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• The ToolChain at NLO

• BSM@NLO : Two physics case

• Latest developments in MG5aMC
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BSM @ NLO with FeynRules
ModelFeynRules

Artwork by C. Degrande
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Particles, parameters, ...

FeynRules
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MadGraph 5
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[Alloul, Christensen, Degrande, Duhr, Fuks] 

Whizard

CalcHep

HERWIG

Feynrules Structure
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Output {

The UFO format has become the 
standard, as it is now being used by 
MG5_aMC, Sherpa, GoSam, Whizard,HW7

< 0|iLI |fields >
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Sherpa

[Alloul, N. Christensen, C. Degrande, C. Duhr, B.Fuks, in 1310.1921] 

Whizard

CalcHep

HERWIG

FeynArts
Needed for the

computation of  UV 
and R2 counterterms

[C. Degrande, 1406.3030] 

NLOCT
+

Feynrules @ NLO (version 2.1)
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Loop models database
http://feynrules.irmp.ucl.ac.be/wiki/NLOModels
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NLO models (10) 10 models for now

• Many more BSM models in development and to be added to this list.
• What can do with these loop-models? NLO-accurate simulations and loop-induced 

phenomenology.

http://feynrules.irmp.ucl.ac.be/wiki/NLOModels
http://feynrules.irmp.ucl.ac.be/wiki/NLOModels
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H+ prod. @ NLO, mH ~ mt
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a) dominates for mH < 145 GeV

b) dominates for mH > 200 GeV

a)+b) For 145 GeV< mH < 200 GeV 

-> Requires to honestly compute: 
p p > H+ W- b b 

[1607.05291]
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Spin-2 production @ NLO
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Simplified model:

Large K-factors, unreliable uncertainties at LO.

[1605.09359]
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Spin-2 : NLO QCD matched
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[1605.09359]
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Spin-2 : Unitarity violation
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[1605.09359]

• In pp→Y2j : Unitary violation for helicity modes 0 and 1, and 𝜅g≠𝜅q

• Already present at LO . How to restore it? Stay for Marco Sekulla’s talk.
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Latest developments in MG5aMC

17

• NINJA and COLLIER interfaced to MadLoop

• Event generation for loop-induced processes

• Reweighting framework (for both LO and NLO)

• Pythia8 LO MLM, CKKW-L merging systematics

• User-defined MG5aMC Plugins

• NLO EW (+QCD) computations
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New Loop Reductions in MadLoop
[1604.01363]

Unmatched numerical stability with COLLIER

NINJA and COLLIER interfaced to MadLoop
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New Loop Reductions in MadLoop
[1604.01363]

And it can be very relevant.
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New Loop Reductions in MadLoop

NINJA slightly faster (ratio > 2) for large multiplicity processes.



Valentin Hirschi, SLAC MBI, Madison 25.08.2016 21

MadLoop in MG5aMC
Process generation

With options specified (in this case, generates the one-loop matrix element code only):
[	0.01s	]	import	model	loop_sm-no_hwidth
[	0.01s	]	set	complex_mass_scheme
[	5min		]	generate	g	g	>	e+	ve	mu-	vm~	b	b~	/	h	QED=2	[virt=QCD]
[	2min		]	output	MyProc
[	~1	s*	]	launch	-f

 generate	<process>	<amp_orders_and_option>	[<mode>=<pert_orders>]	<squared_orders>	
 import	model	<model_name>-<restrictions>

 output	<format>	<folder_name>
 launch	<options>

Very simple one (in this case, generates the full code for NLO computations) :
[	2.5s			]	generate	p	p	>	t	t~	[QCD]
[	6.1s			]	output
[	~	mins*]	launch

Examples, starting from a default MG5aMC interface

*	time	per	phase-space	point,	summed	over	helicity	configurations	and	colors.

cp3.irmp.ucl.ac.be/projects/madgraph/wiki/MadLoopStandaloneLibrary
Details on how to generate and use a MadLoop standalone library available @

*	timing	for	10k	unweighted	events	on	a	laptop

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/MadLoopStandaloneLibrary
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/MadLoopStandaloneLibrary
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Loop-Induced (LI) Event generation
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Loop-Induced (LI) Event generation
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Z
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���A(1)
���
2

2

[1507.00020]
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Two difficulties for LI

A(1)

• No approximation of the virtual is available and slow ME

must be evaluated for each PS point.

We improved parallelization of MadEvent.

• Reduction must be done at the amplitude level

Loop red. must be performed for each helicity config.

Using [TIR] or [MC over Helicity + OPP] helps.

[1507.00020]



Valentin Hirschi, SLAC MBI, Madison 25.08.2016

Simplest example

•generate g g > h [QCD]
•output
• launch

User Input

HEFT

Loop Induced

page 1/1

Diagrams made by MadGraph5_aMC@NLO

g
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g

2

h 3

 diagram 1 HIG=1, HIW=0, QCD=0, QED=0

�heft = 17.63(2)pb
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Simplest example

•generate g g > h [QCD]
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• launch
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Validation p p > h j
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SM Tables (I)

†
? : Not publicly available.

: Computed here for the first time.
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SM Tables (II)
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SM Tables (IV)
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SM Tables (V)

†
? : Not publicly available.
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Reweighting framework (LO and NLO)
[O. Mattelaer, 1607.00763]

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Reweight

A  non-trivial example: Reweighting HEFT@NLO with exact loop-induced MEs.

At LO: simple

At NLO: more involved
but conceptually the same 

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Reweight
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Reweight
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Pythia8 Merging systematics at LO
[S. Prestel, V. H, O.Mattelaer, to appear]

• Streamlined PYTHIA8 installation and steering
MG5_aMC>	install	pythia8
MG5_aMC>	generate	p	p	>	z	>	e+	e-;	launch;

The	following	switches	determine	which	programs	are	run:

	1	Choose	the	shower/hadronization	program:																												shower	=	PYTHIA8

	2	Choose	the	detector	simulation	program:																											detector	=	OFF

	3	Decay	particles	with	the	MadSpin	module:																											madspin	=	OFF

	4	Add	weights	to	the	events	based	on	changing	model	parameters:					reweight	=	OFF

	[0,shower=PYTHIA6,	shower=PYTHIA8,	detector=OFF,	detector=PGS,...	][60s	to	answer]

>

• Support for MLM and CKKW-L merging

• Merging scale variation systematics form a single run. 

• No excuse anymore for theorists using MG5+Pythia6 at LO!
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USER-DEFINED PLUGIN
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Plugin

• Custom	commands	in	MG5aMC	interface

Allows for:

• Customized	format	for	the	matrix	element	output	at	LO

• Custom	cluster	job	submission	implementation

Useful for robust tweaks of MG5_aMC

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Plugin
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Plugin
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NLO QCD ⊕ EW Corrections
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αs
2α2ααs

3 αsα
3 α4

α2αsαs
2α α3

LO

Process O(A) O(Σ)

gg → tt̄H α1
sα

1/2 α2
sα

1

qq̄ → tt̄H, q ̸= b α1
sα

1/2, α3/2 α2
sα

1, α3

qq̄ → tt̄H, q = b α1
sα

1/2, α3/2 α2
sα

1, α1
sα

2, α3

Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α ≪ αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the

– 4 –
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two rightmost columns of table 1.
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Born B0 = O(α1
sα

1/2) B1 = O(α3/2)

QCD
Virtual VQCD,0 = O(α2

sα
1/2) VQCD,1 = O(α1

sα
3/2)

Real RQCD,0 = O(α3/2
s α1/2) RQCD,1 = O(α1/2

s α3/2)

EW
Virtual VEW,0 = O(α1

sα
3/2) VEW,1 = O(α5/2)

Real REW,0 = O(α1
sα

1) REW,1 = O(α2)

Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
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1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α ≪ αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the
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, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully
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Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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table 8, respectively.

Further details on the NLO weak and HBR results relevant to figs. 5 and 6 are given

in figs. 7 and 8, respectively. The main frames display the cross sections, and in the

case of the NLO weak contributions the individual results for the three dominant partonic

channels (namely, gg, dd̄, and uū) are also shown. The lower insets contain the same

information, but in the form of fractions over the relevant LO cross sections; these are thus

the differential analogues of tables 7 and 8.

As far as QCD and weak effects are concerned, figs. 5 and 6 show rather similar

patterns. NLO QCD contributions are dominant everywhere in the phase space, and their

size increase with the collider energy in a manner which is, in the first approximation, rather

independent of the observable or the range considered (however, a closer inspection reveals

some minor differences in the shapes of the relative contributions to several observables). In

other words, there is no single phase-space region associated with the growth with energy

of the relative NLO QCD contribution observed in table 6. At a given collider energy,

the NLO QCD K factors are generally not flat, with the exception of y(t) and, to a good

extent, of ∆y(tt̄,H) at 100 TeV; the K factors also tend to flatten out at large transverse

momenta or invariant masses. The case of NLO weak effects is interesting because they

become significant only in certain regions of the phase space (we remind the reader that

we are discussing here the analogue of the fully inclusive case of sect. 3.1, for which at the

level of rates weak contributions are smaller than QCD scale uncertainties, as documented

by the entries not included in round brackets in table 6). In particular, the histograms

that include the NLO weak contributions lie at the lower end of the QCD scale-uncertainty

band at large pT (H), pT (t), and (to a somewhat lesser extent) ∆y(tt̄,H). Weak effects

induce therefore a significant distortion of the spectra in those regions, and cannot be

neglected. The above regions are rather directly related with those relevant to the boosted

scenario; it is therefore consistent with the behaviour of the rates within the cuts of eq. (3.5)

shown in table 6 that we observe that the relative importance of NLO weak vs NLO QCD

contributions is greater at 13 TeV than at 100 TeV.

One has to keep in mind that the impact of the NLO weak effects discussed above can

be partly compensated by that of the HBR contributions, since the relative importance of

the latter tends to increase (in absolute value) in the same regions where the NLO weak

corrections are most significant, at both 13 and 100 TeV, as shown by the insets of figs. 7

and 8. From these figures, we also see the differential counterpart of table 7: at 13 TeV,

the interplay of the gg with the dd̄ and uū channels is involved, while at 100 TeV one is

dominated everywhere in the phase space by the gg-initiated process.

We conclude this section by presenting in fig. 9 the results for our six reference differen-

tial distributions obtained by imposing the cuts of eq. (3.5). As expected, the effect of such

cuts is that of further enhancing the impact of the NLO weak contributions, which become

competitive with the QCD ones, and non-negligible even close to the pT thresholds (com-

pare e.g. the insets of the upper two panels of figs. 5 and 9). Note that this conclusion is

not modified when the HBR contributions are taken into account, as was already observed

for the predictions of the total rates. We finally comment on a few visible features that

appear in the differential pT (t), pT (tt̄), and M(tt̄H) distributions in the boosted scenario.
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tt̄H : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 9.685 · 10−2 3.617 · 10−1 (1.338 · 10−2) 23.57

NLO QCD 2.507 · 10−2 1.073 · 10−1 (3.230 · 10−3) 9.61

LO EW 1.719 · 10−3 4.437 · 10−3 (3.758 · 10−4) 1.123 · 10−2

LO EW no γ −2.652 · 10−4 −1.390 · 10−3 (−2.452 · 10−5) −1.356 · 10−1

NLO EW −5.367 · 10−4 −4.408 · 10−3 (−1.097 · 10−3) −6.261 · 10−1

NLO EW no γ −7.039 · 10−4 −4.919 · 10−3 (−1.131 · 10−3) −6.367 · 10−1

HBR 8.529 · 10−4 3.216 · 10−3 (2.496 · 10−4) 2.154 · 10−1

Table 3: Contributions, as defined in table 1, to the total rate (in pb) of tt̄H production,

for three different collider energies. The results in parentheses are relevant to the boosted

scenario, eq. (3.1).

tt̄H : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 25.9+5.4
−11.1 29.7+6.8

−11.1 (24.2+4.8
−10.6) 40.8+9.3

−9.1

LO EW 1.8 ± 1.3 1.2 ± 0.9 (2.8 ± 2.0) 0.0± 0.2

LO EW no γ −0.3± 0.0 −0.4± 0.0 (−0.2 ± 0.0) −0.6± 0.0

NLO EW −0.6± 0.1 −1.2± 0.1 (−8.2 ± 0.3) −2.7± 0.0

NLO EW no γ −0.7± 0.0 −1.4± 0.0 (−8.5 ± 0.2) −2.7± 0.0

HBR 0.88 0.89 (1.87) 0.91

Table 4: Same as in table 3, but given as fractions of corresponding LO QCD cross sections.

Scale (for NLO QCD) and PDF uncertainties are also shown.

or boosted regime), where it is predominantly of LO-type because of the growing contri-

butions of qg-initiated partonic processes. In all cases, the PDF uncertainties on the NLO

QCD term are smaller, and decrease with the c.m. energy. Secondly, the contributions

due to processes with initial-state photons are quite large at the LO (except for tt̄W±

production, which has a LO EW cross section identically equal to zero), but consistitute

only a small fraction of the total at the NLO. This is due to the fact that LO EW processes

proceed only through two types of initial state, namely γg and bb̄, whereas NLO EW ones

have richer incoming-parton luminosities. Thirdly, as a consequence of the previous point,

the uncertainty of the photon density only marginally increases (if at all) the total PDF

uncertainty that affects the NLO EW term, while it constitute a dominant factor at the

LO EW level (for tt̄H and tt̄Z).

Other aspects characterise differently the four tt̄V processes. The relative importance

of NLO EW contributions w.r.t. the NLO QCD ones increases with energy in the cases

of tt̄H and tt̄Z production, while it decreases for tt̄W± production. At the 8-TeV LHC,

NLO EW terms have the largest impact on tt̄W+ (about 17% of the NLO QCD ones), and

the smallest on tt̄H (2.7%). This is reflected in the fact that for tt̄W± production, while

the NLO EW effects are within the NLO QCD scale uncertainty band, they are almost

marginally so. Conversely, for tt̄H and tt̄Z production NLO EW contributions are amply
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(Boosted regime in brackets)

and adopted the MSTWnlo2008 [68] PDFs with the associated αS(mZ) for all NLO as

well as LO predictions (since we are chiefly interested in assessing effects of matrix-element

origin). In our default α(mZ)-scheme, the EW coupling constant is [69]:

1

α(mZ)
= 128.93 . (3.2)

The central values of the renormalisation (µR) and factorisation (µF ) scales have been taken

equal to the reference scale:

µ =
HT

2
≡

1

2

∑

i

√

m2
i + p2T (i) , (3.3)

where the sum runs over all final-state particles. The theoretical uncertainties due to the

µR and µF dependencies that affect the coefficient Σ4,0 have been evaluated by varying

these scales independently in the range:

1

2
µ ≤ µR, µF ≤ 2µ , (3.4)

and by keeping the value of α fixed. The calculation of this theory systematics does not

entail any independent runs, being performed through the reweighting technique introduced

in ref. [70], which is fully automated in MadGraph5 aMC@NLO. All the input parameters

not explicitly mentioned here have been set equal to their PDG values [71].

We shall consider two scenarios: one where no final-state cuts are applied (i.e. fully

inclusive), and a “boosted” one, generally helpful to reduce the contamination of light-Higgs

signals due to background processes [72,73], where the following cuts

pT (t) ≥ 200 GeV , pT (t̄) ≥ 200 GeV , pT (H) ≥ 200 GeV , (3.5)

are imposed; since these emphasise the role of the high-pT regions, the idea is that of

checking whether weak effects will have a bigger impact there than in the whole of the

phase space. We shall report in sect. 3.1 our predictions for total rates, for the three

collider c.m. energies and in both the fully inclusive and the boosted scenario. In sect. 3.2

several differential distributions will be shown, at a c.m. of 13 TeV with and without the

cuts of eq. (3.5), and at a c.m. of 100 TeV in the fully-inclusive case only.

Throughout this section, we shall make use of the shorthand notation introduced at

the end of sect. 2 – see in particular table 4.

3.1 Inclusive rates

In this section we present our predictions for inclusive rates, possibly within the cuts of

eq. (3.5). As was already stressed, the results for the LO and NLO QCD contributions are

computed in the same way as has been done previously with MadGraph5 aMC@NLO or

its predecessor aMC@NLO in refs. [21,44]. There are small numerical differences (O(3%))

with ref. [44], which are almost entirely due to the choice of the value of α, and to a very

minor extent to that of mt. As far as ref. [21] is concerned, different choices had been made

there for the top and Higgs masses, and for the reference scale.
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tt̄H tt̄Z tt̄W+ tt̄W−

σLO QCD( pb) 3.617 · 10−1 5.282 · 10−1 2.496 · 10−1 1.265 · 10−1

σ
Gµ

LO QCD( pb) 3.527 · 10−1 5.152 · 10−1 2.433 · 10−1 1.234 · 10−1

∆
Gµ

LO QCD(%) 2.5 2.5 2.5 2.5

δLO EW(%) 1.2 0.0 0 0

δ
Gµ

LO EW(%) 1.2 0.0 0 0

∆
Gµ

LO EW(%) 2.5 2.5 2.5 2.5

δNLO EW(%) −1.2 −3.8 −7.7 −6.7

δ
Gµ

NLO EW(%) 1.8 −0.7 −4.5 −3.5

∆
Gµ

NLO EW(%) −0.5 −0.7 −0.9 −0.9

Table 11: Comparison between results in the α(mZ) and Gµ scheme, at 13 TeV.

The results are collected in table 11, where for ease of comparison we also report the

relevant predictions given previously in the α(mZ) scheme (see tables 3–10).

The scheme dependence of the dominant LO term, σLO QCD, is solely due to the value

of α; thus, the 2.5% reported in the third row of table 11 is simply the relative difference

between the two values of α given in eqs. (3.5) and (3.6), since this LO term factorises a

single power of α. The smallness of σLO EW is such that ∆
Gµ

LO EW, defined in eq. (3.13),

is largely dominated by σLO QCD. Hence its values are also equal to 2.5% within the

numerical accuracy of our results; by increasing the statistics, one would observe tiny

differences w.r.t. the predictions for ∆
Gµ

LO QCD. The predictions for the relative differences

at the LO imply that a change of EW scheme may be significant, being of the same order

as the NLO EW relative contributions, in particular in the case of tt̄H and tt̄Z production,

and slightly less so for tt̄W± production (compare ∆
Gµ

LO EW with δNLO EW). These higher-

order EW results are also affected by a change of EW scheme, as one can see by comparing

the results for δNLO EW and for δ
Gµ

NLO EW in table 11, with the Gµ scheme responsible

for a systematic shift towards positive cross sections. However, the most relevant figure

of merit is actually ∆
Gµ

NLO EW, defined in eq. (3.14), which must be compared with its LO

counterparts, ∆
Gµ

LO QCD and ∆
Gµ

LO EW; the values of the former ratio are significantly smaller

than those of the latter two ratios, as a result of the stabilisation against changes of scheme

that is characteristic of higher-order computations.

We conclude this section by mentioning that we have also computed the LO contribu-

tions of O(α3) to the total rates, since they factor the same power of λ6 as the O(α2
Sα

2)

NLO terms, according to the naive scaling law αS → λαS and α → λ2α. We find that these

third-leading LO rates are smaller (for tt̄H and tt̄Z), or much smaller (for tt̄W±, by a factor

of about ten), than the NLO EW ones; furthermore, they are not enhanced by any Su-

dakov logarithms at large hardness. We finally remark that photon-initiated contributions

of O(α3) are negligibly small. For these reasons, we have not reported any O(α3) results

in the tables above, and have ignored their contributions to differential distributions.
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Label Meaning

LO QCD LO, 1

NLO QCD NLO, 1

LO EW LO, 2

NLO EW NLO, 2; no pp → tt̄V1V2

HBR NLO, 2; only pp → tt̄V1V2

Table 1: Shorthand notation used in sect. 3. V1 and V2 stand for a Higgs, a W±, or a Z

boson. HBR is an acronym for Heavy Boson Radiation, and for a given V1 understands

the sum over V2. The reader is encouraged to check sect. 2 for the precise definitions of all

the quantities involved.

3. Results

In this section we present our predictions for inclusive rates relevant to the production of

tt̄H, tt̄Z, tt̄W+, and tt̄W− at a pp collider with a c.m. energy of 8 TeV (LHC Run I),

13 TeV (LHC Run II), and 100 TeV. In the case of the LHC Run II, we shall also study

the four production processes at the level of several differential distributions. Furthermore,

for such a c.m. energy we shall consider the implications of a “boosted” regime, effectively

obtained by imposing the following final-state cuts:

pT (t) ≥ 200 GeV , pT (t̄) ≥ 200 GeV , pT (V ) ≥ 200 GeV . (3.1)

In HBR processes, the transverse momentum of the vector boson denoted by X in eq. (2.5)

is not constrained; this implies that, in the case of identical particles (X = V ), a single

vector boson fulfilling the last condition in eq. (3.1) is sufficient for the corresponding

event to contribute to the cross section. While a high-pT regime might be advocated in

the context of Higgs searches [48–50] to increase the relative strength of the signal, in the

present case it is interesting regardless of the nature of the associated heavy boson, because

it is known to enhance the impact of EW effects through large Sudakov logarithms [51–54].

Thus, it allows one to gauge directly the impact of EW corrections where they should

matter most, and hence to assess the reliability of predictions that include only NLO QCD

effects.

We have chosen the particle masses as follows:

mt = 173.3 GeV , mH = 125 GeV , (3.2)

mW = 80.385 GeV , mZ = 91.188 GeV . (3.3)

All widths are set equal to zero, and the massive modes and Yukawas are renormalised on-

shell. We point out that these settings are not hard-coded in MadGraph5 aMC@NLO, but

are inherited [33] from the adopted UFO [55] model. We have chosen the NNPDF2.3QED

PDF set [38] (particularly for the reasons discussed in sect. 2) that is associated with the

value

αS(mZ) = 0.118 . (3.4)
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Our default EW scheme is the α(mZ) scheme, where we set:

1

α(mZ)
= 128.93 . (3.5)

We shall also present results in the Gµ scheme, where:

Gµ = 1.16639 · 10−5 −→
1

α
= 132.23 . (3.6)

The central values of the renormalisation (µR) and factorisation (µF ) scales have been taken

equal to the reference scale:

µ =
HT

2
≡

1

2

∑

i

√

m2
i + p2T (i) , (3.7)

where the sum runs over all final-state particles. The theoretical uncertainties due to the

µR and µF dependencies have been evaluated by varying these scales independently in the

range:
1

2
µ ≤ µR, µF ≤ 2µ , (3.8)

and by taking the envelope of the resulting predictions; the value of α is kept fixed. In this

work, we have limited ourselves to considering the scale dependence of ΣLO,1 and ΣNLO,1,

which corresponds to what is usually identified with the scale uncertainty of the QCD cross

section. We point out that the calculation of this theory systematics does not entail any

independent runs, being performed through the exact reweighting technique introduced

in ref. [56], which is fully automated in MadGraph5 aMC@NLO. The PDF uncertainties

are computed, again through reweighting, by following the NNPDF methodology [57]; we

report the 68% CL symmetric interval (that is the one that contains only 68 replicas out of

a total of a hundred; this is done in order to avoid the problem of outliers, which is severe

in this case owing to the photon PDF [38])

We stress that, because of the choice of PDFs made in this paper, the present results

for tt̄H production would not be exactly identical to those of ref. [31] even if QED effects

were ignored. However, the differences are tiny, so that a direct comparison between the

tt̄H results of this paper and those of ref. [31] is possible, which allows one to assess the

impact of QED-only corrections.

3.1 Inclusive rates

We begin by reporting, in table 2, the results relevant to the individual contributions that

enter the definition of a given HBR cross section. As is implied by eq. (2.5), by summing

the relevant entries of table 2 one obtains the desired HBR rate. For example, in the case

of tt̄H production:

σHBR(tt̄H) = σ(tt̄HH) + σ(tt̄HZ) + σ(tt̄HW+) + σ(tt̄HW−) , (3.9)

and analogously for the other processes. Note that HBR cross sections are inclusive by

definition, and cannot be summed; this is evident if one considers that one given contri-

bution may enter in more than one HBR rate (e.g. σ(tt̄HZ) contributes to the HBR’s of

both tt̄H and tt̄Z). The entries of table 2 have a relative integration error of about 0.1%.
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σ( pb) 8TeV 13TeV 100TeV

tt̄HH 1.640 · 10−4 6.947 · 10−4 6.078 · 10−2

tt̄HZ 2.831 · 10−4 1.214 · 10−3 1.212 · 10−1

tt̄HW+ 2.918 · 10−4 8.996 · 10−4 1.982 · 10−2

tt̄HW− 1.139 · 10−4 4.074 · 10−4 1.366 · 10−2

tt̄ZZ 3.373 · 10−4 1.385 · 10−3 1.209 · 10−1

tt̄ZW+ 5.036 · 10−4 1.711 · 10−3 4.634 · 10−2

tt̄ZW− 1.919 · 10−4 7.455 · 10−4 3.084 · 10−2

tt̄W+W− 1.618 · 10−3 7.066 · 10−3 7.747 · 10−1

Table 2: Total rates for the individual contributions to HBR cross sections.

We now present, in turn, the results for the total rates relevant to tt̄H, tt̄Z, tt̄W+,

and tt̄W− production. Each of these processes corresponds to a set of two tables: tables 3

and 4 for tt̄H, tables 5 and 6 for tt̄Z, tables 7 and 8 for tt̄W+, and tables 9 and 10 for

tt̄W−. In the first table of each set we give the values, in pb, of the various contributions

to the total cross section, namely LO QCD, NLO QCD, LO EW, NLO EW, and HBR; at

a given c.m. energy, these results have an integration error which is at most 0.1% times the

LO QCD cross section3 relevant to that energy. The two contributions labelled with “EW”

are also computed by setting the photon density equal to zero, as explained in sect. 2. In

the case of the 13 TeV LHC, we also give (in parentheses) the rates within the cuts of

eq. (3.1). The second table of each set displays the value of the ratios:

δX =
σX

σLO QCD
, (3.10)

with X equal to NLO QCD, LO EW, NLO EW, and HBR. In other words, for any given

column the entry in the nth row of the second table is equal to the ratio of the entry in the

(n+1)th row of the first table over the entry in the first row of that table. Except for HBR,

the results for the ratios δ are associated with uncertainties. These fractional uncertainties

are computed by using eq. (3.10), with the numerator set equal to the maximum and

minimum of either the scale or the PDF envelope, and the denominator always computed

with central scales and PDFs. Note that the denominator is a LO quantity, at variance

with what is done usually in QCD where the central NLO cross section is used; the present

choice allows one to treat QCD and EW effects on a more equal footing in the context

of a mixed-coupling expansion. In the case of NLO QCD, the uncertainties quoted in the

tables are due to scale variations (leftmost errors) and PDF variations (rightmost errors);

in the case of the LO and NLO EW contributions, to PDF variations.

The results for the total cross sections exhibit a few features common to all four pro-

cesses considered here. Firstly, the leading NLO term (NLO QCD) is very large, and grows

with the collider energy. Its impact is particularly striking in the case of tt̄W± production,

3The typical errors are such that the statistical uncertainties affect the last digit of the results quoted

in the tables.
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tt̄W− : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 4.427 · 10−2 1.265 · 10−1 (3.186 · 10−3) 2.833

NLO QCD 1.870 · 10−2 6.515 · 10−2 (2.111 · 10−3) 4.351

LO EW 0 0 0

LO EW no γ 0 0 0

NLO EW −2.634 · 10−3 −8.502 · 10−3 (−5.838 · 10−4) −2.400 · 10−1

NLO EW no γ −2.761 · 10−3 −8.912 · 10−3 (−6.094 · 10−4) −2.484 · 10−1

HBR 1.924 · 10−3 8.219 · 10−3 (4.781 · 10−4) 8.192 · 10−1

Table 9: Same as in table 3, for tt̄W− production.

tt̄W− : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 42.2+11.9
−12.7 ± 3.3 51.5+14.8

−13.8 ± 2.8 (66.3+21.7
−19.6 ± 3.9) 153.6+37.7

−34.9 ± 2.2

LO EW 0 0 0

LO EW no γ 0 0 0

NLO EW −6.0± 0.3 −6.7± 0.2 (−18.3 ± 0.8) −8.5± 0.2

NLO EW no γ −6.2± 0.2 −7.0± 0.2 (−19.1 ± 0.6) −8.8± 0.1

HBR 4.35 6.50 (15.01) 28.91

Table 10: Same as in table 4, for tt̄W− production.

the vector bosons, it does say that, in such simulations, HBR contributions cannot simply

be neglected. Note that the behaviour with the c.m. energy of the tt̄W+ and tt̄W− cross

sections is not identical, mainly owing to the fact that the former (latter) process is more

sensitive to valence (sea) quark densities.

We now turn to discussing how the results presented so far might be affected by a

change of EW scheme. We thus give predictions obtained in the Gµ scheme, with the

parameters set as in eq. (3.6); we limit ourselves to considering the 13-TeV LHC, and do

not include HBR cross sections in this study. We define a quantity analogous to that of

eq. (3.10) in the Gµ scheme:

δ
Gµ

X =
σ
Gµ

X

σ
Gµ

LO QCD

. (3.11)

We also introduce the following ratios, that help measure the differences between analogous

results in the two schemes:

∆
Gµ

LO QCD =
σLO QCD − σ

Gµ

LO QCD

σLO QCD
, (3.12)

∆
Gµ

LO EW =
σLO QCD + σLO EW − (σ

Gµ

LO QCD + σ
Gµ

LO EW)

σLO QCD + σLO EW
, (3.13)

∆
Gµ

NLO EW =
σLO QCD + σLO EW + σNLO EW − (σ

Gµ

LO QCD + σ
Gµ

LO EW + σ
Gµ

NLO EW)

σLO QCD + σLO EW + σNLO EW
. (3.14)

– 11 –



Valentin Hirschi, SLAC MBI, Madison 25.08.2016

The midterm goal

42

LO QCD                    LO EW                    

NLO QCD                    
αs
2α2ααs

3 αsα
3 α4

α2αsαs
2α α3

NLO EW                    

MG5_aMC> define p = p b b~ a
MG5_aMC> generate p p > t t~ h [QCD QED]
MG5_aMC> output ttbarh_QCD_QED
MG5_aMC> launch 



Valentin Hirschi, SLAC MBI, Madison 25.08.2016

The midterm goal

42
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NLO QCD                    
αs
2α2ααs

3 αsα
3 α4
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2α α3

NLO EW                    

MG5_aMC> define p = p b b~ a
MG5_aMC> generate p p > t t~ h [QCD QED]
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Additional difficulties appear when computing all the blobs and other processes:

> complex mass scheme
> isolated photon definition
> book-keeping of Born topologies

currently under development using 
dijet 

as a case-study
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[C. Degrande, 1406.3030] 
NLOCT    LIMITATIONS / ASSUMPTIONS

MS

• Renormalizable Lagrangian, i.e. maximum operator dimension is 4.

• Feynman gauge

• t’Hooft-Veltman scheme

• Onshell renormalization condition for wavefunctions and masses

•          everywhere else (zero momentum subtraction possible for 
couplings of massive fermions to gauge bosons).

• The generalization of the renormalization conditions 
considered is an important ongoing effort as it is necessary for:

EW corrections, 
full MSSM, 
complex-mass scheme (partially supported already),
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