19}_{-37}				
$\ell^+\ell^-\gamma$	$1507 \pm 10(\text{stat.})^{+78}_{-73}(\text{syst.})^{+29}_{-28}(\text{lumi.})$						
$ u \bar{ u} \gamma$	$68 \pm 4(\text{stat.})^{+33}_{-32}(\text{syst.}) \pm 1(\text{lumi.})$	68.2 ± 2.2	$81.4^{+2.4}_{-2.2}$				
$N_{\rm jets} = 0$							
$e^+e^-\gamma$	$1205 \pm 14(\text{stat.})^{+84}_{-75}(\text{syst.}) \pm 23(\text{lumi.})$						
$\mu^+\mu^-\gamma$	1188 ± 12 (stat.) $^{+68}_{-63}$ (syst.) $^{+23}_{-22}$ (lumi.)	1191_{-89}^{+71}	1230^{+10}_{-18}				
$\ell^+\ell^-\gamma$	1189 $\pm 9(\text{stat.})^{+69}_{-63}(\text{syst.})^{+23}_{-22}(\text{lumi.})$						
$ u ar{ u} \gamma$	$43 \pm 2(\text{stat.}) \pm 10(\text{syst.}) \pm 1(\text{lumi.})$	$51.0^{+2.1}_{-2.3}$	$49.21_{-0.52}^{+0.61}$				

Phys. Rev. D 93, 112002 (2016)

 2241 ± 22

Phys. Lett. B 731 (2014) 204 NNLO

WW @ 13 TeV — Overview

- Small differences from 8 TeV measurement
 - Only eµ channel
 - Simplify b-jet veto
 - Background method identical to 8 TeV

CMS-PAS-SMP-16-006

ATLAS-CONF-2016-090

ATLAS WW @ 13 TeV — Details

ATLAS Preliminary

8000

🔶 Data

M (stat)

- Small differences from 8 TeV measurement
 - Only eu channel
 - Lepton p_T cut moved to 25/25 GeV (from of 25/20 GeV)
 - Veto b-jets with $p_T > 20 \text{ GeV}$ $|\eta| < 2.4$, all jets $p_T > 25$)
- Extract ofid via simultaneous fit of signal +control regions

NNLO qq + NLO gg + N³LO ggH: $\sigma_{WW} = 128.4^{+3.5}_{-3.8}$ pb

🔶 Data

ATLAS-CONF-2016-090

$$\sigma_{WW} = 142 \pm 5 \text{ (stat)} \pm 13 \text{ (syst)} \pm 3.0 \text{ (lumi)} \text{ pb}$$