## **Results on VBF, Diboson Production and aTGCs**

#### Final states: Wγ, WW, WZ, VBF W

## Kristin Lohwasser (DESY)

Multiboson Workshop, Wisconsin, 25. August 2016

## **Multiboson final states**

#### > Complex final states

- Large high-order QCD corrections and nontrivial contribution from gluons
- Give strict test of SM in predictions of such complex final states
- Constrain and motivate high-order calculations
- study of anomalous Triple/Quartic-Gauge-boson-Couplings (aTGCs/aQGCs)

- > Popular in searches of new physics:
  - Alternative EWSB models or Higgs partners?
  - Sensitivity to Gravitons
  - SUSY searches (multiple leptons)
  - Dark matter searches (Z+X)
- Experimentally accessible and reliable
- Low backgrounds in leptonic final states
- LHC first collider with ample statistics to explore many new channels



## **Triple gauge boson couplings in the Standard Model**

Standard Model Lagrangian:

$$\mathcal{L}_{EW} = \mathcal{L}_{Kin} + \mathcal{L}_N + \mathcal{L}_C + \mathcal{L}_{WWV} + \mathcal{L}_{WWVV} + \mathcal{L}_H + \mathcal{L}_{HV} + \mathcal{L}_Y$$

$$\mathcal{L}_{WWV} = -\frac{1}{4} W^a_{\mu\nu} W^{\mu\nu}_a - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

- Triple gauge couplings direct consequence of non-Abelian structure of SU(2)xU(1) electroweak theory
  - Charged couplings:  $g_1^{Z}$ ,  $k^{Z}$ ,  $k^{\gamma}$  = 1
  - Neutral couplings:  $\lambda^{\gamma} = \lambda^{Z} = 0$



 $L = ig_{WWV} (g_1^V) W_{\mu\nu}^+ W^{-\mu} - W^{+\mu} W_{\mu\nu}^-) V^{\nu} + k^V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} + \frac{\lambda^V}{M_W^2} W_{\mu}^{\nu+} W_{\nu}^{-\rho} V_{\rho}^{\mu}))$ 



## Anomalous triple gauge couplings

- Multiple diagrams contribute and interfere in Multiboson production
  - Delicate cancellation among diagrams restores unitarity
  - Sensitivity to new physics through contributions to these diagramms
    - This talk: Charged couplings



 (Mostly) neutral couplings: Senka Đurić, Wednesday, 11.00 (link)



#### Standard model processes at the LHC



| Page 5

#### **Diboson processes with charged couplings**



# Wy.

|       | 7 TeV                                                                            | 8 TeV | 13 TeV |
|-------|----------------------------------------------------------------------------------|-------|--------|
| ATLAS | Phys. Rev. D 87, 112003<br>(2013)<br>Phys. Rev. D 91, 119901<br>(Erratum) (2015) | -     | -      |
|       | 4.6 fb <sup>-1</sup>                                                             |       |        |
| CMS   | PRD 89 (2014) 092005<br>September 2013<br>5 fb <sup>-1</sup>                     | _     | _      |
|       |                                                                                  |       | raye / |

## $W_{\gamma}$ production: Analyses at 7 TeV from CMS and ATLAS



Fragmentation (considered only by ATLAS) contributes < 4% (photons takes full energy)

| > Selections             | ATLAS | CMS |
|--------------------------|-------|-----|
| $p^{T}(\ell)$ [GeV]      | 25    | 35  |
| p <sup>⊤</sup> (γ) [GeV] | 15    | 15  |
| $M_{_{T}}(W)^*$ [GeV]    | 40    | 70  |
| $E^{T}_{Miss}$ [GeV]     | 35    | -   |

 $|\eta| < ~2.4$ , ATLAS with Z veto (M<sub> $t_y$ </sub>) CMS second lepton veto

#### Similar number of observed events, CMS with larger W+jets background

|                                                                                                                                       | ATLAS | CMS   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--|--|--|
| N(obs, e)                                                                                                                             | 7399  | 7470  |  |  |  |
| N(sig,e)                                                                                                                              | 4390  | 3200  |  |  |  |
| N(obs, μ)                                                                                                                             | 10914 | 10809 |  |  |  |
| N(sig, μ)                                                                                                                             | 6440  | 4970  |  |  |  |
|                                                                                                                                       |       |       |  |  |  |
| ${}^{*}m_{\mathrm{T}}^{W} = \sqrt{2 \cdot p_{\mathrm{T}}^{\nu} \cdot p_{\mathrm{T}}^{\ell} \cdot [1 - \cos \Delta \phi(\ell, \nu)]},$ |       |       |  |  |  |

## Wy production: Results

Similar picture for both experiments: data slightly above MCFM prediction

 Better agreement with Sherpa and Alpgen attributed to processes with larger parton multiplicities (higher orders of α<sub>s</sub>), indicated by better agreement of exclusive measurement (N<sub>iet</sub> =0)



#### **NNLO** matters here

>  $W_{\gamma}$  first process in which the necessity of NNLO corrections became evident

- Grazzini, Kallweit, Rathlev published NNLO for Z/W<sub>γ</sub> first predictgion in 2015
- Non-flat k-factor, better agreement for both, exclusive and inclusive processes





Page 10

arXiv:1504.01330v1

## Wy production: Limits on anomalous couplings

#### > (Very!) slight data overshoot: Limits close to expectation

- ATLAS: MCFM for aTGC prediction CMS: Sherpa Both: using photon E<sub>τ</sub>(γ) distribution
- ATLAS uses exclusive (N<sub>iets</sub>=0) region
- Limits slightly more stringent for CMS (higher reach in photon energy, N<sub>lets</sub>>=0)

CMS

|                                       | $\Delta\kappa_\gamma$ | $\lambda_\gamma$ |
|---------------------------------------|-----------------------|------------------|
| $W\gamma  ightarrow e  u \gamma$      | [-0.45, 0.36]         | [-0.059, 0.046]  |
| $ m W\gamma  ightarrow \mu  u \gamma$ | [-0.46, 0.34]         | [-0.057, 0.045]  |
| $W\gamma  ightarrow \ell  u \gamma$   | [-0.38, 0.29]         | [-0.050, 0.037]  |

#### ATLAS

| processes                |                 | $pp \to \ell \nu \gamma$ |                 |
|--------------------------|-----------------|--------------------------|-----------------|
| $\Lambda$                |                 | $\infty$                 |                 |
|                          | Measured        |                          | Expected        |
| $\Delta \kappa_{\gamma}$ | (-0.41, 0.46)   |                          | (-0.38, 0.43)   |
| $\lambda_\gamma$         | (-0.065, 0.061) |                          | (-0.060, 0.056) |





## (fully leptonic)

|       | 7 TeV                                                 | 8 TeV                                                     | 13 TeV                                       |
|-------|-------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|
| ATLAS | Phys. Rev. D 87, 112001<br>(2013)<br>Phys. Rev. D 88, | sub. to JHEP<br>arXiv:1603.01702<br>20.3 fb <sup>-1</sup> | ATLAS-CONF-2016-090<br>3.16 fb <sup>-1</sup> |
|       | 4.6 fb <sup>-1</sup>                                  |                                                           |                                              |
| CMS   | EPJC 73 (2013) 2610                                   | EPJC 76 (2016) 401                                        | CMS-PAS-SMP-16-006                           |
|       | 5 fb <sup>-1</sup>                                    | 19.4 fb <sup>-1</sup>                                     | 2.3 fb <sup>-1</sup>                         |

## Speaking of excesses and overshoots: WW production

#### > A prime example of the complexities of diboson production processes

Sum of a variety of very different processes



## WW production: The importance of Theory

#### > Not too long ago (ICHEP2014)

- Persistent excess of measurements (at both experiments) over data
- Wild speculations ensued....





## WW production: A better picture perhaps

#### > Progress in predictions over the past two years

- Increase in QCD precision has improved agreement
- So what is the current status?



## WW production: Event selection

- > Few conceptual differences between ATLAS and CMS
  - CMS: Higgs is background (8% of total cross section, but only 3% of observed event yield)
  - CMS: Allows for up to 1 additional jet Note: ATLAS has now a dedicated analysis with one jet in the final state (see: Kenneth Long, Wednesday, 17.15)



## WW production: Event selection

- > Few conceptual differences between ATLAS and CMS
  - CMS: Higgs is background (8% of total cross section, but only 3% of observed event yield)
  - CMS: Allows for up to 1 additional jet Note: ATLAS has now a dedicated analysis with one jet in the final state (see: Kenneth Long, Wednesday, 17.15)

|                                            | AILAS          | CMS |
|--------------------------------------------|----------------|-----|
| $p^{T}(\ell)$ [GeV]                        | 25 (lead) / 20 | 20  |
| p <sub>T</sub> <sup>Miss</sup> [GeV]       | 20             | -   |
| $E^{T}_{Miss}$ (project.) [GeV]            | 15             | 20  |
| $\Delta \phi (p_T^{Miss, E^T} E^T_{Miss})$ | <0.6           | -   |
| $p_{_{T}}(\ell\ell)$ [GeV]                 | -              | 30  |
| M (ℓℓ) [GeV]                               | 10             | 12  |
| Lepton veto threshold<br>[GeV]             | 7              | 10  |
| Number of jets                             | 0 (<=1)        | <=1 |

For both analysis: different-flavour (+0-jet only) shown

■ |η| < ~2.4(7) / 2.5

Tau contribution (~10%)

| ATLAS CMS* |      |      |  |  |  |
|------------|------|------|--|--|--|
| Exp Signal | 3240 | 3678 |  |  |  |
| Top bkg    | 18%  | 14%  |  |  |  |
| W+jets     | 7%   | 5%   |  |  |  |
| Diboson    | 5%   | 5%   |  |  |  |
| Z Boson    | 5%   | 1%   |  |  |  |
|            |      |      |  |  |  |

Page 17

\* 3% Higgs 0-jet bin only 1% VVV



## **Extrapolation to total cross section**

#### > Calculation of cross section:

 $\sigma^{\text{tot}} = \frac{\mathsf{N}_{\text{sig}}}{\mathscr{L} \times \mathsf{A} \times \mathsf{C} \times \mathsf{B}}$ 

Signal events Luminosity Acceptance correction → includes jet veto Detector correction Branching ratio

Signal efficiencies (A×C) ATLAS CMS 0-jet 12% 3% (tau) 1-jet 1.5% 1%

 $C = N_{reco}/N_{fidtruth}$ 

(for ATLAS tau's

only in numerator)

- Acceptance correction includes jet veto
- Not trivial to calculate: How to combine samples?

#### > CMS Approach

 qq → WW (Powheg) reweighted to re-summed calculations gg → WW from gg2WW added according to Powheg / gg2WW predictions normalized to NNLO prediction

#### > ATLAS Approach

- qq → WW and H → WW (Powheg) *normalized to MCFM / HiggsXSWG NNLO* gg → WW from gg2WW added according to normalization, then normalized to NNLO prediction
- Re-summed and NNLO differential distributions disagree by 4% (pointed out in last years workshop by Jamie Tattersal - link)



Page 18

## WW production: Total cross section

#### > 8 TeV



 More on the 13 TeV measurements: Friday, 8.25, Valerio Dao

#### > With better predictions, the excess seems to be mostly gone

## DESY

Page 19

#### > 13 TeV – NEW

|             | ATLAS*              | CMS                |
|-------------|---------------------|--------------------|
| Measurement | 142 ± 14 pb         | 115.3 ±<br>10.9 pb |
| Prediction  | 128 +3.5<br>-3.8 pb | 120.3 ±<br>3.6 pb  |

\*Higgs included as signal

### WW production: More interesting observations

#### Differential distributions

- Measured for leading lepton p<sub>T</sub>
- CMS with slope between data and theory





#### WW production: More interesting observations

#### Differential distributions

- Measured for  $\Delta \phi(\ell \ell)$
- Slope between data and theory





## WW production: Anomalous triple gauge couplings

#### > ATLAS: leading lepton pT distribution

- Optimized binning and choice of variable, applying NLO electroweak corrections
- Setting limits on aTGCs and effective field theory operators

| $p_{\rm T}^{\rm lead}$ [GeV] | 25-75 | 75–150 | 150-250 | 250-350 | 350-1000 |
|------------------------------|-------|--------|---------|---------|----------|
| SF <sub>EW</sub>             | < 1%  | -4%    | -10%    | -16%    | -24%     |
| $\delta SF_{EW}$             | 0.1%  | <0.5%  | 2%      | 4%      | 7%       |

#### > CMS: M ( $\ell \ell$ ) distribution

S. Gieseke, T. Kasprzik and J. H. Kühn,

Data

WW

WZ/ZZ/VVV

Vector-boson pair production and electroweak corrections in HERWIG++ Eur. Phys. J. C 74 (2014) 2988, arXiv: 1401.3964 [hep-ph].

19.4 fb<sup>-1</sup> (8 TeV)

Top quark

W+jets

 $c_{WWW}/\Lambda^2 = 20 \text{ TeV}^{-2}$ 

DY

 $c_w/\Lambda^2 = 20 \text{ TeV}^{-2}$ 

--- c<sub>B</sub>/ $\Lambda^2 = 55 \text{ TeV}^{-2}$ 

500

600

m<sub>ee</sub> (GeV

- Chosen as more robust variable towards mis-modelling
- Only investigating effective field theory operators

#### > Still both experiments see "underfluctuation" in data (or MC mis-description)

CMS

 $10^{4}$ 

10

100

200

300

400

Note: electroweak corrections are applied



## WW production: Anomalous triple gauge couplings

- > Limits better than expected for both experiments
- > ATLAS better than CMS for observed limits (expected seem more similar)

| Coupling constant       | This result $(\text{TeV}^{-2})$ | Its 95 % CL interval (TeV $^{-2}$ ) | World average $(TeV^{-2})$                                   |  |
|-------------------------|---------------------------------|-------------------------------------|--------------------------------------------------------------|--|
| $c_{\rm WWW}/\Lambda^2$ | $0.1^{+3.2}_{-3.2}$             | [-5.7, 5.9]                         | $-5.5 \pm 4.8 \text{ (from } \lambda_{\gamma} \text{)}$      |  |
| $c_{\rm W}/\Lambda^2$   | $-3.6^{+5.0}_{-4.5}$            | [-11.4, 5.4]                        | $-3.9^{+3.9}_{-4.8}$ (from $g_1^{\rm Z}$ )                   |  |
| $c_{\rm B}/\Lambda^2$   | $-3.2^{+15.0}_{-14.5}$          | [-29.2, 23.9]                       | $-1.7^{+13.6}_{-13.9}$ (from $\kappa_{\gamma}$ and $g_1^Z$ ) |  |

#### ATLAS

CNAC

| Scenario | Parameter           | Expected [TeV <sup>-2</sup> ] | Observed [TeV <sup>-2</sup> ] |
|----------|---------------------|-------------------------------|-------------------------------|
|          | $C_{WWW}/\Lambda^2$ | [-7.62, 7.38]                 | [-4.61, 4.60]                 |
| EFT      | $C_W/\Lambda^2$     | [-12.58, 14.32]               | [-5.87, 10.54]                |
|          | $C_B/\Lambda^2$     | [-35.8, 38.4]                 | [-20.9, 26.3]                 |





## WZ (fully leptonic)

|       | 7 TeV                                                     | 8 TeV                                                      | 13 TeV                                                                                                   |
|-------|-----------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ATLAS | Eur. Phys. J. C (2012)<br>72:2173<br>4.6 fb <sup>-1</sup> | Phys. Rev. D 93,<br>092004 (2016)<br>20.3 fb <sup>-1</sup> | Subm. To PLB<br>arXiv:1606.04017<br>3.2 fb <sup>-1</sup><br>ATLAS-CONF-2016-043<br>13.3 fb <sup>-1</sup> |
| CMS   | _                                                         | EPJC 76 (2016) 401<br>19.4 fb <sup>-1</sup>                | Subm. To PLB<br>arXiv:1607.06943<br>2.3 fb <sup>-1</sup><br>CMS-PAS-SMP-16-002                           |

## WZ production: Precise results at 8 TeV

#### > Huge advantage:

- Higher cross section compared to ZZ,
- Less background compared to WW and semi-leptonic WV analyses (the later discussed by → Senka Đurić)

#### > CMS 8 TeV results still pending

| p <sup>⊤</sup> (ℓ) (Ζ) [GeV]     | > 15                                |
|----------------------------------|-------------------------------------|
| p <sup>⊤</sup> (ℓ) (W) [GeV]     | > 20                                |
| η (ℓ) [GeV]                      | < 2.5                               |
| M( <i>ť</i> ť) (Z)               | $ M - M(Z)^{PDG}  < 10 \text{ Gev}$ |
| M <sub>T</sub> (W)* [GeV]        | > 30                                |
| ΔR (ℓℓ) (Ζ,Ζ)                    | > 0.2                               |
| $\Delta R$ ( $\ell \ell$ ) (W,Z) | > 0.3                               |

 Generator-independent association of leptons with bosons using weighting based on nominal values

$$P = \left| \frac{1}{m_{(\ell^+,\ell^-)}^2 - (m_Z^{\text{PDG}})^2 + i \Gamma_Z^{\text{PDG}} m_Z^{\text{PDG}}} \right|^2 \\ \times \left| \frac{1}{m_{(\ell',\nu_{\ell'})}^2 - (m_W^{\text{PDG}})^2 + i \Gamma_W^{\text{PDG}} m_W^{\text{PDG}}} \right|^2$$

total cross section defined for 66 < M(Z) < 116 GeVfor triggering purposes: in the data selection, one lepton must be > 25 GeV Also re

$${}^{*}m_{\rm T}^W = \sqrt{2 \cdot p_{\rm T}^\nu \cdot p_{\rm T}^\ell \cdot [1 - \cos \Delta \phi(\ell, \nu)]},$$

Also result from WZ VBS: Results on VBS Production and aQGCs part I+II Wed, 11:45 Jake Searcy Thur, 16.30 James Faulkner | Page 25

arXiv:1603.02151

## **WZ production: Selection**

- > Two main sources of background (20% in total):
  - Reducible background from "fake" leptons (only 2% of those from 2fakes)
  - Irreducible background from ZZ events (70%) and other multiple bosons / DPS
  - ZZ background scaled by 1.05 to account for NNLO QCD and NLO EWK

#### > Defined as

$$m_{\rm T}^{WZ} = \sqrt{\left(\sum_{\ell=1}^{3} p_{\rm T}^{\ell} + E_{\rm T}^{\rm miss}\right)^2 - \left[\left(\sum_{\ell=1}^{3} p_x^{\ell} + E_x^{\rm miss}\right)^2 + \left(\sum_{\ell=1}^{3} p_y^{\ell} + E_y^{\rm miss}\right)^2\right]}$$



#### WZ: Total cross section

> Comparison to NLO QCD calculation (Powheg+Pythia): Factor of 1.17 too low

- Same level of disagreement as in the WW measurements (compared to NLO) consistent picture for fiducial cross section and for 13 TeV measurement
- Here however no jet veto applied as for WW measurement
   → no additional uncertainties due to large logarithms (Stewart-Tackmann)



## **WZ: Effects on NNLO**

- > Similar situation as for previous measurements: NNLO is required
  - Excellent agreement with NNLO prediction similar to W<sub>γ</sub> process:
     Disagreement *not* connected with jet veto (like WW) but some other configuration



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-19/



Page 28

## WZ: First results at 13 TeV

#### > ATLAS and CMS with results for the total cross sections

- Small updates to selections (to adapt for larger pile-up)
- CMS fiducial cross section: 258 ±21 (stat) +19 -20 (syst) ±8 (lumi) fb  $60 < M(\ell \ell) < 120 \text{ GeV}$  274 +11 -8 (scale) ±4(PDF) (MCFM, altern. scale: 291 +16-13±4) + lepton pT selection

| Total:                                | 39 ±3.2 (stat) +2.9 -3.1 (syst) ±1.3(lumi) ±0.8(theo) pb                    |  |  |  |
|---------------------------------------|-----------------------------------------------------------------------------|--|--|--|
| $60 < M(\ell \ell) < 120 \text{ GeV}$ | 42 +1.4 -1.1 $\pm$ 0.6 (MCFM, alternative scale: 44.9 +2.2 -1.8 $\pm$ 0.7 ) |  |  |  |
|                                       | 50 +1.1/-1.0 (Matrix)                                                       |  |  |  |
| ℓ) (Z) [GeV] > 15                     | > 10 (>20) nominal scale:                                                   |  |  |  |

| p'( <i>t</i> )(Z)[GeV]         | > 15                                  | > 10 (>20)              | nominal scale:              |
|--------------------------------|---------------------------------------|-------------------------|-----------------------------|
| p <sup>⊤</sup> (ℓ) (W) [GeV]   | > 15<br>(one >25/27 GeV)              | > 20                    | Alternative scale (Matrix): |
| η (ℓ) [GeV]                    | < 2.5                                 | < 2.5                   | fixed ( $m_z + m_w$         |
| M(ℓℓ) (Z)                      | M – M(Z) <sup>PDG</sup>  <br>< 10 Gev | 76 < M(ℓℓ) < 106<br>GeV |                             |
| M(3 <i>t</i> )                 | -                                     | > 100 GeV               |                             |
| M <sub>T</sub> (W)* [GeV]      | > 30                                  | —                       |                             |
| E <sub>T</sub> <sup>Miss</sup> | _                                     | > 30 GeV                | Page 29                     |



fixed  $(m_7 + m_w) / 2$ 

- Unfolded using Powheg+Pythia, compared to approximate nNLO predictions (applied as k-factors)
   F. Campanario and S. Sapeta, Phys. Lett. B 718 (2012) 100
  - Sizeable corrections of 30-100%, smallest effect (<10%) on m<sub>T</sub><sup>WZ</sup> (used therefore for aTGC extraction)
  - Valid only for the dominant part of the NNLO corrections and restricted phase space
- > NLO EW corrections used as uncertainty
  - Effect of (-0.3-3.2%) on p<sub>T</sub>(Z), (0.12%-1.1% for m<sub>T</sub><sup>WZ</sup>)
  - Uncertainties of QCD, PDF, EW applied linearly



### **WZ: Differential distributions**

#### In most distributions: Flat deviation of MC from data

• M<sub>T</sub><sup>WZ</sup> – least sensitive variable to scale variations – with possible slope

#### > Notable difference: $p_{T}(v)$ with pronounced slope

 Observable more sensitive to polarisation effects (compared to p<sup>T</sup>(*t*) no kinematic restrictions)



## WZ: Possibility to probe PDF effects

Production via ud versus du –

Ratio of W+Z to W-Z production sensitive to PDFs

Expect factor of ~1.5: More u- than d-valence

Probes larger Q<sup>2</sup> and more extreme x-values



eee

μ**ее** 

**e**μμ

1.46 ± 0.19

1.92 ± 0.22

1.26 ± 0.14

ATLAS

Powheg, CT10

Powheg, ATLAS-epWZ12

Data

s = 8 TeV, 20.3 fb<sup>-1</sup>

## WZ: Limits on anomalous couplings





|       | 7 TeV | 8 TeV                                                            | 13 TeV  |
|-------|-------|------------------------------------------------------------------|---------|
| ATLAS |       |                                                                  |         |
| CMS   | _     | Submitted to JHEP<br>arXiv:1607.06975JC<br>19.4 fb <sup>-1</sup> |         |
|       |       |                                                                  | Page 34 |

#### **Electroweak Wjj production at 8 TeV**



Vector boson Fusion



Bremsstrahlung



> Measured so far only by CMS

#### > Process characterized by

Forward jets with large invariant mass

Large rapidity gap

| p <sup>⊤</sup> (e) (Z) [GeV]  | > 30                                |
|-------------------------------|-------------------------------------|
| p <sup>⊤</sup> (µ) (W) [GeV]  | > 25                                |
| $E_{T}^{Miss}$ [GeV]          | > 25 (30 for $\mu$ final state)     |
| M(ℓℓ) (Z)                     | $ M - M(Z)^{PDG}  < 10 \text{ Gev}$ |
| M <sub>T</sub> (W)* [GeV]     | > 30                                |
| $P_{Tj}^{1(j2)}[GeV]$         | > 60 (50 subleading)                |
| M <sub>j1j2</sub> [GeV]       | > 1000                              |
| $ y_w - (y_{j1} + y_{j2})/2 $ | < 1.2                               |

Second lepton veto

$$\overset{*}{m}_{\mathrm{T}}^{W} = \sqrt{2 \cdot p_{\mathrm{T}}^{\nu} \cdot p_{\mathrm{T}}^{\ell} \cdot [1 - \cos \Delta \phi(\ell, \nu)]}, \quad | \text{ Page 35}$$



## Electroweak Wjj production at 8 TeV

#### > Two stage approach

- BDT to estimate background contributions from W+jets
- Likelihood fit to m<sub>jj</sub> distribution to extract signal
- Good agreement with SM

| Channel  | Measured cross section                                        |
|----------|---------------------------------------------------------------|
| Electron | $0.41 \pm 0.04$ (stat) $\pm 0.09$ (syst) $\pm 0.01$ (lumi) pb |
| Muon     | $0.43 \pm 0.04$ (stat) $\pm 0.10$ (syst) $\pm 0.01$ (lumi) pb |
| Combined | $0.42 \pm 0.04$ (stat) $\pm 0.09$ (syst) $\pm 0.01$ (lumi) pb |
|          |                                                               |

 $m_{ii}^{a_0+a_1\ln(m_{jj}/8000)}$ 

 $\mathrm{SM\,LO} \qquad 0.50 \pm 0.02 (\mathrm{scale}) \pm 0.02 (\mathrm{PDF})$ 





Page 36

## **Overview over charged coupling limits**

| August 2016     | CMS<br>ATLAS  |     |           |                     | c                     |          |
|-----------------|---------------|-----|-----------|---------------------|-----------------------|----------|
| Fit Value       |               |     | Channel   | Limits              | J <i>L</i> dt         | √s       |
| Δκ-             | H             |     | WW        | [-4.3e-02, 4.3e-02] | 4.6 fb <sup>-1</sup>  | 7 TeV    |
| — <u>Z</u>      | H             |     | WW        | [-2.5e-02, 2.0e-02] | 20.3 fb <sup>-1</sup> | 8 TeV    |
| • • · · · · ·   | <b>⊢</b> ●−−1 |     | WW        | [-6.0e-02, 4.6e-02] | 19.4 fb <sup>-1</sup> | 8 TeV    |
| Most sensitive: | l             | I   | WZ        | [-1.3e-01, 2.4e-01] | 33.6 fb <sup>-1</sup> | 8,13 TeV |
| WW and $WV$     | H             |     | WV        | [-9.0e-02, 1.0e-01] | 4.6 fb <sup>-1</sup>  | 7 TeV    |
|                 | H             |     | WV        | [-4.3e-02, 3.3e-02] | 5.0 fb <sup>-1</sup>  | 7 TeV    |
|                 | <b>⊢</b> •−-1 |     | LEP Comb. | [-7.4e-02, 5.1e-02] | 0.7 fb <sup>-1</sup>  | 0.20 TeV |
| λ.,             | H             |     | WW        | [-6.2e-02, 5.9e-02] | 4.6 fb <sup>-1</sup>  | 7 TeV    |
| 2               | H             |     | WW        | [-1.9e-02, 1.9e-02] | 20.3 fb <sup>-1</sup> | 8 TeV    |
| <b></b>         | H             |     | WW        | [-4.8e-02, 4.8e-02] | 4.9 fb <sup>-1</sup>  | 7 TeV    |
| Most sensitive: | H++           |     | WW        | [-2.4e-02, 2.4e-02] | 19.4 fb <sup>-1</sup> | 8 TeV    |
| W/7             | H             |     | WZ        | [-4.6e-02, 4.7e-02] | 4.6 fb <sup>-1</sup>  | 7 TeV    |
| ~~ <u>~</u>     | н             |     | WZ        | [-1.4e-02, 1.3e-02] | 33.6 fb <sup>-1</sup> | 8,13 TeV |
|                 | H             |     | WV        | [-3.9e-02, 4.0e-02] | 4.6 fb <sup>-1</sup>  | 7 TeV    |
|                 | H             |     | WV        | [-3.8e-02, 3.0e-02] | 5.0 fb <sup>-1</sup>  | 7 TeV    |
|                 | <b>⊢</b> ●−1  |     | D0 Comb.  | [-3.6e-02, 4.4e-02] | 8.6 fb <sup>-1</sup>  | 1.96 TeV |
|                 | ⊢∙⊣           |     | LEP Comb. | [-5.9e-02, 1.7e-02] | 0.7 fb <sup>-1</sup>  | 0.20 TeV |
| $\Delta g_1^Z$  |               |     | WW        | [-3.9e-02, 5.2e-02] | 4.6 fb <sup>-1</sup>  | 7 TeV    |
|                 |               |     | WW        | [-1.6e-02, 2.7e-02] | 20.3 fb <sup>-1</sup> | 8 TeV    |
| Most sensitive: | F             |     | WW        | [-9.5e-02, 9.5e-02] | 4.9 fb <sup>-1</sup>  | 7 TeV    |
|                 | <b>⊢</b> ●−1  |     | WW        | [-4.7e-02, 2.2e-02] | 19.4 fb <sup>-1</sup> | 8 TeV    |
| VVVV            | F 1           |     | WZ        | [-5.7e-02, 9.3e-02] | 4.6 fb <sup>-1</sup>  | 7 TeV    |
|                 | H             |     | WZ        | [-1.5e-02, 3.0e-02] | 33.6 fb <sup>-1</sup> | 8,13 leV |
|                 | H             |     | WV        | [-5.5e-02, 7.1e-02] | 4.6 fb                | 7 TeV    |
|                 |               |     | D0 Comb.  | [-3.4e-02, 8.4e-02] | 8.6 fb <sup>-</sup>   | 1.96 TeV |
|                 |               |     | LEP Comb. | [-5.4e-02, 2.1e-02] | 0.7 fb <sup>-1</sup>  | 0.20 IeV |
| -0.4 -0.2       | 0             | 0.2 | 0.4       | 0.6                 | 0.8                   |          |
|                 |               |     |           | aTGC Lin            | nits @95              | 5% C.L.  |

## **Overview over charged coupling limits**

|                 | August   | 2016 •                                           | CMS<br>ATLAS                                     |           |           |                       | ſ                     |          |
|-----------------|----------|--------------------------------------------------|--------------------------------------------------|-----------|-----------|-----------------------|-----------------------|----------|
|                 |          | Fit Value                                        |                                                  |           | Channel   | Limits                | J <i>L</i> dt         | √s       |
|                 | Δκ-      |                                                  | H                                                |           | WW        | [-4.3e-02, 4.3e-02]   | 4.6 fb <sup>-1</sup>  | 7 TeV    |
|                 | 2        |                                                  | H-1                                              |           | WW        | [-2.5e-02, 2.0e-02]   | 20.3 fb <sup>-1</sup> | 8 TeV    |
| -               | •        |                                                  | <b>⊢</b> ●−−1                                    |           | WW        | [-6.0e-02, 4.6e-02]   | 19.4 fb <sup>-1</sup> | 8 TeV    |
| N               | lost s   | ensitive:                                        | I                                                |           | WZ        | [-1.3e-01, 2.4e-01]   | 33.6 fb <sup>-1</sup> | 8,13 TeV |
| V               | VW ar    | nd WV                                            | Η                                                |           | WV        | [-9.0e-02, 1.0e-01]   | 4.6 fb <sup>-1</sup>  | 7 TeV    |
| •               |          |                                                  | H 1                                              |           | WV        | [-4.3e-02, 3.3e-02]   | 5.0 fb <sup>-1</sup>  | 7 TeV    |
|                 |          |                                                  | <b>⊢</b> ● -                                     |           | LEP Comb  | . [-7.4e-02, 5.1e-02] | 0.7 fb <sup>-1</sup>  | 0.20 TeV |
|                 | λ_       |                                                  | L                                                |           | WW        | [-6.2e-02, 5.9e-02]   | 4.6 fb <sup>-1</sup>  | 7 TeV    |
|                 | MA rac   | ults from CM                                     | $19 M/V \text{somi}_{-10}$                       | ntonic    |           | [-1.9e-02, 1.9e-02]   | 20.3 fb <sup>-1</sup> | 8 TeV    |
|                 |          |                                                  |                                                  |           |           | [-4.8e-02, 4.8e-02]   | 4.9 fb <sup>-1</sup>  | 7 TeV    |
| 2.              | '3 fb⁻') | not yet com                                      | petitive (see I                                  | alk S. Đi | uric) / / | [-2.4e-02, 2.4e-02]   | 19.4 fb <sup>-1</sup> | 8 TeV    |
| I V             |          |                                                  | 1 1                                              |           |           | [-4.6e-02, 4.7e-02]   | 4.6 fb <sup>-1</sup>  | 7 TeV    |
| V               |          | aTGC                                             | expected limit                                   | observed  | limit //  | [-1.4e-02, 1.3e-02]   | 33.6 fb <sup>-1</sup> | 8,13 leV |
|                 | 'n.      | $\frac{c_{WWW}}{\Lambda^2}$ (TeV <sup>-2</sup> ) | [-8.73, 8.70]                                    | [-9.46,9  | .42]      | [-3.9e-02, 4.0e-02]   | 4.6 fb                | 7 TeV    |
|                 | FT       | $\frac{d^2}{c_W}$ (TeV <sup>-2</sup> )           | $\begin{bmatrix} -11 & 7 & 11 & 1 \end{bmatrix}$ | [_126]1   | 201       | [-3.8e-02, 3.0e-02]   | 5.0 fb <sup>-1</sup>  | 7 IeV    |
|                 | ЪЕ       | $\frac{1}{\Lambda^2}$ (ICV)                      |                                                  | [-12.0,1  | 2.01 pmb. | [-3.6e-02, 4.4e-02]   | 8.6 fb                | 1.96 IeV |
|                 |          | $\frac{e_B}{\Lambda^2}$ (TeV <sup>2</sup> )      | [-54.9, 53.3]                                    | [-56.1,5  | 5.4] Comb | [-5.9e-02, 1.7e-02]   | 0.7 fb <sup>-1</sup>  | 0.20 lev |
|                 | лух<br>Л | λ                                                | [-0.036, 0.036]                                  | [-0.039,0 | .039]/    | [-3.9e-02, 5.2e-02]   | 4.6 fb <sup>-1</sup>  | 7 IeV    |
|                 | rai      | $\Lambda q_1^Z$                                  | [-0.066 . 0.064]                                 | [-0.067.0 | .0661     | [-1.6e-02, 2.7e-02]   | 20.3 fb               | 8 Iev    |
|                 | Ve       | $\Delta r_{-}$                                   |                                                  |           | 0411      | [-9.5e-02, 9.5e-02]   | 4.9 fb                |          |
| ۱,              |          | $\Delta \kappa_Z$                                | [-0.036, 0.040]                                  | [-0.040,0 | .041]     | [-4.7e-02, 2.2e-02]   | 19.4 fb               | 8 Iev    |
| •               | * * * *  |                                                  |                                                  |           |           |                       | 4.6 fb                |          |
|                 |          |                                                  |                                                  |           | VVZ       | [-1.5e-02, 3.0e-02]   | 33.6 fb               | 0,13 IEV |
|                 |          |                                                  |                                                  |           | VV V      | [-5.5e-02, 7.1e-02]   | 4.6 fb                | 7 TeV    |
|                 |          |                                                  |                                                  |           | DU Comb.  | [-3.4e-02, 0.4e-02]   | 8.6 fD                | 1.96 TeV |
|                 |          |                                                  |                                                  |           | LEP Comb  | . [-3.46-02, 2.16-02] | 0.7 D                 | 0.20 100 |
| -0.4 -0.2 0 0.2 |          |                                                  |                                                  |           | 0.4       | 0.6                   | 0.8                   |          |
|                 |          |                                                  |                                                  |           |           | aTGC Lim              | its @95               | % C.L.   |
|                 |          |                                                  |                                                  |           |           |                       |                       |          |

#### Summary



## Backup slides.



| Page 40

## **Fiducial WW-jet-cross sections**







Page 42