EWK physics in Run2 at ATLAS: from first Run2 results to HL-LHC projection

Albert-Ludwigs-Universität Freiburg

<u>Valerio Dao</u>

B

University of Freiburg

8 TeV —> 13 TeV: increase in cross section profits various processes in different ways

Statistics is not everything: some time (and data) is needed to reach the same level of detector understanding we had in Run1

Concentrating effort in:

- searched for new physics: use as much luminosity as available
- * stat. limited measurements: repeating measurement when similar unc. is achieved
- sys. limited analyses: trying to assess the impact of systematic uncertainties

More results in Jan Stark's talk later today

Di-boson physics

Dao Valerio

MBI Workshop 26-08-2016

ZZ @ 13TeV

VERY first 13 TeV ATLAS EWK result

4 leptons (electrons or muons), 2 on-shell Z bosons —> very low Br but exceptionally pure final state

Dao Valerio

MBI Workshop 26-08-2016

WW @ 13TeV

UNI FREIBURG

'simplified' version of Run1 analysis:

- electron+muon only: reduce Drell-Yann background
- pT>25GeV on both leptons: strongly reduce DY and W+jets
- vetoing on jets (p_T>25/30 GeV for |η|<2.5/4.5) and b-tagged jets
 (p_T>20 GeV, |η|<2.5)

\overline{q}' q'' q'' q'' q'' μ

Cut & count analysis:

- leading backgrounds *ttbar+single top, DY(Z->\tau\tau)* normalised in control regions
- small backgrounds W+jets (data-driven) and WZ/ZZ (from MC) checked in validation regions

Dao Valerio

WW @ 13TeV (2)

UNI FREIBURG

Dao Valerio

MBI Workshop 26-08-2016

7

WW @ 13TeV: results

11% uncertainty on fiducial xSection

WW+0jets fid	stat. (*)	det.	bkg.	theo.	lumi
8 TeV	1.5%	5.1%	3.4%	4.5%	2.0%
13 TeV	3.7%	7.5%	4.9%	4.4%	2.1%

Dominant systematic sources: JES and W+jets/fake

Dao Valerio

Very clean selection (same as Run1):

- 3 isolated leptons (p_T>25/15/15)
- A 1 OSSF pair + MT cut for 3rd lepton

Main backgrounds:

- *fake leptons*: data-driven matrix method
- ZZ: MC+ 4lepton validation region

WZ fid.	stat.	sys.	lumi	tot
8 TeV	2.7%	2.4%	2.2%	4.2%
13 TeV	2.7%	5.5%	3.2%	6.9%

leading uncertainties from events with electrons:

electron ID, fake background

Excess w.r.t. NLO predictions largely mitigated when moving to NNLO inclusive cross section

NLO xSection + NLO acceptance

Dao Valerio

MBI Workshop 26-08-2016

WZ @I3TeV: differential

ATLAS-CONF-2016-043

Dao Valerio

ATLAS-CONF-2016-043

Similar performance between Run1 and Run2 analyses:

- (As in Run1) extracting aTGC limit from template fit to m_T^{WZ} distribution:
- effects mainly in the tails
- up to 8% Powheg VS MC@NLO difference

 combination performed by correlating theory sys and treating detector sys as uncorrelated

Dataset	Coupling	Expected $[\text{TeV}^{-2}]$	Observed $[\text{TeV}^{-2}]$
$13 { m TeV}$	$c_W/\Lambda_{ m NP}^2 \ c_B/\Lambda_{ m NP}^2 \ c_{WWW}/\Lambda_{ m NP}^2$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c} [-3.8; \ 8.6] \\ [-280; \ 163] \\ [-3.9; \ 3.7] \end{array}$
8 and 13 TeV	$c_W/\Lambda_{ m NP}^2 \ c_B/\Lambda_{ m NP}^2 \ c_{WWW}/\Lambda_{ m NP}^2$	$egin{array}{c} [-3.4; \ 6.9] \ [-221; \ 166] \ [-3.2; \ 3.0] \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Dao Valerio

MBI Workshop 26-08-2016

WZ @13TeV: aTGC

 $\sum_{T \in V, f} pp \rightarrow t\overline{t}$ 7 TeV, 4.6 fb⁻¹, Eur. Phys. J. C 74:3109 (2014) 8 TeV, 20.3 fb⁻¹, Eur. Phys. J. C 74:3109 (2014) 13 TeV, 3.2 fb⁻¹, arXiv:1606.02699

$\mathbf{F} pp \rightarrow tq$

7 TeV, 4.6 fb⁻¹, PRD 90, 112006 (2014) 8 TeV, 20.3 fb⁻¹, ATLAS-CONF-2014-007 13 TeV, 3.2 fb⁻¹, ATLAS-CONF-2015-079

∑ $pp \rightarrow WW$ 7 TeV, 4.6 fb⁻¹, PRD 87, 112001 (2013) 8 TeV, 20.3 fb⁻¹, arXiv:1608.03086 13 TeV, 3.2 fb⁻¹, ATLAS-CONF-2016-090

$\overline{7} pp \rightarrow WZ$

7 TeV, 4.6 fb⁻¹, Eur. Phys. J. C (2012) 72:2173 8 TeV, 20.3 fb⁻¹, PRD 93, 092004 (2016) 13 TeV, 3.2 fb⁻¹, arXiv:1606.04017

7 TeV, 4.5 fb⁻¹, Eur. Phys. J. C76 (2016) 6 8 TeV, 20.3 fb⁻¹, Eur. Phys. J. C76 (2016) 6 13 TeV, 13.3 fb⁻¹, ATLAS-CONF-2016-081

$\checkmark pp \rightarrow ZZ$

⁷ TeV, 4.6 fb⁻¹, JHEP 03, 128 (2013) 8 TeV, 20.3 fb⁻¹, ATLAS-CONF-2013-020 13 TeV, 3.2 fb⁻¹, PRL 116, 101801 (2016)

ZZ analysis is still statistically

limited: already 6 times more statistics already recorded and ready to be analysed

WZ analysis starts to be limited by the knowledge of reducible background: more statistics will also increase the possibility of datadriven tests

WW is limited by detector

systematics (mainly by jet energy scale uncertainty and jet veto): increasing p_T cut, more sophisticated background estimation techniques

working on understanding correlation to reduce the impact of detector uncertainties in the 13TeV/8TeV (following the example of 7TeV/8TeV top mass combination)

Fortunately(/unfortunately) results are very consistent between Run1 and Run2: confirming agreement between data and MC when higher order calculation are considered

VBF Higgs production

Eur. Phys. J. C (2016) 76:6

VBF Higgs production

Standard selection for Higgs candidate + optimised categories for VBF: at least 2 jets, large ΔY_{jj} and large m_{jj}

MBI Workshop 26-08-2016

VBF Higgs production: results

Results are still completely statistically limited

VBF + photon

Η

W/Z

W/Z

Photon coming to the rescue of VBF (H->bb) analysis:

- provide clean source of trigger (biggest limitation in inclusive VBF analysis)
- reduces gluon-initiated background

BDT trained with di-jet and photon+jets quantities $(m_{jj}, |\Delta y_{jj}| ...)$

FREIBURG

Phys. Rev. D 92, 092004 (2015)

Di-Higgs searches

Dao Valerio

Di-Higgs searches

UNI FREIBURG

Ultimate goal is the measurement of Higgs boson self coupling:

- SM process ($\sigma_{HH}=33fb$) way out of reach for current analyses also due to negative interference with "non resonant" production
- Run1 result: σ_{HH} <690 fb

Still many new physics models (2HDM, graviton) predict resonant and non resonant enhancement of di-Higgs production:

- SM Higgs boson as extra handle to assess presence of new physics *
- sensitivity to anomalous triboson coupling: λ

000

Dao Valerio

MBI Workshop 26-08-2016

need to rely to at

statistic decay mode

least one high

Di-Higgs searches: $\gamma\gamma$ +X

Despite the very low Br, di-photon peak in final state is a key ingredient to boost the sensitivity

Dao Valerio

MBI Workshop 26-08-2016

Di-Higgs searches: 4b

UNI FREIBURG

Largest Br, perfect for High mass searches (but triggering is a delicate issue)

Di-boson resonance searches (a.k.a. direct searches for new physics)

Here V=W/Z ... see Jan Stark's talk for VH

Di-boson resonance searches

UNI FREIBURG

- Large variety of final states:
 - different composition of WW/WZ/ZZ *
 - leptonic states: lower background, easier to trigger but low Branching ratio *
 - hadronic states: larger branching ratio generally larger background (not well described by MC) *

Dao Valerio

Acceptance×Efficiency 9.0 × 20

0.4

0.3

0.2

0.1

MBI Workshop 26-08-2016

240 m_j [GeV]

W+iets MC Z+iets MC

Fitted s+b

Di-boson resonance searches: strategies

define CRs/VRs for background normalisation (if MC) and/or shape check (using mV sidebands)

Extract signal from VV mass proxy: m(IvJ), m(JJ), m(IIjj)

Data/Bk(

Di-boson resonance searches: money plots

analytical shape for background (checked in control regions)

Run1 excess not confirmed

W+jets / top are the leading background [shape from MC, normalisation from CR]

Z+jets (and W+jets for 0 lepton) is the leading background [shape from MC, normalisation from CR]

VV->JJ

Dao Valerio

Di-boson resonance searches: results

UNI

Large variety of interpretations:

... still no combination yet

Dao Valerio

2015/16 summary ... so far ...

Dao Valerio

2.0

1.5

1.0

0.5

0.0

-0.5

- HighLuminosity LHC
- Prospects studies are a tricky business
- usually require a lot of assumptions on performance of detector not already built
- relies of some approximation: parameterisation of performance applied on truth quantities
- clearly NOT suited for convoluted analyses (easy to get overoptimistic scenarios).
- ... at the same time experimentalists usually surpass their own expectations: new algorithms, new techniques ... etc ...
- Concentrating on latest results based on <u>Phase2 Upgrade</u> <u>scoping document</u>:
 - * more "reliable" results: more recent MC production, more stable detector layout
- using as benchmark analyses which are currently statistically limited but also that are strongly dependent on detector design choices
- critical detector design component: η coverage of the inner tracker (2.7 —> 4.0)
 - impact acceptance/veto for charged lepton (e,mu,tau) reconstruction
 - impact capabilities of rejecting pileUp jets at large rapidity

MBI Workshop 26-08-2016

28

HL-LHC prospects: VBF Higgs

- The golden channel *H->ZZ->41* :
 - +20% acceptance with forward lepton reconstruction
 - very clean Higgs selection (m₄₁ window), concentrate on separating VBF from ggF contribution
 - BDT variables:
 - PU contribution in ggf ~ 25%/50% (even with large eta tracker)

Expected performance with 3 ab⁻¹:

- cut & count analysis in 3 BDT bins
- 13% / 17% uncertainty on µVBF without / with theory uncertainties

ATL-PHYS-PUB-2014-018 10⁵ ATLAS Simulation Prelim. $Z \rightarrow \tau\tau$ $t\bar{t}$ +single-top 14 TeV, 3000 fb⁻¹ $Fake \tau$ Others10⁴ 10^{4}

- A tougher case HVBF $H \rightarrow \tau \tau$ (I+ τ final state):
 - BDT to separate signal from background (S/B=0.4 in best BDT bin)
- only assessing effect of PU rejection from extended tracker: up to factor 2 improvement in performance

• Expected performance with 3 ab⁻¹:

- no theory uncertainty, 10% bgk unc., 5% detector sys on signal
- ✤ 75% PU rejection in the forward region
- 12% uncertainty on µVBF

Dao Valerio

MBI Workshop 26-08-2016

HL-LHC prospects: VBS

Using ssWW as benchmark analysis:

- good compromise between available statistics and amount of background: likely the first VBS final state that will enter the precision realm
- characteristic experimental features: 2 SS leptons + MET + 2 forward jets with high m_{ii} ÷
- Run1 analysis strategy: cut and count with mjj>500 GeV, $\Delta \eta_{ij}$ >2.4 ÷
- main MC bkgd (WZ/ssWW QCD) scaled by 1.6 to account for experimental backgrounds *

q

HL-LHC prospects: di-Higgs

ts/10⁷ [GeV] L dt = 3000 fb⁻¹ 1000 × HH ttbar_lep bbjj ttbar_had wjets zjets √s = 14 TeV bbH others 🗌 zh tin 10⁵ ATLAS Simulation Preliminary 10⁴ had-had + bb: 10³ pT^{bb}>180 GeV, mT2>180 GeV ~13 sig. events (S/B~1.6%) 200 250 300 350 vents/10 Ge < $10^{5} \times HH$ 📕 tī $\int L dt = 3000 \text{ fb}^{-1}$ Z→ ee + jets others v √s = 14 TeV *lep-lep* + *bb*: bbH e-e channe ATLAS Simulation Preliminary huge ttbar background dR_{bb}<1.0, p_T^{bb}>160 GeV ~6 sig. events (S/B<<1%) $\int L \, dt = 3000 \, \text{fb}^{-1}$ 10⁴ × HH Z(→ττ)+jets tť lept-had + bb: W(→τν_τ)+jets others bbH √s = 14 TeV ATLAS Simulation Preliminary ✤ p_T^{bb}>200 GeV, m_{T2}>220 GeV kinematic reconstruction to 10³ reduce top background ~14 sig. events (S/B~1.5%) 500 [GeV]

HH->ττbb (ATL-PHYS-PUB-2015-046)

HH->γγbb (<u>ATL-PHYS-PUB-2014-019</u>)

- ==2 photons, ≥2 b-tagged jets (70%) efficiency:
- optimised kinematic cuts on dR among objets

With 3 ab⁻¹ @ 14TeV:

8.4 signal events, 47 bkgd. events (S/B~20%)

1.3 s.d. expected significance

σнн/σSM < 3 @ 95% C.L.

σнн/*σ*SM < 4.3 @ 95% C.L.

Extracting also confidence interval tri-linear coupling:

• -4 < λ_{ΗΗΗ}/λSMΗΗΗ < 12

Dao Valerio

Summary and conclusions

• The start

- 13 TeV LHC Run2 is in full swing
- first preliminary EWK result being produced: inclusive cross section, VBF Higgs, searches for di-Higgs and di-boson resonances
- confirming results from Run1, no major surprised
- the summer dataset allows similar performance as Run1, more refined and complete analyses expected by the end of the year

STAY TUNED

..... the finish(?)

- * while HL HLC is still far away, intensive work is already ongoing
- constantly refining our projections with more detailed and precise simulation
- improvement in detector component proved to have a strong impact on analyses sensitivities (especially on VBS/VBF channels): better acceptance, better background rejction

Thank you for your attention

MBI Workshop 26-08-2016

BURG

BackUp

Dao Valerio

VI EIBURG	

$pp \to WW$	order of	$\sigma_{WW}^{ m tot}$	A	$\sigma^{\rm fid}_{WW \to e\mu}$
sub-process	$\mathcal{O}(lpha_{ m s})$	[pb]	[%]	[fb]
$qar{q}$ [10,14]	$\mathcal{O}(lpha_{ m s}^2)$	111.1 ± 2.8	$16.20{\pm}0.13$	422^{+12}_{-11}
gg (non-resonant) [16]	$\mathcal{O}(lpha_{ m s}^3)$	$6.82^{+0.42}_{-0.55}$	$28.1_{-2.3}^{+2.7}$	44.9 ± 7.2
$gg \to H \to WW \ [17][31]$	$\mathcal{O}(\alpha_{\rm s}^5)$ tot. / $\mathcal{O}(\alpha_{\rm s}^3)$ fid.	$10.45^{+0.61}_{-0.79}$	4.5 ± 0.80	11.0 ± 2.1
$q\bar{q} + gg \text{ (non-resonant)} + gg \to H$	nNNLO+H	$128.4^{+3.5}_{-3.8}$	$15.87^{+0.17}_{-0.14}$	478 ± 17

Detailed explanation of the xSection ratio plot.

VBF H->ZZ @ 13 TeV

$$\begin{split} \mathcal{L}_{0}^{V} &= \left\{ c_{\alpha} \kappa_{\mathrm{SM}} \big[\frac{1}{2} g_{HZZ} \, Z_{\mu} Z^{\mu} + g_{HWW} \, W_{\mu}^{+} W^{-\mu} \big] \right. \\ &- \frac{1}{4} \big[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} \, A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} \, A_{\mu\nu} \widetilde{A}^{\mu\nu} \big] \\ &- \frac{1}{2} \big[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} \, Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} \, Z_{\mu\nu} \widetilde{A}^{\mu\nu} \big] \\ &- \frac{1}{4} \big[c_{\alpha} \kappa_{Hgg} g_{Hgg} \, G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} \, G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \big] \\ &- \frac{1}{4} \frac{1}{4} \big[c_{\alpha} \kappa_{HZZ} \, Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} \, Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \big] \\ &- \frac{1}{2} \frac{1}{4} \big[c_{\alpha} \kappa_{HZZ} \, Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} \, Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \big] \\ &- \frac{1}{2} \frac{1}{\Lambda} \big[c_{\alpha} \kappa_{HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} \, W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \frac{1}{4} \kappa_{H\partial\gamma} \, Z_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\partial Z} \, Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \big(\kappa_{H\partial W} \, W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \big) \big] \Big\} X_{0} \,, \end{split}$$

Dao Valerio

typical VBF variables

UNI FREIBURG

Н->үү

H->ZZ

Η->*ττ*

Dao Valerio

MBI Workshop 26-08-2016

36

HH->γγbb

HH->bbbb: resolved

Dao Valerio

$$X_{hh} = \sqrt{\left(\frac{m_{\rm J}^{\rm lead} - 124 \text{ GeV}}{0.1 m_{\rm J}^{\rm lead}}\right)^2 + \left(\frac{m_{\rm J}^{\rm subl} - 115 \text{ GeV}}{0.1 m_{\rm J}^{\rm subl}}\right)^2} < 1.6$$

Dao Valerio

H->ZZ selection

Salla 19	(3
	2
	2
J	
	ZZ

	LEPTONS AND JETS REQUIREMENTS		
	Electrons		
Loos	e Likelihood quality electrons with hit in innermost layer, $E_T > 7$ GeV and $ \eta < 2.47$		
	Muons		
	Loose identification $ \eta < 2.7$		
	Calo-tagged muons with $p_{\rm T} > 15$ GeV and $ \eta < 0.1$		
Combin	ed, stand-alone (with ID hits if available) and segment tagged muons with $p_T > 5$ GeV		
	Jets		
ant	h_t jets with $p_T > 30$ GeV, $ \eta < 4.5$ and passing pile-up jet rejection requirements		
	EVENT SELECTION		
QUADRUPLET	Require at least one quadruplet of leptons consisting of two pairs of same flavour		
SELECTION	opposite-charge leptons fulfilling the following requirements:		
	$p_{\rm T}$ thresholds for three leading leptons in the quadruplet - 20, 15 and 10 GeV		
	Maximum of one calo-tagged or standalone muon per quadruplet		
	Select best quadruplet to be the one with the (sub)leading dilepton mass		
	(second) closest the Z mass		
	Leading dilepton mass requirement: 50 GeV $< m_{12} < 106$ GeV		
	Sub-leading dilepton mass requirement: $12 < m_{34} < 115$ GeV		
	Remove quadruplet if alternative same-flavour opposite-charge dilepton gives $m_{\ell\ell} < 5$ GeV		
	$\Delta R(\ell, \ell') > 0.10 (0.20)$ for all same(different)-flavour leptons in the quadruplet		
ISOLATION	Contribution from the other leptons of the quadruplet is subtracted		
	Muon track isolation ($\Delta R \le 0.30$): $\Sigma p_T/p_T < 0.15$		
	Muon calorimeter isolation ($\Delta R = 0.20$): $\Sigma E_T/p_T < 0.30$		
	Electron track isolation ($\Delta R \le 0.20$) : $\Sigma E_T/E_T < 0.15$		
	Electron calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_T/E_T < 0.20$		
IMPACT	Apply impact parameter significance cut to all leptons of the quadruplet.		
PARAMETER	For electrons : $ d_0/\sigma_{d_0} < 5$		
SIGNIFICANCE	For muons : $ d_0/\sigma_{d_0} < 3$		
VERTEX	Require a common vertex for the leptons		
SELECTION	χ^2 /ndof < 6 for 4 μ and < 9 for others.		

High mass H->WW/ZZ

H->WW (ATLAS-CONF-2016-074)

Dao Valerio

High mass H->WW/ZZ (2)

H->ZZ (ATLAS-CONF-2016-079)

NWA: same width as SM Higgs boson (peak width dominated by detector resolution)

LWA: different assumptions on the width

H->WW (ATLAS-CONF-2016-074)

Dao Valerio

MBI Workshop 26-08-2016

Prospects for Higgs couplings

A bit out-dated studies: <u>ATL-PHYS-PUB-2014-016</u>

ATLAS Simulation Preliminary

Dao Valerio

MBI Workshop 26-08-2016

Prospects for VBS:

FREIBURG

https://cds.cern.ch/record/1558703/files/ATL-PHYS-PUB-2013-006.pdf

VV resonances: RS interpretations

Dao Valerio

VV resonances: W'/Z'RS interpretations

Dao Valerio

MBI Workshop 26-08-2016

VV resonances: Scalar

llqq analysis

Dao Valerio