

The event generator WHIZARD

Multi-Boson Interactions (MBI) 2016 Madison, Wisconsin

J.R.Reuter

WHIZARD

W, Hlggs, Z And Respective Decays

Multi-Boson Interactions (MBI) 2016 Madison, Wisconsin

J.R.Reuter

WHIZARD

MBI 201

The WHIZARD Event Generator

WHIZARD v2.3.1 (25 Aug. 2016) <u>http://whizard.hepforge.org</u> <whizard@desy.de>

WHIZARD Team: Wolfgang Kilian, Thorsten Ohl, JRR, Simon Braß/Bijan Chokoufé/C. Fleper/Marco Sekulla/ So Young Shim/Florian Staub/Christian Weiss/Zhijie Zhao + 2 Master EPJ C71 (2011) 1742

- Universal event generator for lepton and hadron colliders
- Modular package: Phase space parameterization (resonances, collinear emission, Coulomb etc.)
 - O'Mega optimized matrix element generator (recursiveness via Directed
 Acyclical Graphs)
 O'Mega optimized matrix element generator (recursiveness via Directed)
 - VAMP: adaptive multi-channel Monte Carlo integrator
 - CIRCE1/2: generator/simulation tool for lepton collider beam spectra
 - Lepton beam ISR Kuraev/Fadin, 1986; Skrzypek/Jadach, 1991
 - Color flow formalism Stelzer/Willenbrock, 2003; Kilian/Ohl/JRR/Speckner, 2011

WHIZARD

WHIZARD: Installation and Run

- Download: <u>http://www.hepforge.org/archive/whizard/whizard-2.3.1.tar.gz</u>
- Unpack it, intended to be installed in /usr/local (or locally)
- Create build directory and do ./configure
- make, [make check], make install
- Working directory: create SINDARIN steering file <input>.sin
- Working directory: run whizard <input>.sin
- Supported event formats: LHA, StdHep, LHEF (i-iii), HepMC, LCIO, div. ASCII
- Interfaces to external packages for Feynman rules, hadronization, event formats, analysis, jet clustering etc.: FastJet, GoSam, GuineaPig(++), HepMC, HOPPET, LCIO, LHAPDF(4/5/6), LoopTools, OpenLoops, PYTHIA6, [PYTHIA8], StdHep [internal]

WHIZARD: Installation and Run

- Download: <u>http://www.hepforge.org/archive/whizard/whizard-2.3.1.tar.gz</u>
- Unpack it, intended to be installed in /usr/local (or locally)
- Create build directory and do ./configure
- make, [make check], make install
- Working directory: create SINDARIN steering file <input>.sin
- Working directory: run whizard <input>.sin
- Supported event formats: LHA, StdHep, LHEF (i-iii), HepMC, LCIO, div. ASCII
- Interfaces to external packages for Feynman rules, hadronization, event formats, analysis, jet clustering etc.: FastJet, GoSam, GuineaPig(++), HepMC, HOPPET, LCIO, LHAPDF(4/5/6), LoopTools, OpenLoops, PYTHIA6, [PYTHIA8], StdHep [internal]

J.R.Reuter

WHIZARD

Decay processes / auto_decays

WHIZARD cannot only do scattering processes, but also decays

Example Energy distribution electron in muon decay:

```
model = SM
process mudec = e2 => e1, N1, n2
integrate (mudec)
histogram e e1 (0, 60 MeV, 1 MeV)
analysis = record e_e1 (eval E [e1])
n events = 100000
simulate (mudec)
compile_analysis { $out_file = "test.dat" }
4000
      dN/dE_e(\mu^- \to e^- \bar{\nu}_e \nu_\mu)
3000
2000
```

J.R.Reuter Event generator WHIZARD

FCC-ee "Physics behind precision", CERN, 2.2.16

Decay processes / auto_decays

WHIZARD cannot only do scattering processes, but also decays

Example Energy distribution electron in muon decay:

```
model = SM
process mudec = e2 => e1, N1, n2
integrate (mudec)
histogram e_e1 (0, 60 MeV, 1 MeV)
analysis = record e_e1 (eval E [e1])
n_events = 100000
simulate (mudec)
compile_analysis { $out_file = "test.dat" }
```


Automatic integration of particle decays

```
auto_decays_multiplicity = 2
?auto_decays_radiative = false
```

```
unstable Wp () { ?auto_decays = true }
```

i	It	Calls	Integral[GeV]	Error[GeV]	Err[%]	Acc
	1	100	2.2756406E-01	0.00E+00	0.00	0.00*
	1	100	2.2756406E-01	0.00E+00	0.00	0.00
	Unstab deca	ole parti ay_p24_1:	cle W+: comput 3.3337068E-01	ed branching dbar, u	ratios:	
ļ	deca	ay_p24_2: ay_p24_3:	3.3325864E-01 1.1112356E-01	sbar, c e+, nue		
ļ	deca	y_p24_4: y_p24_5:	1.1112356E-01	tau+, nut	au	
ļ	Dece	at width :	= 2.04/84/1E+0 = 2.0490000E+0	0 GeV (compu 0 GeV (prese	t)	
1	Deca	by option	s. neticity tr	eateu exacti	У	

FCC-ee "Physics behind precision", CERN, 2.2.16

BSM Models in WHIZARD

with CKM matrix	trivial CKM	
—	QED	
-	QCD	
SM_CKM	SM	
SM_ac_CKM	SM_ac	
SMtop_CKM	SMtop	
—	$SM_tt_threshold$	228· S
	SM_rx / NoH	2.2.0. 5
	SSC / SSC2/ AltH	
	SM_ul	
_	Zprime	
2HDM_CKM	2HDM	
MSSM_CKM	MSSM	
	MSSM_Grav	
NMSSM_CKM	NMSSM	
	PS/E/SSM	
—	Littlest	
—	Littlest_Eta	
	$Littlest_Tpar$	
	Simplest[_univ]	
	Threeshl	
_	UED	
	GravTest	
	Template	
	with CKM matrix - SM_CKM SM_ac_CKM SMtop_CKM - - - 2HDM_CKM MSSM_CKM - NMSSM_CKM - <td>with CKM matrixtrivial CKM-QED-QCDSM_CKMSMSM_ac_CKMSM_acSMtop_CKMSMtop-SM_tt_threshold-SM_rx / NoH-SSC / SSC2/ AltH-SM_ul-Zprime2HDM_CKMMSSM-MSSM_GravNMSSM_CKMNMSSM-Littlest-Littlest-Littlest-Simplest[_univ]-Threeshl-UED-GravTest-Template</td>	with CKM matrixtrivial CKM-QED-QCDSM_CKMSMSM_ac_CKMSM_acSMtop_CKMSMtop-SM_tt_threshold-SM_rx / NoH-SSC / SSC2/ AltH-SM_ul-Zprime2HDM_CKMMSSM-MSSM_GravNMSSM_CKMNMSSM-Littlest-Littlest-Littlest-Simplest[_univ]-Threeshl-UED-GravTest-Template

M_dim6

- Automated models: interface to SARAH/BSM Toolbox Staub, 0909.2863; Ohl/Porod/Staub/Speckner, 1109.5147
- Automated models: interface to FeynRules Christensen/Duhr; Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251 •
- Automated models: UFO interface [in connection with new WHIZARD/0'Mega model format]

WHIZARD

BSM Models in WHIZARD

MODEL TYPE	with CKM matrix	trivial CKM
QED with e, μ, τ, γ	—	QED
QCD with d, u, s, c, b, t, g	-	QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge coupl.	SM_ac_CKM	SM_ac
SM with anomalous top coupl.	SMtop_CKM	SMtop
SM for e^+e^- top threshold		SM_tt_threshold
SM with anom. Higgs coupl.		SM_rx / NoH
SM ext. for VV scattering		SSC / SSC2/ AltH
SM ext. for unitarity limits		SM_ul
SM with Z'		Zprime
2HDM	2HDM_CKM	2HDM
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos	—	MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models	—	PS/E/SSM
Littlest Higgs		Littlest
Littlest Higgs with ungauged $U(1)$	—	Littlest_Eta
Littlest Higgs with T parity		Littlest_Tpar
Simplest Little Higgs (anomaly-free/univ.)		Simplest[_univ]
3-site model		Threeshl
UED	—	UED
SM with gravitino and photino		GravTest
Augmentable SM template	—	Template

NEW

2.2.8: SM_dim6

- Automated models: interface to SARAH/BSM Toolbox Staub, 0909.2863; Ohl/Porod/Staub/Speckner, 1109.5147
 NEW ated models: interface to FeynRules Christensen/Duhr; Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251
- Automated models: UFO interface [in connection with new WHIZARD/0'Mega model format]

J.R.Reuter

WHIZARD

BSM Models in WHIZARD

	MODEL TYPE	with CKM matrix	trivial CKM		
Γ	QED with e, μ, τ, γ	-	QED		
	QCD with d, u, s, c, b, t, g	-	QCD		
	Standard Model	SM_CKM	SM		
	SM with anomalous gauge coupl.	SM_ac_CKM	SM_ac		
	SM with anomalous top coupl.	SMtop_CKM	SMtop	N	EW
	SM for e^+e^- top threshold		SM tt threshold	10 228. 0	SM dim6
	SM with anom. Higgs coupl.		SM_rx / NoH	2.2.0.	
	SM ext. for VV scattering		SSC / SSC2/ AltH		
	SM ext. for unitarity limits		SM_ul		
	SM with Z'		Zprime		
	2HDM	2HDM_CKM	2HDM		
Γ	MSSM	MSSM_CKM	MSSM		
Γ	MSSM with gravitinos	—	MSSM_Grav		
	NMSSM	NMSSM_CKM	NMSSM		
	extended SUSY models	-	PS/E/SSM		
Γ	Littlest Higgs		Littlest		
	Littlest Higgs with ungauged $U(1)$	—	Littlest_Eta		
	Littlest Higgs with T parity		Littlest_Tpar		
	Simplest Little Higgs (anomaly-free/univ.)	_	$Simplest[_univ]$		
ſ	3-site model	-	Threeshl		
	UED		UED		
	SM with gravitino and photino		GravTest		
	Augmentable SM template		Template		

- Automated models: interface to SARAH/BSM Toolbox Staub, 0909.2863; Ohl/Porod/Staub/Speckner, 1109.5147
 NEW ated models: interface to FeynRules Christensen/Duhr; Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251
- Automated models: UFO interface [in connection with new WHIZARD/0'Mega model format]

J.R.Reuter

WHIZARD

Unitarity bounds in VBS with WHIZARD

General cuts: $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5$

J.R.Reuter

WHIZARD

Kilian/Ohl/JRR/Sekulla: PRD91(15),096007 [1408.6207]

$$pp \to e^+ \mu^+ \nu_e \nu_\mu jj \qquad \sqrt{s} = 14 \,\mathrm{TeV} \qquad \mathcal{L} = 1 \,\mathrm{ab}^{-1}$$

model = SM_rx

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5; \ p_T^\ell > 20 \,\text{GeV}$

.R.Reuter

WHIZARD

Kilian/Ohl/JRR/Sekulla: PRD91(15),096007 [1408.6207]

$$pp
ightarrow e^+ \mu^+ \nu_e \nu_\mu jj$$
 $\sqrt{s} = 14 \,\mathrm{TeV}$ $\mathcal{L} = 1 \,\mathrm{ab}^{-1}$ model = SM_rx
 $F_{HD} = 30 \,\mathrm{TeV}^{-2}$

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5; \ p_T^\ell > 20 \,\text{GeV}$

.R.Reuter

Kilian/Ohl/JRR/Sekulla: PRD91(15),096007 [1408.6207]

$$pp
ightarrow e^+ \mu^+ \nu_e \nu_\mu jj$$
 $\sqrt{s} = 14 \,\mathrm{TeV}$ $\mathcal{L} = 1 \,\mathrm{ab}^{-1}$ model = SM_rx
 $F_{S,0} = 480 \,\mathrm{TeV}^{-4}$

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5; \ p_T^\ell > 20 \,\text{GeV}$

J.R.Reuter

WHIZARD

Kilian/Ohl/JRR/Sekulla: PRD91(15),096007 [1408.6207]

$$pp
ightarrow e^+ \mu^+ \nu_e \nu_\mu jj$$
 $\sqrt{s} = 14 \,\mathrm{TeV}$ $\mathcal{L} = 1 \,\mathrm{ab}^{-1}$ model = SM_rx
 $F_{S,1} = 480 \,\mathrm{TeV}^{-4}$

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5; \ p_T^\ell > 20 \,\text{GeV}$

J.R.Reuter

WHIZARD

Comparison: Simplified Models & EFT

Kilian/Ohl/JRR/Sekulla: PRD93(16),3.036004 [1511.00022]

 $pp \rightarrow ZZjj$ 10^{1} $F_{S,1} = 12.3 \text{ TeV}^ F_{\sigma} = 4.0 \text{ TeV}^{-1}$ SM limit of \mathcal{A}_{00} 10^{0} $M_{\sigma} = 800 \,\mathrm{GeV}$ $\frac{\partial \sigma}{\partial M} \left[\frac{fb}{100 \text{GeV}} \right]$ $\Gamma_{\sigma} = 80 \,\mathrm{GeV}$ 10^{-2} 1200 400 600 800 1000 1400 1600 1800 2000 M(ZZ)[GeV]

Black dashed line: saturation of $A_{22}(W^+W^+)/A_{00}(ZZ)$

- EFT fails at resonance
- aQGC describe rise of resonance
- Unitarization applied
- Tensor resonances better visible than scalars

 $32\pi\Gamma/M^5$

	σ	ϕ	f	X
$F_{S,0}$	$\frac{1}{2}$	2	15	5
$F_{S,1}$	_	$-\frac{1}{2}$	-5	-35

ATLAS PRL 113(2014)14, 141803 [1405.6241]

J.R.Reuter

WHIZARD

 $|F_{S,1}| < 480 \text{ TeV}^{-4}$

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5$

 $|F_{S,0}| < 480 \text{ TeV}^{-4}$

Comparison: Simplified Models & EFT

Kilian/Ohl/JRR/Sekulla: PRD93(16),3.036004 [1511.00022]

Black dashed line: saturation of $A_{22}(W^+W^+)/A_{00}(ZZ)$

• EFT fails at resonance

- aQGC describe rise of resonance
- Unitarization applied
- Tensor resonances better visible than scalars

 $32\pi\Gamma/M^5$

	σ	ϕ	f	X	
$F_{S,0}$	$\frac{1}{2}$	2	15	5	
$F_{S,1}$	_	$-\frac{1}{2}$	-5	-35	

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5$

 $|F_{S,0}| < 480 \text{ TeV}^{-4}$ $|F_{S,1}| < 480 \text{ TeV}^{-4}$

ATLAS PRL 113(2014)14, 141803 [1405.6241]

J.R.Reuter

WHIZARD

Complete LHC VBS process at 14 TeV

Work in progress: unitarization for transversal polarisations & for tribosons ($pp \rightarrow VVV$)

WHIZARD

Fleper/Kilian/JRR/Sekulla: 1607.03030 (tbp EPJC)

Fleper/Kilian/JRR/Sekulla: 1607.03030 (tbp EPJC)

WHIZARD

MBI 2016, U. Wisconsin, Madison, 25.08.16

10/23

Fleper/Kilian/JRR/Sekulla: 1607.03030 (tbp EPJC)

WHIZARD

Fleper/Kilian/JRR/Sekulla: 1607.03030 (tbp EPJC)

WHIZARD

Spin Correlation and Polarization in Cascades

Cascade decay, factorize production and decay

J.R.Reuter Eve

Event generator WHIZARD

FCC-ee "Physics behind precision", CERN, 2.2.16

Spin Correlation and Polarization in Cascades

Cascade decay, factorize production and decay

Possibility to select specific helicity in decays!

Event generator WHIZARD

FCC-ee "Physics behind precision", CERN, 2.2.16

WHIZARD Parton Shower

Two independent implementations: kT-ordered QCD and Analytic QCD shower Analytic shower: no shower veto \Rightarrow exact shower history known, allows reweighting

Kilian/JRR/Schmidt/Wiesler, JHEP 1204 013 (2012)

WHIZARD Parton Shower

Two independent implementations: kT-ordered QCD and Analytic QCD shower Analytic shower: no shower veto \Rightarrow exact shower history known, allows reweighting

Kilian/JRR/Schmidt/Wiesler, JHEP 1204 013 (2012)

WHIZARD

WHIZARD Parton Shower

Two independent implementations: kT-ordered QCD and Analytic QCD shower Analytic shower: no shower veto \Rightarrow exact shower history known, allows reweighting

Kilian/JRR/Schmidt/Wiesler, JHEP 1204 013 (2012)

First tunes of kT-ordered & Analytic QCD shower

Chokoufe/Englert/JRR, 2015

Di-/Multijet LEP as given in RIVET analysis Usage of the PROFESSOR tool for best fit [Buckley et al., 2009]

WHIZARD

J.R.Reuter

- QCD corrections done, start work on QED and electroweak corrections
- Automated FKS subtraction
- WHIZARD provides Born, reals, all subtraction terms
- Virtual amplitudes linked externally

- QCD corrections done, start work on QED and electroweak corrections
- Automated FKS subtraction
- WHIZARD provides Born, reals, all subtraction terms
- Virtual amplitudes linked externally

WHIZARD v2.3.1 contains beta version

QCD corrections (massless and massive emitters)

```
alpha_power = 2
alphas_power = 0
process eett = e1,E1 => t, tbar
{ nlo_calculation = "full" }
```


WHIZARD

- QCD corrections done, start work on QED and electroweak corrections
- Automated FKS subtraction
- WHIZARD provides Born, reals, all subtraction terms
- Virtual amplitudes linked externally

- QCD corrections done, start work on QED and electroweak corrections
- Automated FKS subtraction
- WHIZARD provides Born, reals, all subtraction terms
- Virtual amplitudes linked externally

WHIZARD

- QCD corrections done, start work on QED and electroweak corrections
- Automated FKS subtraction
- WHIZARD provides Born, reals, all subtraction terms
- Virtual amplitudes linked externally

WHIZARD

Examples and Validation

• Cross-checks with MG5_aMC@NL0, Sherpa, MUNICH

• Phase space integration performs great (V, R, S)

Excerpt of validated QCD NLO processes

- $e^+e^- \rightarrow q\bar{q}$
- $e^+e^- \rightarrow q\bar{q}g$
- $e^+e^- \rightarrow \ell^+\ell^- q\bar{q}$
- $e^+e^- \to \ell^+ \nu_\ell q \bar{q}$
- $e^+e^- \to t\bar{t}$
- $e^+e^- \to tW^-b$
- $e^+e^- \rightarrow W^+W^-b\bar{b}$
- $e^+e^- \rightarrow t\bar{t}H$

Examples and Validation

• Cross-checks with MG5_aMC@NL0, Sherpa, MUNICH

• Phase space integration performs great (V, R, S)

NLO Fixed Order Events

- Add weights of real emission events to weight of Born kinematics using the FKS mapping
- Output weighted events in WHIZARD (e.g. using HepMC), then analysis with Rivet

I.R.Reuter

WHIZARD

Excerpt of validated QCD NLO processes

- $e^+e^- \rightarrow q\bar{q}$
- $e^+e^- \rightarrow q\bar{q}g$
- $e^+e^- \rightarrow \ell^+\ell^- q\bar{q}$
- $e^+e^- \to \ell^+ \nu_\ell q \bar{q}$
- $e^+e^- \to t\bar{t}$
- $e^+e^- \rightarrow tW^-b$
- $e^+e^- \to W^+W^-b\bar{b}$
- $e^+e^- \to t\bar{t}H$

Resonance mappings for NLO processes

← Talk by Carlo

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses not respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms

Resonance mappings for NLO processes

← Talk by Carlo

15/23

- Amplitudes (except for pure QCD/QED) contain resonances (Z, W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

Resonance mappings for NLO processes

- Amplitudes (except for pure QCD/QED) contain resonances (Z, W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071] Avoids double logarithms in the resonances' width Most important for narrow resonances $(H \rightarrow bb)$ Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

 \hookrightarrow Talk by Carlo

Resonance mappings for NLO processes

- Amplitudes (except for pure QCD/QED) contain resonances (Z, W, H, t)
- In general: resonance masses not respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

.R.Reuter

WHIZARD complete automatic implementation: example $e^+e^- \rightarrow \mu\mu bb$

=									====
İ.	It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N[It]
=	1	11988	9.6811847E+00	6.42E+00	66.30	72.60*	0.65		====
	2	11959	2.8539703E+00	2.35E-01	8.25	9.02*	0.69		
	3	11936	2.4907574E+00	6.54E-01	26.25	28.68	0.35		
	4	11908	2.7695559E+00	9.67E-01	34.91	38.09	0.30		
	5	11874	2.4346151E+00	4.82E-01	19.80	21.57*	0.74		
1-									
	5	59665	2.7539078E+00	1.97E-01	7.15	17.47	0.74	0.49	5
=									====
	standard FKS								

WHIZARD

MBI 2016, U. Wisconsin, Madison, 25.08.16

15/23

 \hookrightarrow Talk by Carlo

(ZZ, ZH histories)

Resonance mappings for NLO processes

- Amplitudes (except for pure QCD/QED) contain resonances (Z, W, H, t)
- In general: resonance masses not respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

WHIZARD complete automatic implementation: example $e^+e^- \rightarrow \mu\mu bb$

=======									
It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N	[It]	
======								=====	
1	11988	9.6811847E+00	6.42E+00	66.30	72.60*	0.65			
2	11959	2.8539703E+00	2.35E-01	8.25	9.02*	0.69			
3	11936	2.4907574E+00	6.54E-01	26.25	28.68	0.35			
4	11908	2.7695559E+00	9.67E-01	34.91	38.09	0.30			
5	11874	2.4346151E+00	4.82E-01	19.80	21.57*	0.74			
5	59665	2.7539078E+00	1.97E-01	7.15	17.47	0.74	0.49	5	
======									
	standard FKS								

FKS with resonance mappings

 \hookrightarrow Talk by Carlo

(ZZ, ZH histories)

Automated POWHEG Matching, e.g.: $e^+e^- \rightarrow jj$

MBI 2016, U. Wisconsin, Madison, 25.08.16

16/23

WHIZARD LHC example: Drell-Yan

- Simplest hadron collider processes: $pp \rightarrow (Z \rightarrow II) + X$, $pp \rightarrow (W \rightarrow Iv) + X$, $pp \rightarrow ZZ + X$
- Standard candle processes

WHIZARD LHC example: Drell-Yan

- Simplest hadron collider processes: $pp \rightarrow (Z \rightarrow II) + X$, $pp \rightarrow (W \rightarrow Iv) + X$, $pp \rightarrow ZZ + X$
- Standard candle processes

WHIZARD LHC example: Drell-Yan

- Simplest hadron collider processes: $pp \rightarrow (Z \rightarrow II) + X$, $pp \rightarrow (W \rightarrow Iv) + X$, $pp \rightarrow ZZ + X$
- Standard candle processes

To be fully validated:

- Flavor sums in fixed-order event generation
- Color in initial and final state (already validated for top decay)
- Gluons in the initial state
- Next processes: $pp \rightarrow Zj + X$, $pp \rightarrow tt + X$, $pp \rightarrow jj + X$
- automated POWHEG matching for hadron collider

WHIZARD

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1608.XXXXX

- \bigcirc Paradigm processes at lepton colliders: precision determination of m_t and Y_t
- Major bkgd. for EW processes (VVV,VBS); many BSM searches
- Set Processes of increasing complexity: 2→2, 2→4, 2→6

$e^+e^- \rightarrow$	$n_{\rm loop\ diags}$	Max. prop.	$n_{\rm hel}$
$t\bar{t}$	2	3	16
$W^+W^-b\bar{b}$	157	5	144
$b\bar{b}\bar{\nu}_e e^-\nu_\mu\mu^+$	830	5	16
$t\bar{t}H$	17	4	16
$bW^+\bar{b}W^-H$	1548	6	144
$b\bar{b}\bar{\nu}_e e^- \nu_\mu \mu^+ H$	7436	6	16

- \bigcirc Cross checks for 2 \rightarrow 2, 2 \rightarrow 4 with Sherpa, Munich, Madgraph5_aMC@NL0
- \bigcirc Using massive *b* quarks: no cuts necessary for e⁺e[−] → W⁺W[−]bb
- \bigcirc Full process e⁺e[−] → μ⁺ν_μe[−]ν_ebb exhibits collinear singularity:

Typical pentagon/hexagon diagrams:

.R.Reuter

WHIZARD

MBI 2016, U. Wisconsin, Madison, 25.08.16

18/23

$m_Z = 91.1876 \mathrm{GeV},$ $m_b = 4.2 \mathrm{GeV},$	$m_W = 80.385 { m GeV}$ $m_t = 173.2 { m GeV}.$	$ \begin{split} \Gamma_Z^{\rm LO} &= 2.4409 {\rm GeV}, & \Gamma_Z^{\rm NLO} &= 2.5060 {\rm GeV}, \\ \Gamma_W^{\rm LO} &= 2.0454 {\rm GeV}, & \Gamma_W^{\rm NLO} &= 2.0978 {\rm GeV}. \end{split} $
$\begin{split} \Gamma^{\rm LO}_{t \to Wb} &= 1.4986 {\rm GeV}, \\ \Gamma^{\rm LO}_{t \to f\bar{f}b} &= 1.4757 {\rm GeV}, \end{split}$	$\begin{split} \Gamma^{\rm NLO}_{t \to Wb} &= 1.3681 {\rm GeV}, \\ \Gamma^{\rm NLO}_{t \to f\bar{f}b} &= 1.3475 {\rm GeV}. \end{split}$	complex mass scheme:
$m_H = 125~{ m GeV}$	$\Gamma_H=0.000431~{\rm GeV}$	$\mu_i^2 = M_i^2 - i\Gamma_i M_i$ for $i = W, Z, t, H$ $s_w^2 = 1 - c_w^2 = 1 - \frac{\mu_W}{\mu_Z^2}$

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1608.XXXXX

19/23

$m_Z = 91.1876 \mathrm{GeV},$ $m_b = 4.2 \mathrm{GeV},$	$m_W = 80.385 { m GeV}$ $m_t = 173.2 { m GeV}.$	$\begin{split} \Gamma_Z^{\rm LO} &= 2.4409{\rm GeV},\\ \Gamma_W^{\rm LO} &= 2.0454{\rm GeV}, \end{split}$	$\Gamma_Z^{\rm NLO}$ $\Gamma_W^{\rm NLO}$	$= 2.5060 \mathrm{GeV},$ = 2.0978 GeV.
$\begin{split} \Gamma^{\rm LO}_{t \to Wb} &= 1.4986 {\rm GeV}, \\ \Gamma^{\rm LO}_{t \to f\bar{f}b} &= 1.4757 {\rm GeV}, \end{split}$	$\begin{split} \Gamma^{\rm NLO}_{t \to Wb} &= 1.3681 {\rm GeV}, \\ \Gamma^{\rm NLO}_{t \to f\bar{f}b} &= 1.3475 {\rm GeV}. \end{split}$	com	olex mass scheme	e: $\mu_{\rm W}^2 = 1 - \mu_{\rm W}^2$
$m_H = 125~{ m GeV}$	$\Gamma_H=0.000431~{\rm GeV}$	$\mu_i^z = M_i^z - \mathrm{i} \Gamma_i M_i$	for $i = W, Z, t, H$	$s_w^- = 1 - c_w^- = 1 - \frac{1}{\mu_z^2}$

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1608.XXXXX

19/23

Choose \sqrt{s} = 800 GeV because its the maximum of the *ttH* cross section

WHIZARD

$\begin{split} m_Z &= 91.1876{\rm GeV},\\ m_b &= 4.2{\rm GeV}, \end{split}$	$m_W = 80.385 \mathrm{GeV}$ $m_t = 173.2 \mathrm{GeV}.$	$\begin{split} \Gamma_Z^{\rm LO} &= 2.4409{\rm GeV},\\ \Gamma_W^{\rm LO} &= 2.0454{\rm GeV}, \end{split}$	Γ_Z^{NLO} Γ_W^{NLO}	$= 2.5060 \mathrm{GeV},$ = 2.0978 GeV.	
$\begin{split} \Gamma^{\rm LO}_{t \to Wb} &= 1.4986 {\rm GeV}, \\ \Gamma^{\rm LO}_{t \to f\bar{f}b} &= 1.4757 {\rm GeV}, \end{split}$	$\Gamma_{t \to Wb}^{\text{NLO}} = 1.3681 \text{GeV},$ $\Gamma_{t \to f\bar{f}b}^{\text{NLO}} = 1.3475 \text{GeV}.$	complex mass scheme:			$\mu^2_{\rm av}$
$m_H = 125~{\rm GeV}$	$\Gamma_H=0.000431~{\rm GeV}$	$\mu_i^2 = M_i^2 - \mathrm{i}\Gamma_i M_i$	for $i = W, Z, t, H$	$s_w^2 = 1 - c_w^2 = 1$	$-\frac{\mu_{\rm W}}{\mu_{\rm Z}^2}$

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1608.XXXXX

19/23

Choose \sqrt{s} = 800 GeV because its the maximum of the *ttH* cross section

WHIZARD

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1608.XXXXX

WHIZARD

$$E_h = \frac{1}{2\sqrt{s}} \left[s + M_h^2 - (k_1 + k_2)^2 \right]$$

Determination of top Yukawa coupling (ttH)

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1608.XXXXX

WHIZARD

$$E_h = \frac{1}{2\sqrt{s}} \left[s + M_h^2 - (k_1 + k_2)^2 \right]$$

Determination of top Yukawa coupling (ttH)

Polarized Results (tt)

Polarized I-loop amplitudes beyond BLHA

		v	$\sqrt{s} = 800 \mathrm{Ge}$	eV	$\sqrt{s} = 1500 \text{GeV}$		
$P(e^{-})$	$P(e^+)$	$\sigma^{\rm LO}[{\rm fb}]$	$\sigma^{\rm NLO}[{\rm fb}]$	K-factor	$\sigma^{\rm LO}[{\rm fb}]$	$\sigma^{\rm NLO}[{\rm fb}]$	K-factor
0%	0%	253.7	272.8	1.075	75.8	79.4	1.049
-80%	0%	176.5	190.0	1.077	98.3	103.1	1.049
+80%	0%	176.5	190.0	1.077	53.2	55.9	1.049
-80%	30%	420.8	452.2	1.074	124.9	131.0	1.048
-80%	60%	510.7	548.7	1.074	151.6	158.9	1.048
80%	-30%	208.4	224.5	1.077	63.0	66.1	1.049
80%	-60%	240.3	258.9	1.077	72.7	76.3	1.049

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1608.XXXXX

J.R.Reuter

POWHEG-matched results for tt and ttH

WHIZARD

MBI 2016, U. Wisconsin, Madison, 25.08.16

21/23

Threshold-continuum matching: e.g. top

ILC top threshold scan best-known method to measure top quark mass, $\Delta M \sim 30-50 \text{ MeV}$

Threshold region: top velocity $v \sim \alpha_s \ll 1$

Threshold-continuum matching: e.g. top

ILC top threshold scan best-known method to measure top quark mass, $\Delta M \sim 30-50 \text{ MeV}$

Threshold-continuum matching: e.g. top

ILC top threshold scan best-known method to measure top quark mass, $\Delta M \sim 30-50 \text{ MeV}$

WHIZARD

Conclusions & Outlook

- WHIZARD 2.3 event generator for collider physics (ee, pp, ep)
- BSM: focus on VBS simplified models / unitarization / full dim. 6 SM EFT
- Unitarization for transversal bosons & for tribosons [work in progress]
- NLO automation: reals and FKS subtraction [+ virtuals externally]

[QCD almost completed, EW started] → WHIZARD 3.0

- Can produce NLO fixed-order histograms
- Automated POWHEG matching [other schemes in progress]
- Solution Set NLL NRQCD threshold / NLO continuum matching (e.g. in ee → tt)
- Performance: Virtual Machine for MEs, MPI parallelization [validated], ...
- Plans & projects: showers, merging, MPI, inclusion in CheckMate, ..., ...

BACKUP SLIDES

WHIZARD: Manual

J.R.Reuter

WHIZARD

MBI 2016, U. Wisconsin, Madison, 25.08.16

26/23

The Optimizing Matrix Element Generator (0'Mega)

O'Mega [Ohl, 2000; Moretti/Ohl/JRR, 2001; JRR, 2002] computes amplitudes with I-particle off-shell wave functions (IPOWs)

Possible to construct set of all currents recursively (tree-/I-loop level)

Calculation forms Directed Acyclical Graphs (DAGs), optimized to consist only of the minimal number of connections by 0'Mega

WHIZARD

Phase Space Setup

WHIZARD algorithm: heuristics to classify phase-space topology, adaptive multi-channel mapping \implies resonant, t-channel, radiation, infrared, collinear, off-shell

Complicated processes: factorization into production and decay with the unstable option

WHIZARD

FKS Subtraction (Frixione/Kunszt/Signer)

Subtraction formalism to make real and virtual contributions separately finite

$$d\sigma^{\rm NLO} = \underbrace{\int_{n+1} \left(d\sigma^R - d\sigma^S \right)}_{\text{finite}} + \underbrace{\int_{n+1} d\sigma^S + \int_n d\sigma^V}_{\text{finite}}$$

FKS Subtraction (Frixione/Kunszt/Signer)

Subtraction formalism to make real and virtual contributions separately finite

$$d\sigma^{\rm NLO} = \underbrace{\int_{n+1} \left(d\sigma^R - d\sigma^S \right)}_{\text{finite}} + \underbrace{\int_{n+1} d\sigma^S + \int_n d\sigma^V}_{\text{finite}}$$

Automated subtraction terms in WHIZARD, algorithm:

* Find all singular pairs

$$\mathcal{I} = \{(1,5), (1,6), (2,5), (2,6), (5,6)\}$$

* Partition phase space according to singular regions

$$\mathbb{1} = \sum_{\alpha \in \mathcal{I}} S_{\alpha}(\Phi)$$

* Generate subtraction terms for singular regions

FKS Subtraction (Frixione/Kunszt/Signer)

Subtraction formalism to make real and virtual contributions separately finite

$$d\sigma^{\rm NLO} = \underbrace{\int_{n+1} \left(d\sigma^R - d\sigma^S \right)}_{\text{finite}} + \underbrace{\int_{n+1} d\sigma^S + \int_n d\sigma^V}_{\text{finite}}$$

Soft subtraction involves color-correlated matrix elements:

$$\mathcal{B}_{kl} \sim -\sum_{ ext{color}\ ext{spin}} \mathcal{A}^{(n)} ec{\mathcal{Q}}(\mathcal{I}_k) \cdot ec{\mathcal{Q}}(\mathcal{I}_l) \mathcal{A}^{(n)*},$$

Automated subtraction terms in WHIZARD, algorithm:

Find all singular pairs *

$$\mathcal{I} = \{(1,5), (1,6), (2,5), (2,6), (5,6)\}$$

* Partition phase space according to singular regions

$$\mathbb{1} = \sum_{\alpha \in \mathcal{I}} S_{\alpha}(\Phi)$$

* Generate subtraction terms for singular regions

Collinear subtraction involves spin-correlated matrix elements:

$$\mathcal{B}_{+-} \sim Re \left\{ rac{\langle k_{
m em} k_{
m rad}
angle}{[k_{
m em} k_{
m rad}]} \sum_{
m color \ spin} \mathcal{A}^{(n)}_+ \mathcal{A}^{(n)*}_-
ight\}$$

.R.Reuter

WHIZARD

Automated POWHEG Matching in WHIZARD ^{30/23}

- Soft gluon emissions before hard emission generate large logs
- Perturbative α_s : $|\mathcal{M}_{\text{soft}}|^2 \sim \frac{1}{k_T^2} \rightarrow \log \frac{k_T^{\max}}{k_T^{\min}}$
- Consistent matching of NLO matrix element with shower
- POWHEG method: hardest emission first [Nason et al.]

Automated POWHEG Matching in WHIZARD

- Soft gluon emissions before hard emission generate large logs
- Perturbative α_s : $|\mathcal{M}_{\text{soft}}|^2 \sim \frac{1}{k_T^2} \rightarrow \log \frac{k_T^{\max}}{k_T^{\min}}$
- Consistent matching of NLO matrix element with shower
- POWHEG method: hardest emission first [Nason et al.]
- Complete NLO events

$$\overline{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int d\Phi_{\rm rad} R(\Phi_{n+1})$$

• POWHEG generate events according to the formula:

$$d\sigma = \overline{B}(\Phi_n) \left[\Delta_R^{\text{NLO}}(k_T^{\min}) + \Delta_R^{\text{NLO}}(k_T) \frac{R(\Phi_{n+1})}{B(\Phi_n)} d\Phi_{\text{rad}} \right]$$

Uses the modified Sudakov form factor:

$$\Delta_R^{\text{NLO}}(k_T) = \exp\left[-\int d\Phi_{\text{rad}} \frac{R(\Phi_{n+1})}{B(\Phi_n)} \theta(k_T(\Phi_{n+1}) - k_T)\right]$$

Automated POWHEG Matching in WHIZARD

- Soft gluon emissions before hard emission generate large logs
- Perturbative α_s : $|\mathcal{M}_{\text{soft}}|^2 \sim \frac{1}{k_T^2} \rightarrow \log \frac{k_T^{\max}}{k_T^{\min}}$
- Consistent matching of NLO matrix element with shower
- POWHEG method: hardest emission first [Nason et al.]
- Complete NLO events

$$\overline{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int d\Phi_{\rm rad} R(\Phi_{n+1})$$

• POWHEG generate events according to the formula:

$$d\sigma = \overline{B}(\Phi_n) \left[\Delta_R^{\text{NLO}}(k_T^{\min}) + \Delta_R^{\text{NLO}}(k_T) \frac{R(\Phi_{n+1})}{B(\Phi_n)} d\Phi_{\text{rad}} \right]$$

• Uses the modified Sudakov form factor:

$$\Delta_R^{\rm NLO}(k_T) = \exp\left[-\int d\Phi_{\rm rad} \frac{R(\Phi_{n+1})}{B(\Phi_n)} \theta(k_T(\Phi_{n+1}) - k_T)\right]$$

- Hardest emission: k_T^{\max} ; shower with imposing a veto
- $\overline{B} < 0$ if virtual and real terms larger than Born: shouldn't happen in perturbative regions
- Reweighting such that $\overline{B} > 0$ for all events
- POWHEG: Positive Weight Hardest Emission Generator own implementation in WHIZARD

WHIZARD

MBI 2016, U. Wisconsin, Madison, 25.08.16

30/23

Top-Forward Backward Asymmetry

$$A_{FB} = \frac{\sigma(\cos\theta_t > 0) - \sigma(\cos\theta_t < 0)}{\sigma(\cos\theta_t > 0) + \sigma(\cos\theta_t < 0)}.$$

Gluon emission symmetric in $\theta \Rightarrow$ NLO QCD corrections small

A_{FB} of the top quark

Final state	$A_{FB}^{ m LO}$	$A_{FB}^{ m NLO}$
$t\bar{t}$	-0.5935 ± 0.0017	-0.5983 ± 0.0048
$W^+W^-b\bar{b}$	-0.4847 ± 0.0017	-0.4778 ± 0.0114
$\mu^+ e^- \nu_\mu \bar{\nu}_e b \bar{b}$	-0.5005 ± 0.0001	-0.4947 ± 0.0088
$\mu^+ e^- \nu_\mu \bar{\nu}_e b \bar{b}$, without neutrinos	-0.4854 ± 0.0010	-0.4805 ± 0.0089

AFB of the anti-top quark

Final state	$A_{FB}^{ m LO}$	$A_{FB}^{ m NLO}$
$tar{t}$	0.4764 ± 0.0017	0.4789 ± 0.0047
$W^+W^-b\overline{b}$	0.3674 ± 0.0017	0.3701 ± 0.0104
$\mu^+ e^- u_\mu \bar{ u}_e b \bar{b}$	0.3267 ± 0.0009	0.3264 ± 0.0084
$\mu^+ e^- \nu_\mu \bar{\nu}_e b \bar{b}$, without neutrinos	0.2656 ± 0.0009	0.2603 ± 0.0083

Top Threshold Resummation in (p)NRQCD ^{32/23}

- ${}^{\odot}$ NRQCD is EFT for non-relativistic quark-antiquark systems: separate $\,M\cdot v\,$ and $\,M\cdot v^2$
- Integrate out hard quark and gluon d.o.f.
- Sesummation of singular terms close to threshold (v = 0) Hoang/Teubner, 1999; Hoang et al., 2001

- Phase space of two massive particles

$$R \equiv \frac{\sigma_{t\bar{t}}}{\sigma_{\mu\mu}} = v \sum_{k} \left(\frac{\alpha_s}{v}\right)^k \sum_{i} (\alpha_s \ln v)^i \times \left\{1 (L\mathbf{L}); \ \alpha_s, v (\mathrm{NLL}); \ \alpha_s^2, \alpha_s v, v^2 (\mathrm{NNLL})\right\}$$

(p/v)NRQCD EFT w/ RG improvement

Top Threshold Resummation in (p)NRQCD

- NRQCD is EFT for non-relativistic quark-antiquark systems: separate $M \cdot v$ and $M \cdot v^2$
- Integrate out hard quark and gluon d.o.f.
- Resummation of singular terms close to threshold (v = 0) Hoang/Teubner, 1999; Hoang et al., 2001

at NLL differentially!

MBI 2016, U. Wisconsin, Madison, 25.08.16

32/23

Top Threshold Resummation in (p)NRQCD ^{32/23}

- ${}^{\odot}$ NRQCD is EFT for non-relativistic quark-antiquark systems: separate $\,M\cdot v\,$ and $\,M\cdot v^2$
- Integrate out hard quark and gluon d.o.f.
- Segmentation of singular terms close to threshold (v = 0) Hoang/Teubner, 1999; Hoang et al., 2001

I.R.Reuter

Top Threshold Resummation in (p)NRQCD ^{32/23}

- ${}^{\odot}$ NRQCD is EFT for non-relativistic quark-antiquark systems: separate $\,M\cdot v\,$ and $\,M\cdot v^2$
- Integrate out hard quark and gluon d.o.f.
- Segmentation of singular terms close to threshold (v = 0) Hoang/Teubner, 1999; Hoang et al., 2001

Top Threshold in WHIZARD

• Implement resummed threshold effects as effective vertex [form factor] in WHIZARD • $G^{v,a}(0, p_t, E + i\Gamma_t, \nu)$ from TOPPIK code [Jezabek/Teubner], included in WHIZARD

• Default parameters: $\mathbf{M^{1S}} = \mathbf{172} \operatorname{GeV}, \ \Gamma_t = 1.54 \operatorname{GeV},$ $\alpha_s(M_Z) = 0.118$

$$M^{1S} = M_t^{pole}(1 - \Delta_{(Coul.)}^{LL/NLL})$$
 Marquard et al.

Top Threshold in WHIZARD

• Implement resummed threshold effects as effective vertex [form factor] in WHIZARD • $G^{v,a}(0, p_t, E + i\Gamma_t, \nu)$ from TOPPIK code [Jezabek/Teubner], included in WHIZARD

Default parameters:

$$\mathbf{M^{1S}} = \mathbf{172} \operatorname{GeV}, \ \Gamma_t = 1.54 \operatorname{GeV},$$

 $\alpha_s(M_Z) = 0.118$

$$M^{1S} = M_t^{pole}(1 - \Delta_{(Coul.)}^{LL/NLL})$$
 Marquard et al.

MBI 2016, U. Wisconsin, Madison, 25.08.16

Top Threshold in WHIZARD

• Implement resummed threshold effects as effective vertex [form factor] in WHIZARD • $G^{v,a}(0, p_t, E + i\Gamma_t, \nu)$ from TOPPIK code [Jezabek/Teubner], included in WHIZARD

• Default parameters: $\mathbf{M^{1S}} = \mathbf{172} \operatorname{GeV}, \ \Gamma_t = 1.54 \operatorname{GeV},$ $\alpha_s(M_Z) = 0.118$

 $M^{1S} = M_t^{pole} (1 - \Delta_{(Coul.)}^{LL/NLL}) \quad \mbox{Marquard et al.}$

Theory uncertainties from scale variations: hard and soft scale

 $\mu_h = h \cdot m_t \qquad \mu_s = f \cdot m_t v$

MBI 2016, U. Wisconsin, Madison, 25.08.16

Sanity checks: correct limit for $\alpha_s \longrightarrow 0$, stable against variation of cutoff ΔM [15-30 GeV]

Why include LL/NLL in a Monte Carlo event generator? Important effects: beamstrahlung; ISR; LO electroweak terms

More exclusive observables accessible

Sanity checks: correct limit for $\alpha_s \longrightarrow 0$, stable against variation of cutoff ΔM [15-30 $Ge^{4/2}$]

Why include LL/NLL in a Monte Carlo event generator?

Important effects: beamstrahlung; ISR; LO electroweak terms More exclusive observables accessible

Sanity checks: correct limit for $\alpha_s \longrightarrow 0$, stable against variation of cutoff ΔM [15-30 $Ge^{4/2}$]

Why include LL/NLL in a Monte Carlo event generator? Important effects: beamstrahlung; ISR; LO electroweak terms More exclusive observables accessible

WHIZARD

Forward-backward asymmetry (norm. \Rightarrow good shape stability)

 $A_{fb} := \frac{\sigma(p_z^t > 0) - \sigma(p_z^t) < 0)}{\sigma(p_z^t > 0) + \sigma(p_z^t < 0)}$

MBI 2016, U. Wisconsin, Madison, 25.08.16

J.R.Reuter

- Transition region between relativistic and resummation effects
- CLIC benchmark energies: 0.38 TeV, 1.4 TeV, 3.0 TeV
- Remove double-counting NLO / (N)LL

- Transition region between relativistic and resummation effects
- CLIC benchmark energies: 0.38 TeV, 1.4 TeV, 3.0 TeV
- Remove double-counting NLO / (N)LL

Resummed formfactor, expanded to $\mathcal{O}(lpha_s)$

$$\nu = \sqrt{\frac{\sqrt{s} - 2m_t + i\Gamma_t}{m}} \qquad p = |\vec{p}| \qquad p_0 = E_t - m_t$$

$$F^{\text{expanded}}\left[\alpha_{\text{H}}, \ \alpha_{\text{S}}\right] = \alpha_{\text{H}}\left(-\frac{2C_{F}}{\pi}\right) + \alpha_{\text{S}}\left(\frac{\mathrm{i}C_{F}m\log\frac{mv+p}{mv-p}}{2p}\right)$$

35/23

- Transition region between relativistic and resummation effects
- CLIC benchmark energies: 0.38 TeV, 1.4 TeV, 3.0 TeV
- Remove double-counting NLO / (N)LL

Resummed formfactor, expanded to $\, \mathcal{O}(lpha_s) \,$

$$\nu = \sqrt{\frac{\sqrt{s} - 2m_t + i\Gamma_t}{m}} \qquad p = |\vec{p}| \qquad p_0 = E_t - m_t$$

$$F^{\text{expanded}}\left[\alpha_{\text{H}}, \ \alpha_{\text{S}}\right] = \alpha_{\text{H}}\left(-\frac{2C_{F}}{\pi}\right) + \alpha_{\text{S}}\left(\frac{\mathrm{i}C_{F}m\log\frac{mv+p}{mv-p}}{2p}\right)$$

Matching formula

$$\begin{split} \sigma_{\text{matched}} &= \sigma_{\text{QCD}} \left[\alpha_{\text{H}} \right] - \sigma_{\text{NRQCD}}^{\text{expanded}} \left[\alpha_{\text{H}}, \ \alpha_{\text{H}} \right] \\ &+ \sigma_{\text{NRQCD}}^{\text{expanded}} \left[\alpha_{\text{H}}, \ f_s \, \alpha_{\text{S}} + (1 - f_s) \, \alpha_{\text{H}} \right] \\ &+ \sigma_{\text{NRQCD}}^{\text{full}} \left[f_s \, \alpha_{\text{H}}, \ f_s \, \alpha_{\text{S}}, \ f_s \, \alpha_{\text{US}} \right] - \sigma_{\text{NRQCD}}^{\text{expanded}} \left[f_s \, \alpha_{\text{H}}, \ f_s \, \alpha_{\text{S}} \right] \end{split}$$

WHIZARD

35/23

- Transition region between relativistic and resummation effects
- CLIC benchmark energies: 0.38 TeV, 1.4 TeV, 3.0 TeV
- Remove double-counting NLO / (N)LL

Resummed formfactor, expanded to $\, \mathcal{O}(lpha_s) \,$

$$\nu = \sqrt{\frac{\sqrt{s} - 2m_t + i\Gamma_t}{m}} \qquad p = |\vec{p}| \qquad p_0 = E_t - m_t$$

$$F^{\text{expanded}}\left[\alpha_{\text{H}}, \ \alpha_{\text{S}}\right] = \alpha_{\text{H}}\left(-\frac{2C_{F}}{\pi}\right) + \alpha_{\text{S}}\left(\frac{\mathrm{i}C_{F}m\log\frac{mv+p}{mv-p}}{2p}\right)$$

Matching formula

$$\begin{split} \sigma_{\text{matched}} &= \sigma_{\text{QCD}} \left[\alpha_{\text{H}} \right] - \sigma_{\text{NRQCD}}^{\text{expanded}} \left[\alpha_{\text{H}}, \ \alpha_{\text{H}} \right] \\ &+ \sigma_{\text{NRQCD}}^{\text{expanded}} \left[\alpha_{\text{H}}, \ f_s \, \alpha_{\text{S}} + (1 - f_s) \, \alpha_{\text{H}} \right] \\ &+ \sigma_{\text{NRQCD}}^{\text{full}} \left[f_s \, \alpha_{\text{H}}, \ f_s \, \alpha_{\text{S}}, \ f_s \, \alpha_{\text{US}} \right] - \sigma_{\text{NRQCD}}^{\text{expanded}} \left[f_s \, \alpha_{\text{H}}, \ f_s \, \alpha_{\text{S}} \right] \end{split}$$

Switch-off function

$$f_s(v) = \begin{cases} 1 & v < v_1 \\ 1 - 2\frac{(v-v_1)^2}{(v_2 - v_1)^2} & v_1 < v < \frac{v_1 + v_2}{2} \\ 2\frac{(v-v_2)^2}{(v_2 - v_1)^2} & \frac{v_1 + v_2}{2} < v < v_2 \\ 0 & v > v_2 \end{cases}$$

WHIZARD

MBI 2016, U. Wisconsin, Madison, 25.08.16