MADGRAPH5_AMC@NLO

[ARXIV:1405.0301]

VALENTIN HIRSCHI

MBI WORKSHOP

$$
25 \text { TH A UGUS T } 20016
$$

FOREWORD

University of Wisconsin - Madison MAD/PH/813
January 1994

Automatic Generation of Tree Level
 Helicity Amplitudes


```
Attempting Process: e- e- -> e- e-
Enter the number of QCD vertices between O and O (0):
The number of QFD vertices is 2
Would you like to include the Weak sector (n)?
Enter a name to identify process (emem_emem):
    Generating diagrams for 4 external legs
    There are 2 graphs.
    Writing Feynman graphs in file emem_emem.ps
    Reduced color matrix 1 }
    Writing function emem_emem in file emem_emem.f.
    Standard Model particles include:
        Quarks: duscb t d~ u~ s~ c~ b~ t~
        Leptons: e- mu- ta- e+ mu+ ta+ ve vm vt ve~ vm~ vt~
        Bosons: g a z w+ w- h
    Enter process you would like calculated in the form e+ e- -> a.
    (<return> to exit MadGraph.)
    Thank you for using MadGraph
```


FOREWORD

University of Wisconsin - Madisen MAD/PH/813
Graph! tanyary 1994
Automatic Generation of Tree Level
Helicity Amplitudes


```
Attempting Process: e- e- -> e- e-
Enter the number of QCD vertices between O and O (0):
The number of QFD vertices is 2
Would you like to include the Weak sector (n)?
Enter a name to identify process (emem_emem):
    Generating diagrams for 4 external legs
    There are 2 graphs.
    Writing Feynman graphs in file emem_emem.ps
    Reduced color matrix 1 2
    Writing function emem_emem in file emem_emem.f.
    Standard Model particles include:
        Quarks: duscbt d~ u~ s~ c~ b~ t~
        Leptons: e- mu- ta- e+ mu+ ta+ ve vm vt ve~ vm~ vt~
        Bosons: g a z w+ w- h
    Enter process you would like calculated in the form e+ e- -> a.
    (<return> to exit MadGraph.)
    Thank you for using MadGraph
```


FOREWORD

University of Wisconsin - Madisen MAD/PH/813
Graph! tanary 1994
Automatic Generation of Tree Level
Helicity Amplitudes
Succeeding:

```
Arcompling Process: e- e- -> e- e-
```

```
Arcompling Process: e- e- -> e- e-
```


Enter the number of $Q C D$ vertices between 0 and 0 (0):

The number of QFD vertices is 2 Would you like to include the Weak sector (n)?

Enter a name to identify process (emem_emem):
Generating diagrams for 4 external legs
There are 2 graphs.
Writing Feynman graphs in file emem_emem.ps
Reduced color matrix 12
Writing function emem_emem in file emem_emem.f.

Standard Model particles include:
Quarks: duscbt $d^{\sim} u^{\sim} s^{\sim} c^{\sim} b^{\sim} t^{\sim}$
Leptons: e^{-}mu- ta- e+ mu+ ta+ ve vm vt ve~ vm ${ }^{\sim} \mathrm{vt}^{\sim}$
Bosons: $\quad \mathrm{g}$ a $\mathrm{z} \mathrm{w}^{+} \mathrm{w}^{-} \mathrm{h}$

Enter process you would like calculated in the form $e^{+} e^{-}->a$.
(<return> to exit MadGraph.)

Thank you for using MadGraph

OUTLINE

- The Toolchain at NLO
 + BSM@NLO : TWO PHYSICS CASE
 * LATEST DEVELOPMENTS IN MG5AMC

PREDICTION CHAIN

Theor(ies)

Exp. data

PREDICTION CHAIN

$S U(3) \times S U(2) \times U(1)$ SYMMETRIES $\quad G^{\mu \nu} G_{\mu \nu}+\imath \bar{q}_{(i)} D_{\mu} \gamma^{\mu} q_{(i)}+\cdots$

PREDICTION CHAIN

$S U(3) \times S U(2) \times U(1)$
SYMMETRIES $\quad G^{\mu \nu} G_{\mu \nu}+\imath \bar{q}_{(i)} D_{\mu} \gamma^{\mu} q_{(i)}+\cdots$

$$
G^{\mu \nu} G_{\mu \nu}+\imath \bar{q}_{(i)} D_{\mu} \gamma^{\mu} q_{(i)}+[\cdots]
$$

MODEL

PREDICTION CHAIN

SYMMETRIES $\quad G^{\mu \nu} G_{\mu \nu}+\imath \bar{q}_{(i)} D_{\mu} \gamma^{\mu} q_{(i)}+\cdots$

$$
G^{\mu \nu} G_{\mu \nu}+\imath \bar{q}_{(i)} D_{\mu} \gamma^{\mu} q_{(i)}+[\cdots]
$$

Model

$$
p p \rightarrow j j \quad \text { QCD }=2 \quad \text { MATRIX ELEMENT } \quad \mathcal{M}_{g g \rightarrow d \bar{d}}^{2}, \ldots
$$

PREDICTION CHAIN

SYMMETRIES $\quad G^{\mu \nu} G_{\mu \nu}+\imath \bar{q}_{(i)} D_{\mu} \gamma^{\mu} q_{(i)}+\cdots$

$$
G^{\mu \nu} G_{\mu \nu}+\imath \bar{q}_{(i)} D_{\mu} \gamma^{\mu} q_{(i)}+[\cdots]
$$

Model

$$
\gamma_{0}=\imath \gamma^{\mu} t_{i j}^{a}, \ldots
$$

$$
\mathcal{M}_{g g \rightarrow d \bar{d}}^{2}, \ldots
$$

PREDICTION CHAIN

SYMMETRIES $\quad G^{\mu \nu} G_{\mu \nu}+\imath \bar{q}_{(i)} D_{\mu} \gamma^{\mu} q_{(i)}+\cdots$

$$
G^{\mu \nu} G_{\mu \nu}+\imath \bar{q}_{(i)} D_{\mu} \gamma^{\mu} q_{(i)}+[\cdots]
$$

Model

$$
\gamma_{000}=\imath \gamma^{\mu} t_{i j}^{a} \quad, \ldots
$$

$$
\mathcal{M}_{g g \rightarrow d \bar{d}}^{2}, \ldots
$$

matrix.f
PARTONIC EVENTS

HADRON LEVEL

$\left\{\pi^{0}, K^{+}, e^{+}, p, \cdots\right\}$

PREDICTION CHAIN

$S U(3) \times S U(2) \times U(1)$
SYMMETRIES $\quad G^{\mu \nu} G_{\mu \nu}+\imath \bar{q}_{(i)} D_{\mu} \gamma^{\mu} q_{(i)}+\cdots$

$$
G^{\mu \nu} G_{\mu \nu}+\imath \bar{q}_{(i)} D_{\mu} \gamma^{\mu} q_{(i)}+[\cdots]
$$
Model
MATRix Element
Partonic Events
HADRON LEVEL
$\left\{\pi^{0}, K^{+}, e^{+}, p, \cdots\right\}$
events.hep
Detector level

$$
\mathcal{M}_{g g \rightarrow d \bar{d}}^{2}, \ldots
$$

PREDICTION CHAIN

? ? ?

SYMMETRIES

$$
G^{\mu \nu} G_{\mu \nu}+\imath \bar{q}_{(i)} D_{\mu} \gamma^{\mu} q_{(i)}+[\cdots] \quad \text { MODEL }
$$

 $p p \rightarrow j j \quad$ QCD $=2 \quad$ MATRIX ELEMENT

$$
\mathcal{M}_{g g \rightarrow d \bar{d}}^{2}, \ldots
$$

matrix.f
PARTONIC EVENTS
events.lhe
events.hep

HADRON LEVEL

Detector level

$\left\{\pi^{0}, K^{+}, e^{+}, p, \cdots\right\}$

25.08.2016

PREDICTION CHAIN

SYMMETRIES

FEYNRULES

Model

$p p \rightarrow j j \quad$ QCD $=2 \quad$ MATRIX ELEMENT $\quad \mathcal{M}_{g g \rightarrow d \bar{d}}^{2}, \ldots$
matrix.f
PARTONIC EVENTS

HADRON LEVEL
events.hep
$\left\{\pi^{0}, K^{+}, e^{+}, p, \cdots\right\}$

PREDICTION CHAIN

? ? ?

FEYNRULES

SYMMETRIES

Model

MADGRAPH 5

MATRix Element

$\left\{\pi^{0}, K^{+}, e^{+}, p, \cdots\right\}$

Detector level

PREDICTION CHAIN

? ? ?

SYMMETRIES

FeynRules

Model

MADGRAPH 5

MADEVENT 5

MATRIX ELEMENT

Partonic Events
events.lhe
events.hep

Hadron level

Detector level
$\left\{\pi^{0}, K^{+}, e^{+}, p, \cdots\right\}$

PREDICTION CHAIN

? ? ?

SYMMETRIES

FEYNRULES

Model

MATRIX ELEMENT

MADEVENT 5

PYTHIA / HERWIG

events.hep
Detector level

PREDICTION CHAIN

SYMMETRIES

FEYNRULES

Model

MATRIX ELEMENT

MADEVENT 5

Partonic Events

PYTHIA / HERWIG
HADRON LEVEL

PGS/DELPHES
Detector level

PREDICTION CHAIN

? ? ?

SYMMETRIES

FEYNRULES

Model

MADGRAPH 5

MADEVENT 5

PYTHIA / HERWIG

PGS/DELPHES

MATRIX ELEMENT

PARTONIC EVENTS

HADRON LEVEL

DETECTOR LEVEL

PREDICTION CHAIN

? ? ?

SYMMETRIES

$\mathrm{FR}+\mathrm{NLOCT}$

MODEL

MATRIX ELEMENT
MADGRAPH 5

MADEVENT 5

PYTHIA / HERWIG

PGS/DELPHES

PREDICTION CHAIN

? ? ?

SYMMETRIES

$\mathrm{FR}+\mathrm{NLOCT}$

MODEL

PREDICTION CHAIN

? ? ?

SYMMETRIES

FR + NLOCT

Model

BSM @ NLO WITH FEYNRULES

FeynRules

Model

Artwork by C. Degrande

FEYNRULES STRUCTURE

[Alloul, Christensen, Degrande, Duhr, Fuks]

FEYNRULES: THE BASICS

Loading Feynrules

```
$FeynRulesPath = SetDirectory[ <the address of the package> ];
<< FeynRules`
```


Loading the model

LoadModel[< file.fr >, < file2.fr >, ...]

Extracting the Feynman rules

vertsQCD $=$ FeynmanRules [LQCD]; $\longleftrightarrow<0\left|i \mathcal{L}_{I}\right|$ fields $>$

Checking the Lagrangian

CheckKineticTermNormalisation[L]
CheckMassSpectrum[L]

FEYNRULES: THE BASICS

Loading Feynrules

TWO MISSING INGREDIENTS FOR NLO

- UV counterterms:

TWO MISSING INGREDIENTS FOR NLO

- UV counterterms:
A) Renormalize the Lagrangian

Fields

$$
\begin{aligned}
& \left.\begin{array}{l}
\phi_{0} \rightarrow\left(1+\frac{1}{2} \delta Z_{\phi \phi}\right)+\sum_{\chi} \frac{1}{2} \delta Z_{\phi \chi} \chi \\
x_{0} \rightarrow x+\delta x \\
g(x) \rightarrow g(x+\delta x)
\end{array}\right\} \\
& \text { \} }
\end{aligned}
$$

int. params

$$
\mathcal{L}_{0} \rightarrow \mathcal{L}+\delta \mathcal{L}
$$

TWO MISSING INGREDIENTS FOR NLO

- UV counterterms:
A) Renormalize the Lagrangian

B) Compute the defining loops
\rightarrow Done in FeynArts. Notice that for $\overline{M S}$, only poles are needed.

TWO MISSING INGREDIENTS FOR NLO

- UV counterterms:
A) Renormalize the Lagrangian
$\left.\begin{array}{ll}\text { Fields } & \phi_{0} \rightarrow\left(1+\frac{1}{2} \delta Z_{\phi \phi}\right)+\sum_{\chi} \frac{1}{2} \delta Z_{\phi \chi} \chi \\ \text { ext. params } & x_{0} \rightarrow x+\delta x \\ \text { int. params } & g(x) \rightarrow g(x+\delta x)\end{array}\right\} \quad \mathcal{L}_{0} \rightarrow \mathcal{L}+\delta \mathcal{L}$
B) Compute the defining loops
\rightarrow Done in FeynArts. Notice that for $\overline{M S}$, only poles are needed.
C) Solve for the counterterms by applying renormalization conditions

TWO MISSING INGREDIENTS FOR NLO

- UV counterterms:
A) Renormalize the Lagrangian
$\left.\begin{array}{ll}\text { Fields } & \phi_{0} \rightarrow\left(1+\frac{1}{2} \delta Z_{\phi \phi}\right)+\sum_{\chi} \frac{1}{2} \delta Z_{\phi \chi} \chi \\ \text { ext. params } & x_{0} \rightarrow x+\delta x \\ \text { int. params } & g(x) \rightarrow g(x+\delta x)\end{array}\right\} \quad \mathcal{L}_{0} \rightarrow \mathcal{L}+\delta \mathcal{L}$
B) Compute the defining loops
\rightarrow Done in FeynArts. Notice that for $\overline{M S}$, only poles are needed.
C) Solve for the counterterms by applying renormalization conditions

D) Derive and output the corresponding UV counterterms.

TWO MISSING INGREDIENTS FOR NLO

- UV counterterms:
A) Renormalize the Lagrangian
$\left.\begin{array}{ll}\text { Fields } & \phi_{0} \rightarrow\left(1+\frac{1}{2} \delta Z_{\phi \phi}\right)+\sum_{\chi} \frac{1}{2} \delta Z_{\phi \chi} \chi \\ \text { ext. params } & x_{0} \rightarrow x+\delta x \\ \text { int. params } & g(x) \rightarrow g(x+\delta x)\end{array}\right\} \quad \mathcal{L}_{0} \rightarrow \mathcal{L}+\delta \mathcal{L}$
B) Compute the defining loops
\rightarrow Done in FeynArts. Notice that for $\overline{M S}$, only poles are needed.
C) Solve for the counterterms by applying renormalization conditions

D) Derive and output the corresponding UV counterterms.
- R2 counterterms, what are they?

R_{2}

Loop amplitude:

$$
\frac{1}{(2 \pi)^{4}} \int d^{d} \bar{q} \frac{\bar{N}(\bar{q})}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}} \quad, \bar{D}_{i}=\left(\bar{q}+p_{i}\right)^{2}-m_{i}^{2}
$$

R_{2}

Loop amplitude:

$$
\frac{1}{(2 \pi)^{4}} \int d^{d} \bar{q} \frac{\bar{N}(\bar{q})}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}} \quad, \bar{D}_{i}=\left(\bar{q}+p_{i}\right)^{2}-m_{i}^{2}
$$

Problem : numerical technique can only evaluate the numerator in 4 dimensions

R_{2}

Loop amplitude:

$$
\frac{1}{(2 \pi)^{4}} \int d^{d} \bar{q} \frac{\bar{N}(\bar{q})}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}} \quad, \bar{D}_{i}=\left(\bar{q}+p_{i}\right)^{2}-m_{i}^{2}
$$

Problem : numerical technique can only evaluate the numerator in 4 dimensions
Solution : isolate the ε-dim part of the numerator: $\underbrace{\bar{N}(\bar{q})}_{\text {d-dim }}=\underbrace{N(q)}_{4-\operatorname{dim}}+\underbrace{\tilde{N}(\tilde{q}, q, \epsilon)}_{\epsilon-\operatorname{dim}}$

Loop amplitude:

$$
\frac{1}{(2 \pi)^{4}} \int d^{d} \bar{q} \frac{\bar{N}(\bar{q})}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}} \quad, \bar{D}_{i}=\left(\bar{q}+p_{i}\right)^{2}-m_{i}^{2}
$$

Problem : numerical technique can only evaluate the numerator in 4 dimensions
Solution : isolate the ε-dim part of the numerator: $\underbrace{\bar{N}(\bar{q})}_{\text {d-dim }}=\underbrace{N(q)}_{\text {-dim }}+\underbrace{\tilde{N}(\tilde{q}, q, \epsilon)}_{\epsilon-\operatorname{dim}}$
Then : compute analytically the finite set of loops for which its contribution does not vanish, and re-express it in terms of an R2 Feynman rules.

$$
R 2 \equiv \lim _{\epsilon \rightarrow 0} \frac{1}{(2 \pi)^{4}} \int d^{d} \bar{q} \frac{\tilde{N}(\tilde{q}, q, \epsilon)}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}}
$$

Loop amplitude:

$$
\frac{1}{(2 \pi)^{4}} \int d^{d} \bar{q} \frac{\bar{N}(\bar{q})}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}} \quad, \bar{D}_{i}=\left(\bar{q}+p_{i}\right)^{2}-m_{i}^{2}
$$

Problem : numerical technique can only evaluate the numerator in 4 dimensions
Solution : isolate the ε-dim part of the numerator: $\underbrace{\bar{N}(\bar{q})}_{\text {d-dim }}=\underbrace{N(q)}_{4 \text {-dim }}+\underbrace{\tilde{N}(\tilde{q}, q, \epsilon)}_{\epsilon-\text { dim }}$
Then : compute analytically the finite set of loops for which its contribution does not vanish, and re-express it in terms of an R2 Feynman rules.

$$
R 2 \equiv \lim _{\epsilon \rightarrow 0} \frac{1}{(2 \pi)^{4}} \int d^{d} \bar{q} \frac{\tilde{N}(\tilde{q}, q, \epsilon)}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}}
$$

FEYNRULES @ NLO (version 2.1)

[Alloul, N. Christensen, C. Degrande, C. Duhr, B.Fuks, in 1310.192 I]

FEYNRULES @ NLO

[Alloul, N. Christensen, C. Degrande, C. Duhr, B.Fuks, in 1310.1921]

LOOP MODELS DATABASE

http://feynrules.irmp.ucl.ac.be/wiki/NLOModels

NLO MODELS (10)	10 MODELS FOR NOW			
Description	Contact	Reference	FeynRules model files	UFO libraries
Dark matter simplified models (more details)	K. Mawatari	$\begin{aligned} & G \text { arXiv:1508.00564, } \rightarrow \text { arXiv: } 1508.05327, ~ \mapsto a r X i v: \\ & 1509.05785 \end{aligned}$	-	DMsimp_UFO.2.zip
Gluino pair production (SUSY-QCD)	B. Fuks	\leftrightarrow arXiv: 1510.00391	-	susyqcd_ufo.tgz
Higgs characterisation (more details)	K. Mawatari	$\begin{aligned} & \rightarrow \text { arXiv:1311.1829, } \rightarrow \text { arXiv:1407.5089, } \rightarrow \text { arXiv: } \\ & 1504.00611 \end{aligned}$	-	HC_NLO_XO_UFO.Zip
Inclusive sgluon pair production	B. Fuks	GarXiv: 1412.5589	sgluons.fr	sgluons_ufo.tgz
Stop pair -> t tbar + missing energy	B. Fuks	©) arXiv:1412.5589	stop_ttmet.fr	stop_ttmet_ufo.tgz
Two-Higgs-Doublet Model (more details)	C. Degrande	©arXiv: 1406.3030	-	2HDM_NLO
Top FCNC Model (more details)	C. Zhang	G-arXiv:1412.5594	TopEFTFCNC.fr	TOPFCNC UFO
GM (more details)	A. Peterson	\leftrightarrow arXiv: 1512.01243	-	GM_NLO UFO
Heavy Neutrino (more details)	R. Ruiz	-	heavyN.fr	HeavyN NLO UFO
Spin-2 (more detalls)	C. Degrande	@http://arxiv.org/abs/1605.09359	dm_s_spin2.fr	SMspin2 NLO UFO

- Many more BSM models in development and to be added to this list.
- What can do with these loop-models? NLO-accurate simulations and loop-induced phenomenology.

\mathbf{H}^{+}PROD. @ $\mathbf{N L O}, \mathrm{M}_{\mathrm{H}} \sim \mathrm{M}_{\mathrm{T}}$

[1607.05291]

(a)

(b)
a) dominates for $\mathrm{m}_{\mathrm{H}}<145 \mathrm{GeV}$
b) dominates for $\mathrm{m}_{\mathrm{H}}>200 \mathrm{GeV}$
a) +b) For $145 \mathrm{GeV}<\mathrm{m}_{\mathrm{H}}<200 \mathrm{GeV}$
-> Requires to honestly compute:

$$
\mathrm{p} \mathrm{p}>\mathrm{H}^{+} \mathrm{W}^{-} \mathrm{b} b
$$

SPIN-2 PRODUCTION @ NLO

[1605.09359]
Simplified model: $\quad \mathcal{L}_{\mathrm{V}, \mathrm{f}}^{Y_{2}}=-\frac{K_{V, f}}{\Lambda} T_{\mu \nu}^{V, f} Y_{2}^{\mu \nu}$

SPIN-2 : NLO QCD MATCHED

 [1605.09359]
(a) Transverse momentum distribution

(b) Pseudorapidity distribution

SPIN-2 : UNITARITY VIOLATION

 [1605.09359]
(a)

(b)

- In $\mathbf{p p} \rightarrow \mathbf{Y}_{\mathbf{2}} \mathbf{j}$: Unitary violation for helicity modes 0 and 1 , and $\kappa_{\mathrm{g}} \neq \kappa_{\mathrm{q}}$
- Already present at LO . How to restore it? Stay for Marco Sekulla's talk.

LATEST DEVELOPMENTS IN MG5AMC

+ NINJA AND COLLIER INTERFACED TO MADLOOP

4 EVENT GENERATION FOR LOOP-INDUCED PROCESSES

+ REWEIGHTING FRAMEWORK (FOR BOTH LO AND NLO)
* PYthiA8 LO MLM, CKKW-L MERGING SYstematics
- UsER-DEFINED MG5AMC PLUGINS
+ NLO EW (+QCD) COMPUTATIONS

[1604.01363] NINJA and COLLIER interfaced to MadLoop

Reduction accuracy for the process $\mathrm{g} \mathrm{g}>\mathrm{t} \overline{\mathrm{t}} \mathrm{g} \mathrm{g}$ (1 TeV c.o.m energy)

Unmatched numerical stability with COLLIER

New Loop RedUctions in MadLoop

[1604.01363]

Reduction accuracy for the process $\mathrm{g} \mathrm{g}>\mathrm{Y} \mathrm{g} \mathrm{g} \mathrm{g}$ (1.2 TeV c.o.m energy)

And it can be very relevant.

New Loop Reductions in MadLoop

Add. scales and larg mult.	$g g \rightarrow t \bar{t}$	$g g \rightarrow t \bar{t} g$	$g g \rightarrow t \bar{t} g g$	$u u \rightarrow t \bar{t} b \bar{b} d \bar{d}$
Max. loop num. rank	3	4	5	4
Integrand computation time	0.26 ms	4.8 ms	170 ms	99 ms
NinJA reduction time	0.40 ms	5.3 ms	78 ms	104 ms
COLI and (DD)	$0.83(0.72)$	$13.6(16.4)$	$220(322)$	$1120(\mathrm{~N} / \mathrm{A})$
CutTooLS reduction time	1.3 ms	23.2 ms	330 ms	301 ms
COLLIER/ NinJA	2.1	2.6	2.8	10.8
Saturated rank (LI)	$g g \rightarrow 2 \cdot Z$	$g g \rightarrow 3 \cdot Z$	$g g \rightarrow 4 \cdot Z$	
Max. loop num. rank	4	5	6	
Integrand computation time	0.60 ms	7.2 ms	81 ms	
NINJA reduction time	1.6 ms	21 ms	310 ms	
COLI and (DD)	$1.6(1.6)$	$25(46)$	$590(661)$	
CuTTooLS reduction time	4.1 ms	59 ms	1080 ms	
COLLIER/ NinJA	1.0	1.2	1.9	
Eff. theory, Y \equiv spin-2	$g g \rightarrow Y g$	$g g \rightarrow Y g g$	$g g \rightarrow Y g g g$	
Max. loop num. rank	5	6	7	
Integrand computation time	2.2 ms	1.5 ms	33 ms	1.4 s
NINJA reduction time	1.9 ms	1.3	57 ms	0.32 s
COLI reduction time		2.9	1.8 s	
COLLIER/ NinJA			5.6	

Table 1: All timings refer to the computation of the colour-summed loop amplitude for a single helicity and kinematic configuration. The test machine is using a single core of an Intel Core i7 CPU (2.7 GHz) and the MadLoop is compiled with GNU gfortran -02 (v4.8.2).

NINJA slightly faster (ratio > 2) for large multiplicity processes.

MADLOOP IN MG5AMC

- Process generation
-. import model <model_name>-<restrictions>
-. generate <process> <amp_orders_and_option> [<mode>=<pert_orders>] <squared_orders>
-. output <format> <folder_name>
-f. launch <options>
-. Examples, starting from a default MG5alMC interface
ヶ. Very simple one (in this case, generates the full code for NLO computations) :
[2.5 s] generate $\mathrm{p} p>\mathrm{t}$ t~ [QCD]
[6.1 s] output
[~ mins*] launch
* timing for 10k unweighted events on a laptop
-. With options specified (in this case, generates the one-loop matrix element code only):

```
[ 0.01s ] import model loop_sm-no_hwidth
[ 0.01s ] set complex_mass_scheme
[ 5min ] generate g g > e+ ve mu- vm~ b b~ / h QED=2 [virt=QCD]
[ 2min ] output MyProc
[ ~1 s* ] launch -f
    * time per phase-space point, summed over helicity configurations and colors.
```

Details on how to generate and use a MadLoop standalone library available @ cp3.irmp.ucl.ac.be/projects/madgraph/wiki/MadLoopStandaloneLibrary

MADLOOP IN MG5AMC

- Process generation
-. import model <model_name>-<restrictions>
-. generate <process> <amp_orders_and_option> [<mode>=<pert_orders>] <squared_orders>
-. output <format> <folder_name>
-f. launch <options>
-. Examples, starting from a default MG5alMC interface
-. Very simple one (in this case, generates the full code for NLO computations) :

```
[ 2.5s ] generate p p > t t~ [QCD]
[ 6.1s ] output
[ ~ mins*] launch
    * timing for 10k unweighted events on a laptop
```

f. With options specified (in this case, generates the one-loop matrix element code only):

```
[ 0.01s ] import model loop_sm-no_hwidth
[ 0.01s ] set complex_mass_scheme
[ 5min ] generate g g > e+ ve mu- vm~ b b~ / h QED=2 [virt=QCD]
[ 2min ] output MyProc
[ ~1 s* ] launch -f
    * time per phase-space point, summed over helicity configurations and colors.
```

Details on how to generate and use a MadLoop standalone library available @ cp3.irmp.ucl.ac.be/projects/madgraph/wiki/MadLoopStandaloneLibrary

MADLOOP IN MG5AMC

- Process generation
-. import model <model_name>-<restrictions>
-. generate <process> <amp_orders_and_option> [<mode>=<pert_orders>] <squared_orders>
-. output <format> <folder_name>
-f. launch <options>
-. Examples, starting from a default MG5alMC interface
-. Very simple one (in this case, generates the full code for NLO computations) :

```
[ 2.5s ] generate p p > t t~ [QCD]
[ 6.1s ] output
[ ~ mins*] launch
    * timing for 10k unweighted events on a laptop
```

f. With options specified (in this case, generates the one-loop matrix element code only):

```
[ 0.01s ] import model loop_sm-no_hwidth
[ 0.01s ] set complex_mass_scheme
[ 5min ] generate g g > e+ ve mu- vm~ b b~ / h QED=2 [virt=QCD]
[ 2min ] output MyProc
[ ~1 s* ] launch -f
    * time per phase-space point, summed over helicity configurations and colors.
```

Details on how to generate and use a MadLoop standalone library available @ cp3.irmp.ucl.ac.be/projects/madgraph/wiki/MadLoopStandaloneLibrary

LOOP-INDUCED (LI) EVENT GENERATION

[1507.00020]

LOOP-INDUCED (LI) EVENT GENERATION

[1507.00020]

LOOP-INDUCED (LI) EVENT GENERATION

[1507.00020]

LOOP-INDUCED (LI) EVENT GENERATION

[1507.00020]

(

TWO DIFFICULTIES FOR LI

[1507.00020]

- No approximation of the virtual is available and slow ME
$\longrightarrow \mathcal{A}^{(1)}$ must be evaluated for each PS point.
\leftrightarrows We improved parallelization of MadEvent.
- Reduction must be done at the amplitude level
\longrightarrow Loop red. must be performed for each helicity config.
\mapsto Using [TIR] or [MC over Helicity + OPP] helps.

SIMPLEST EXAMPLE

User Input

- generate g g > h [QCD]
- output
- launch

Loop Induced

$$
\sigma_{l o o p}=15.74(2) p b
$$

HEFT

$$
\sigma_{h e f t}=17.63(2) p b
$$

SIMPLEST EXAMPLE

User Input

- generate $\mathrm{g} \mathrm{g}>\mathrm{h}$ [QCD]
- output
- launch

Loop Induced

$$
\sigma_{\text {loop }}=15.74(2) p b
$$

HEFT

$$
\sigma_{h e f t}=17.63(2) p b
$$

No bottom loop

$$
\sigma_{\text {toploop }}=17.65(2) p b
$$

VALIDATION P P > H J

SM TABLES (I)

Process		Syntax	Cross section (pb)	$\Delta_{\hat{\mu}} \quad \Delta_{P D F}$
Single boson + jets			$\sqrt{s}=13 \mathrm{TeV}$	
a. 1	$p p \rightarrow H$	$\mathrm{p} \mathrm{p}>\mathrm{h}$ [QCD]	17.79 ± 0.060	$+31.3 \%{ }^{+0.5 \%}$ -23.1% -0.9%
a. 2	$p p \rightarrow H j$	$\mathrm{p} p>\mathrm{h} \mathrm{j}$ [QCD]	12.86 ± 0.030	$+42.3 \% ~+0.6 \%$ -27.7%
a. 3	$p p \rightarrow H j j$	$p \mathrm{p}>\mathrm{h} \mathrm{j} \mathrm{j}$ QED=1 [QCD]	6.175 ± 0.020	$+61.8 \% ~+0.7 \% ~$ ${ }_{-35.6 \%}{ }_{-0.9 \%}$
*a. 4	$g g \rightarrow Z g$	$\mathrm{g} \mathrm{g}>\mathrm{z} \mathrm{g}$ [QCD]	43.05 ± 0.060	$+43.7 \% ~+0.7 \%$ $-28.4 \%-1.0 \%$
\dagger a. 5	$g g \rightarrow Z g g$	$\mathrm{g} \mathrm{g}>\mathrm{z} \mathrm{g} \mathrm{g}$ [QCD]	20.85 ± 0.030	$+64.5 \% ~+1.0 \%$ $-36.5 \%-1.1 \%$
$\dagger{ }^{\dagger}$ a. 6	$g g \rightarrow \gamma g$	$\mathrm{g} \mathrm{g}>\mathrm{ag} \mathrm{g}$ [QCD]	75.61 ± 0.200	$+73.8 \% ~+0.7 \%$ $-41.6 \% ~$
$\dagger \mathrm{a} .7$	$g g \rightarrow \gamma g g$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{a} \mathrm{g} \mathrm{g} \mathrm{[QCD]}$	14.50 ± 0.030	$\begin{aligned} & +76.2 \%-0.6 \% \\ & -40.7 \%-1.0 \% \end{aligned}$

* : Not publicly available.
\dagger : Computed here for the first time.

Process		Syntax	Cross section (pb)	$\Delta_{\hat{\mu}}$	$\Delta_{P D F}$
Double bosons + jet			$\sqrt{s}=13 \mathrm{TeV}$		
b. 1	$p p \rightarrow H H$	$\mathrm{p} \mathrm{p}>\mathrm{h} \mathrm{h} \mathrm{[QCD]}$	$1.641 \pm 0.002 \cdot 10^{-2}$	${ }_{-21.7 \%}^{+30.2 \%}$	${ }_{-1.2 \%}^{+1.1 \%}$
b. 2	$p p \rightarrow H H j$	$\mathrm{p} \mathrm{p}>\mathrm{hh} \mathrm{j}$ [QCD]	$1.758 \pm 0.003 \cdot 10^{-2}$	${ }_{-29.2 \%}^{+45.7 \%}$	${ }_{-1.2 \%}^{+1.2 \%}$
*b. 3	$p p \rightarrow H \gamma j$	$\mathrm{p} \mathrm{p}>\mathrm{haj}$ [QCD]	$4.225 \pm 0.006 \cdot 10^{-3}$	${ }_{-25.9 \%}^{+38.6 \%}$	${ }_{-0.7 \%}^{+0.4 \%}$
*b. 4	$g g \rightarrow H Z$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{~h} \mathrm{z} \mathrm{[QCD]}$	$6.537 \pm 0.030 \cdot 10^{-2}$	${ }_{-21.3 \%}^{+29.4 \%}$	${ }_{-1.1 \%}^{+1.0 \%}$
*b. 5	$g g \rightarrow H Z g$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{~h} \mathrm{z} \mathrm{g} \mathrm{[QCD]}$	$5.465 \pm 0.020 \cdot 10^{-2}$	${ }_{-29.4 \%}^{+26.0 \%}$	$\begin{aligned} & -1.2 \% \\ & { }_{-1.3 \%}^{+1.2 \%} \end{aligned}$
b. 6	$g g \rightarrow Z Z$	$\mathrm{g} \mathrm{g}>\mathrm{z} \mathbf{z}$ [QCD]	1.313 ± 0.004	$+27.1 \%$	${ }_{-1.0 \%}^{+0.7 \%}$
*b. 7	$g g \rightarrow Z Z g$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{z} \mathrm{z} \mathrm{g} \mathrm{[QCD]}$	0.6361 ± 0.002	${ }_{-29.1 \%}^{+45.4 \%}$	$\begin{aligned} & { }_{-1.2 \%}^{+1.0 \%} \\ & \hline \end{aligned}$
b. 8	$g g \rightarrow Z \gamma$	$\mathrm{g} \mathrm{g}>\mathrm{z}$ a [QCD]	1.265 ± 0.0007	${ }_{-22.2 \%}^{+30.2 \%}$	$\begin{aligned} & \text { } \\ & { }_{-1.0 \%}^{+0.6 \%} \end{aligned}$
${ }^{\text {¢ }}$ b. 9	$g g \rightarrow Z \gamma g$	$\mathrm{g} \mathrm{g}>\mathrm{z}$ a g [QCD]	0.4604 ± 0.001	$\begin{array}{r} +38.4 \% \% \\ \\ \\ -38.4 \% \end{array}$	$\begin{aligned} & { }_{-1.1 \%}^{+0.8 \%} \end{aligned}$
b. 10	$g g \rightarrow \gamma \gamma$	$\mathrm{g} \mathrm{g}>\mathrm{a}$ a [QCD]	$5.182 \pm 0.010 \cdot 10^{+2}$	$\begin{aligned} & +72.3 \% \\ & -43.4 \% \end{aligned}$	$\begin{aligned} & +1.0 \% \\ & -1.3 \% \end{aligned}$
*b. 11	$g g \rightarrow \gamma \gamma g$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{a} \mathrm{a} \mathrm{g} \mathrm{[QCD]}$	19.22 ± 0.030	$\begin{aligned} & { }_{-35.7 \%}^{+59.7 \%} \end{aligned}$	$\begin{aligned} & +0.7 \% \\ & { }_{-1.0 \%}^{+0.7 \%} \end{aligned}$
b. 12	$g g \rightarrow W^{+} W^{-}$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{w+} \mathrm{w-} \mathrm{[QCD]}$	4.099 ± 0.010	$\begin{aligned} & { }_{-197 \%}^{+26.5 \%} \end{aligned}$	$\stackrel{{ }_{-1.0 \%}^{+0.7 \%}}{ }$
*b. 13	$g g \rightarrow W^{+} W^{-} g$	g g > w+ w- g [QCD]	1.837 ± 0.004	$\begin{aligned} & { }_{-29.0 \%}^{+4.2 \%} \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \% \\ & { }_{-1.1 \%}^{+0 .} \end{aligned}$

* : Not publicly available.
\dagger : Computed here for the first time.

SM TABLES (III)

Process Triple bosons		Syntax	Cross section (pb) $\sqrt{s}=13$	$\sqrt{s}=13 \mathrm{TeV}$
${ }^{\dagger} \mathrm{c} .1$	$p p \rightarrow H H H$	$\mathrm{p} \mathrm{p}>\mathrm{hhhh}$ [QCD]	$3.968 \pm 0.010 \cdot 10^{-5}$	${ }_{-22.6 \%}^{+31.8 \%}{ }_{-1.4 \%}^{+1.4 \%}$
${ }^{\dagger} \mathrm{c} .2$	$g g \rightarrow H H Z$	$\mathrm{g} \mathrm{g}>\mathrm{hh} \mathrm{z}$ [QCD]	$5.260 \pm 0.009 \cdot 10^{-5}$	${ }_{-22.2 \%}^{+31.2 \%}{ }_{-1.3 \%}^{+1.3 \%}$
${ }^{\dagger} \mathrm{c} .3$	$g g \rightarrow H Z Z$	$\mathrm{g} \mathrm{g}>\mathrm{hzz}$ [QCD]	$1.144 \pm 0.004 \cdot 10^{-4}$	${ }_{-2.2 \%}^{+3.1 \%}{ }_{-1.3 \%}^{+1.2 \%}$
${ }^{\dagger} \mathrm{c} .4$	$g g \rightarrow H Z \gamma$	$\mathrm{g} \mathrm{g}>\mathrm{hz} \mathrm{z}$ [QCD]	$6.190 \pm 0.020 \cdot 10^{-6}$	${ }_{-21.2 \%}^{+29.3 \% ~}{ }_{-1.2 \%}^{+1.0 \%}$
${ }^{\dagger} \mathrm{c} .5$	$p p \rightarrow H \gamma \gamma$	$\mathrm{p} p>\mathrm{ha}$ a [QCD]	$6.058 \pm 0.004 \cdot 10^{-6}$	${ }_{-21.8 \%}^{+3.3 \%}{ }_{-1.3 \%}^{+1.1 \%}$
${ }^{\dagger} \mathrm{c} .6$	$p p \rightarrow H W^{+} W^{-}$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{~h} \mathrm{w+} \mathrm{w-} \mathrm{[QCD]}$	$2.670 \pm 0.007 \cdot 10^{-4}$	$\begin{aligned} & -21.8 \% \\ & { }_{-22.2 \%}^{+31.0 \%} \end{aligned}{ }_{-1.3 \%}^{+1.2 \%}$
${ }^{\dagger} \mathrm{c} .7$	$g g \rightarrow Z Z Z$	$\mathrm{g} \mathrm{g}>\mathrm{zzzz}$ [QCD]	$6.964 \pm 0.009 \cdot 10^{-5}$	${ }_{-2.1 \%}^{+30.9 \% ~}{ }_{-1.3 \%}^{+1.2 \%}$
${ }^{\dagger} \mathrm{c} .8$	$g g \rightarrow Z Z \gamma$	$\mathrm{g} \mathrm{g}>\mathrm{z} \mathrm{z}$ a [QCD]	$3.454 \pm 0.010 \cdot 10^{-6}$	${ }_{-20.9 \%}^{+28.7 \%}{ }_{-1.1 \%}^{+0.9 \%}$
${ }^{\dagger} \mathrm{c} .9$	$g g \rightarrow Z \gamma \gamma$	$\mathrm{g} \mathrm{g}>\mathrm{z}$ a a [QCD]	$3.079 \pm 0.005 \cdot 10^{-4}$	${ }_{-20.9 \%}^{+28.0 \%}{ }_{-1.0 \%}^{+0.7 \%}$
${ }^{\dagger} \mathrm{c} .10$	$g g \rightarrow Z W^{+} W^{-}$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{z}$ w+ w- [QCD]	$8.595 \pm 0.020 \cdot 10^{-3}$	$\begin{aligned} & +26.9 \% \\ & -19.5 \%{ }_{-0.6 \%}^{+0.6 \%} \\ & \hline \end{aligned}$
${ }^{\dagger} \mathrm{c} .12$	$g g \rightarrow \gamma W^{+} W^{-}$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{a} \mathrm{w+} \mathrm{w-} \mathrm{[QCD]}$	$1.822 \pm 0.005 \cdot 10^{-2}$	$\begin{aligned} & +28.7 \% \\ & { }_{-20.9 \%}{ }_{-1.1 \%}^{+0.9 \%} \end{aligned}$

* : Not publicly available.
\dagger : Computed here for the first time.

SM TABLES (IV)

*: Not publicly available.
\dagger : Computed here for the first time.

SM TABLES (V)

Process Bosonic decays	Syntax	Partial width (GeV)	
g. 1	$H \rightarrow j j$	$\mathrm{~h}>\mathrm{j}$ j [QCD]	$1.740 \pm 0.0006 \cdot 10^{-4}$
${ }^{\star} \mathrm{g} .2$	$H \rightarrow j j j$	$\mathrm{~h}>\mathrm{j}$ j j [QCD]	$3.413 \pm 0.010 \cdot 10^{-4}$
${ }^{\dagger} \mathrm{g} .3$	$H \rightarrow j j j j$	$\mathrm{~h}>\mathrm{j}$ j j j QED=1 [QCD]	$1.654 \pm 0.004 \cdot 10^{-4}$
g. 4	$H \rightarrow \gamma \gamma$	$\mathrm{~h}>\mathrm{a}$ a [QED]	$9.882 \pm 0.002 \cdot 10^{-6}$
${ }^{\dagger} \mathrm{g} .5$	$H \rightarrow \gamma \gamma j j$	$\mathrm{~h}>\mathrm{a}$ a j j [QCD]	$7.448 \pm 0.030 \cdot 10^{-13}$
${ }^{\star} \mathrm{g} .7$	$Z \rightarrow g g g$	$\mathrm{z}>\mathrm{g} \mathrm{g} \mathrm{g} \mathrm{[QCD]}$	$3.986 \pm 0.010 \cdot 10^{-6}$

* : Not publicly available.
\dagger : Computed here for the first time.

REWEIGHTING FRAMEWORK (LO AND NLO)

[O. Mattelaer, 1607.00763]

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Reweight

At LO: simple
$W_{\text {new }}=\frac{\left|M_{\text {new }}\right|^{2}}{\left|M_{\text {orig }}\right|^{2}} W_{\text {orig }}$

At NLO: more involved but conceptually the same

A non-trivial example: Reweighting HEFT@NLO with exact loop-induced MEs.

PYthia8 MERging systematics At LO

[S. Prestel, V. H, O.Mattelaer, to appear]

- Streamlined PYTHIA8 installation and steering

```
MG5_aMC> install pythia8
MG5_aMC> generate p p > z > e+ e-; launch;
```

```
The following switches determine which programs are run:
    1 Choose the shower/hadronization program:
    2 Choose the detector simulation program:
    3 Decay particles with the MadSpin module:
    4 Add weights to the events based on changing model parameters:
        shower = PYTHIA8
        detector = OFF
    madspin = OFF
    reweight = OFF
    [0,shower=PYTHIA6, shower=PYTHIA8, detector=OFF, detector=PGS,... ][60s to answer]
    >
```

- Support for MLM and CKKW-L merging
- Merging scale variation systematics form a single run.
- No excuse anymore for theorists using MG5+Pythia6 at LO!

USER-DEFINED PLUGIN

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Plugin

Allows for:

- Custom commands in MG5aMC interface
- Customized format for the matrix element output at LO
- Custom cluster job submission implementation

Useful for robust tweaks of MG5_aMC

NLO QCD \oplus EW CORRECTIONS

Structure of NLO EW-QCD CORRECTIONS: TTH CASE

LO

Structure of NLO EW-QCD corrections: TTH CASE

Structure of NLO EW-QCD corrections: TTH CASE

LO

NLO

Structure of NLO EW-QCD CORRECTIONS: TTH CASE

LO

NLO

STRUCTURE OF NLO EW-QCD CORRECTIONS: TTH CASE

LO

NLO

TOP PAIR + HEAVY BOSON @QCD+EW NLO

[1504.03446]

$t \bar{t} H: \delta(\%)$	8 TeV		13 TeV		100 TeV
NLO QCD	$25.9_{-11.1}^{+5.4}$	$29.7_{-11.1}^{+6.8}\left(24.2_{-10.6}^{+4.8}\right)$	$40.8_{-9.1}^{+9.3}$		
LO EW	1.8 ± 1.3	$1.2 \pm 0.9(2.8 \pm 2.0)$	0.0 ± 0.2		
LO EW no γ	-0.3 ± 0.0	$-0.4 \pm 0.0(-0.2 \pm 0.0)$	-0.6 ± 0.0		
NLO EW	-0.6 ± 0.1	$-1.2 \pm 0.1(-8.2 \pm 0.3)$	-2.7 ± 0.0		
NLO EW no γ	-0.7 ± 0.0	$-1.4 \pm 0.0(-8.5 \pm 0.2)$	-2.7 ± 0.0		
HBR	0.88	$0.89(1.87)$	0.91		

(Boosted regime in brackets)

$$
p_{T}(t) \geq 200 \mathrm{GeV}, \quad p_{T}(\bar{t}) \geq 200 \mathrm{GeV}, \quad p_{T}(H) \geq 200 \mathrm{GeV}
$$

COMPARISON BETWEEN DIFFERENT RENORMALIZATION SCHEMES

$$
m_{W}=80.385 \mathrm{GeV}, \quad m_{Z}=91.188 \mathrm{GeV}
$$

$$
\begin{aligned}
& \alpha\left(m_{Z}\right) \text { scheme } \frac{1}{\alpha\left(m_{Z}\right)}=128.93 \\
& G_{\mu} \text { scheme } \\
& G_{\mu}=1.16639 \cdot 10^{-5} \quad \longrightarrow \frac{1}{\alpha}=132.23
\end{aligned}
$$

	$t \bar{t} H$	$t \bar{t} Z$	$t \bar{t} W^{+}$	$t \bar{t} W^{-}$	$\frac{\sigma_{\mathrm{LO} \mathrm{QCD}}-\sigma_{\mathrm{LO}}^{G_{\mu}} \mathrm{QCD}}{\sigma_{\mathrm{LO} \mathrm{QCD}}}$
$\sigma_{\mathrm{LO}} \mathrm{QCD}(\mathrm{pb})$	$3.617 \cdot 10^{-1}$	$5.282 \cdot 10^{-1}$	$2.496 \cdot 10^{-1}$	$1.265 \cdot 10^{-1}$	
$\sigma_{\mathrm{LO}}^{G_{\mu}} \mathrm{QCD}^{\text {a }}$ (pb$)$	$3.527 \cdot 10^{-1}$	$5.152 \cdot 10^{-1}$	$2.433 \cdot 10^{-1}$	$1.234 \cdot 10^{-1}$	
$\Delta_{\mathrm{LO}}^{G_{\mu} \mathrm{GCD}^{\prime}}(\%)$	2.5	2.5	2.5	2.5	
$\delta_{\text {LO EW }}(\%)$	1.2	0.0	0	0	
$\delta_{\mathrm{LO} \text { EW }}^{G_{\mu}}(\%)$	1.2	0.0	0	0	
$\Delta_{\mathrm{LO} \text { EW }}^{G_{\mu}}(\%)$	2.5	2.5	2.5	2.5	
$\delta_{\text {NLO EW }}(\%)$	-1.2	-3.8	-7.7	-6.7	σ_{X}
$\delta_{\text {NLO EW }}^{G_{\mu}}$ (\%)	1.8	-0.7	-4.5	-3.5	$=\frac{\sigma_{\mathrm{X}}}{\sigma_{\mathrm{LO} \mathrm{QCD}}}$
$\Delta_{\text {NLO EW }}^{G_{\mu}}(\%)$	-0.5	-0.7	-0.9	-0.9	

Table 11: Comparison between results in the $\alpha\left(m_{Z}\right)$ and G_{μ} scheme, at 13 TeV .

THE MIDTERM GOAL

```
MG5_aMC> define p = p b b~ a
MG5_aMC> generate p p > t t~ h [QCD QED]
MG5_aMC> output ttbarh_QCD_QED
MG5_aMC> launch
```


LO QCD LO EW

 NLO QCD NLO EW

THE MIDTERM GOAL

```
MG5_aMC> define p = p b b~ a
MG5_aMC> generate p p > t t~ h [QCD QED]
MG5_aMC> output ttbarh_QCD_QED
MG5_aMC> launch
```


Additional difficulties appear when computing all the blobs and other processes:
> complex mass scheme
$>$ isolated photon definition
> book-keeping of Born topologies

THANK YOU FOR USING MADGRAPH.

Additional Slides

NLOCT
 LIMITATIONS / ASSUMPTIONS

[C. Degrande, I 406.3030]

- Renormalizable Lagrangian, i.e. maximum operator dimension is 4 .
- Feynman gauge
- t'Hooft-Veltman scheme
- Onshell renormalization condition for wavefunctions and masses
- $\overline{M S}$ everywhere else (zero momentum subtraction possible for couplings of massive fermions to gauge bosons).
- The generalization of the renormalization conditions considered is an important ongoing effort as it is necessary for: EW corrections, full MSSM, complex-mass scheme (partially supported already),

P P > T T, THE ANSWER

