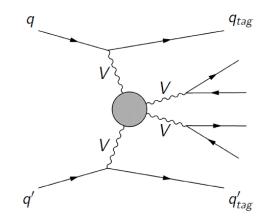
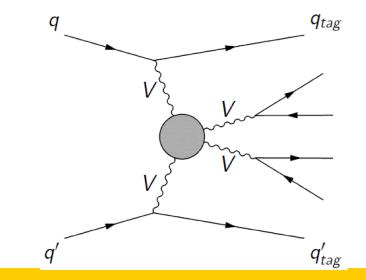
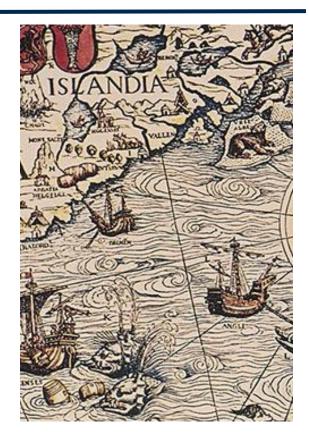
Results on VBS Production (Part 1 ATLAS)

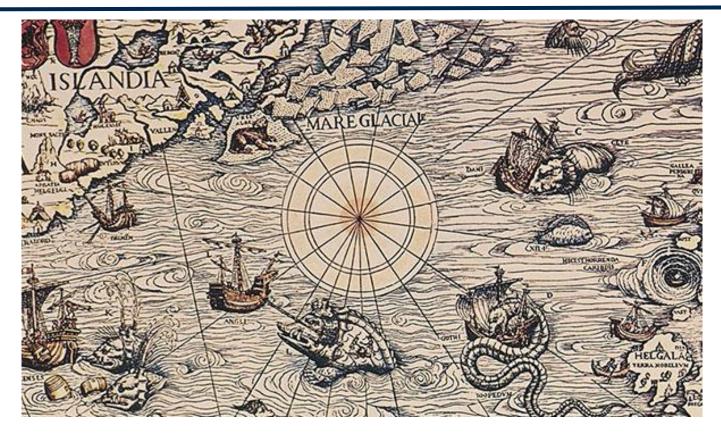

Jacob Searcy University of Michigan

Office of Science

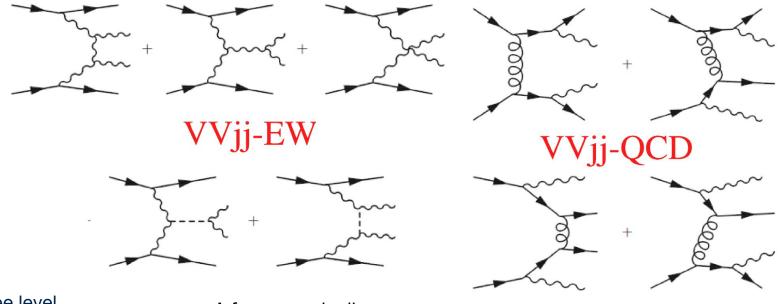




1


Why Quartic Interactions

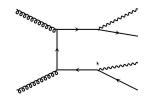
- Longitudinal polarization of the W and Z directly related to electroweak symmetry breaking
 - Could be an excellent place to find new physics
- We have never been able to do it before


We don't know what we will see

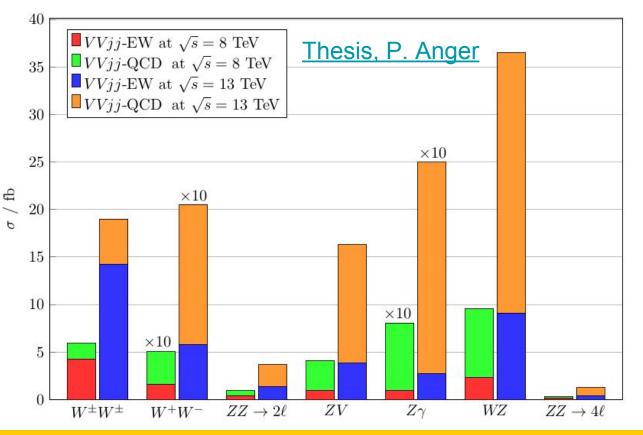
- Just at the start of exploring this interesting sector, so far results are just for 8 TeV
 - Same Sign WW + jj
 - <u>ATLAS-STDM-2013-06</u>
 - WZ+jj
 - <u>ATLAS-STDM-2014-02</u>
 - WV (Semi-leptonic VBS) + jj
 - Preliminary Plots:STDM-2015-09
 - γγ→WW
 - <u>ATLAS-STDM-2015-10</u>

VBS: Experimental challenge finding EWK signal

 Final state signatures with two "tag" jets come from two categories*

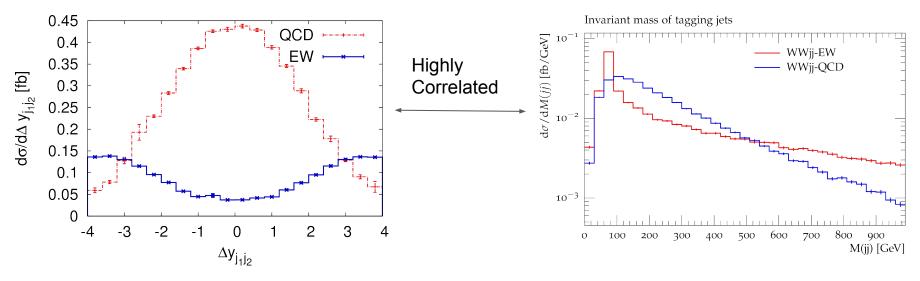


*at tree level


A few example diagrams

Electroweak vs. Strong cross section by process

- EWK and Strong Production by channel
 - After some analysis cuts to suppress QCD
- Same Sign W+W+ has no gluon initial states

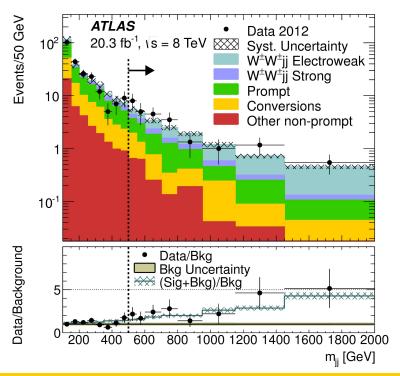


• Others experimentally challenging

QCD VS. Electroweak

- Experimental Signatures
 - 2 Jets with large M(j,j)
 - 2 Jets with large rapidity separation

arXiv:1108.0864


Anomalous Quartic Gauge Couplings (aQGCs)

- Often how we describe sensitivity to new physics
 - Allow for new operators in the Lagrangian typically Dimension 8 for aQGC
 - Generally produces production enhancements at high boson pT
- ATLAS has been using the α_4, α_5 parameterization
 - A. Alboteanu, W. Kilian, and J. Reuter, J. High Energy Phys. 11 (2008) 010.
 - T. Appelquist and C. Bernard, Phys. Rev. D 22, 200 (1980);
 - A. C. Longhitano, Phys. Rev. D22, 1166 (1980); Nucl. Phys. B188, 118 (1981)
- If α_4, α_5 become too large these models become unphysical (are un-unitarized)
 - ATLAS addresses this with a K-Matrix procedure
 - A. Alboteanu, W. Kilian, and J. Reuter, J. High Energy Phys. 11 (2008) 010

Same Sign W⁺W⁺jj

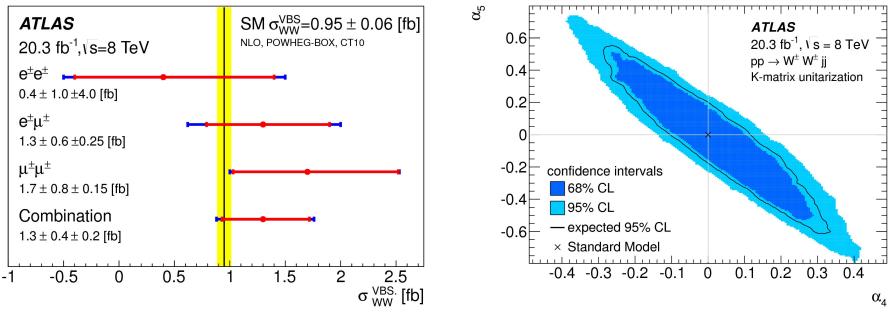
ATLAS-STDM-2013-06

- Reminder of the first evidence for electroweak diboson production
- Look for two leptons (e/µ) with identical electric charge
- 2 jets with large M(j,j) and dY(j,j)
 - Slight excess in data seen over SM prediction
 - 3.6 Sigma over background only prediction
- Set limits on α_4, α_5 coupling s
 - Unitarized with a k-matrix

Example

0

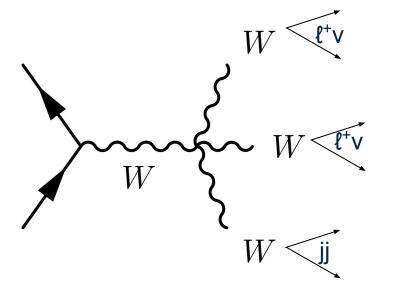
 $\mu+\mu$ cleanest channel

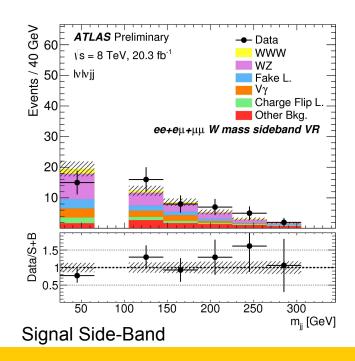

No charge mis-id

 $e+\mu$ has the most events

- 280 ET [GeV] $\mu^+\mu^+ jj$ Candidate Event $|\Delta y_{jj}|=6.3$ *m*_{jj}=2800 GeV 10040 🖄 EXPERIMENT Run Number: 207490, Event Number: 33152138 Date: 2012-07-26 04:16:35 UTC

	Inclusive Region			VBS Region		
	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^\pm\mu^\pm$
Prompt	3.0 ± 0.7	6.1 ± 1.3	2.6 ± 0.6	2.2 ± 0.5	4.2 ± 1.0	1.9 ± 0.5
Conversions	3.2 ± 0.7	2.4 ± 0.8	_	2.1 ± 0.5	1.9 ± 0.7	_
Other non-prompt	0.61 ± 0.30	1.9 ± 0.8	0.41 ± 0.22	0.50 ± 0.26	1.5 ± 0.6	0.34 ± 0.19
$W^{\pm}W^{\pm}jj$ Strong	0.89 ± 0.15	2.5 ± 0.4	1.42 ± 0.23	0.25 ± 0.06	0.71 ± 0.14	0.38 ± 0.08
$W^{\pm}W^{\pm}jj$ Electroweak	3.07 ± 0.30	9.0 ± 0.8	4.9 ± 0.5	2.55 ± 0.25	7.3 ± 0.6	4.0 ± 0.4
Total background	6.8 ± 1.2	10.3 ± 2.0	3.0 ± 0.6	5.0 ± 0.9	8.3 ± 1.6	2.6 ± 0.5
Total predicted	10.7 ± 1.4	21.7 ± 2.6	9.3 ± 1.0	7.6 ± 1.0	15.6 ± 2.0	6.6 ± 0.8
Data	12	26	12	6	18	10





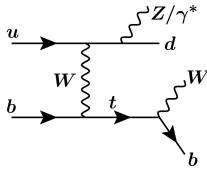
This limit is frequently used as a baseline comparison for newer studies

Quick Plug for WWW

- Very preliminary plots available for same-sign leptons + 2 jets from tri-boson production. Signal at M(j,j) = M_W instead at large M(j,j), probes same coupling
 - See Tri-boson talk by Julia Djuvsland

WZ + Two Jets

ATLAS-STDM-2014-02


- Three lepton selection with two jets
 - One region optimized to measure standard model VBS production
 - High M(j,j)
 - A second region is optimized to observe contributions from anomalous couplings
 - High pT, and high $\Delta \Phi$

Variable	Total	Fiducial and aTGC	VBS	aQGC
Lepton $ \eta $		< 2.5	< 2.5	< 2.5
$p_{\rm T}$ of ℓ_Z , $p_{\rm T}$ of ℓ_W [GeV]	31 <u></u> 1	> 15, > 20	> 15, > 20	> 15, > 20
	66 - 116	$ m_Z - m_Z^{\rm PDG} < 10$	$ m_Z - m_Z^{\rm PDG} < 10$	$ m_Z - m_Z^{\rm PDG} < 10$
m_{T}^{W} [GeV]	27	> 30	> 30	> 30
$\Delta R(\ell_Z^-, \ell_Z^+), \Delta R(\ell_Z, \ell_W)$	1	> 0.2, > 0.3	> 0.2, > 0.3	> 0.2, > 0.3
$p_{\rm T}$ two leading jets [GeV]	s9		> 30	> 30
$ \eta_j $ two leading jets	33 <u></u> 31	_	< 4.5	< 4.5
Jet multiplicity			≥ 2	≥ 2
$m_{jj} [{ m GeV}]$	27	_	> 500	> 500
$\Delta R(j,\ell)$		_	> 0.3	> 0.3
$ \Delta \phi(W,Z) $			—	> 2
$\sum p_{\mathrm{T}}^{\ell} $ [GeV]	h <u></u>	<u> </u>		> 250

WZ - VBS Results

ATLAS-STDM-2014-02

- Slight excess seen in data consistent with expectation
 - Not yet sensitive to the SM
 - 95% limits are quoted
- Quoted with and without the tZ+i

Selection	VBS	aQGC					
Data	45	9					
Total Expected	37.2 ± 1.1	4.9 ± 0.3					
WZjj-EW	7.4 ± 0.2	1.1 ± 0.1					
WZjj-QCD	20.8 ± 0.8	2.8 ± 0.3					
tZ	3.0 ± 0.1	0.3 ± 0.0					
Misid. leptons	2.5 ± 0.6	0.1 ± 0.1					
ZZ	1.9 ± 0.3	0.2 ± 0.1					
$t\bar{t} + V$	1.6 ± 0.1	0.3 ± 0.0					
95% CL upper limit on $\sigma_{W^{\pm}Zjj\text{-}\mathrm{EW}\to\ell'\nu\ell\ell}^{\mathrm{fid.}}$ [fb]							
VBS only $VBS + tZj$							
VBS phase space							

0.63

0.45

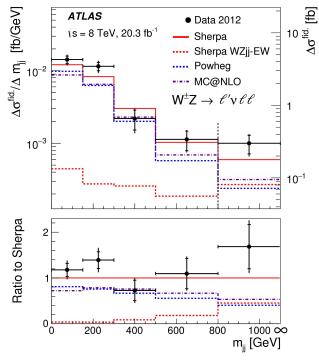
[0.28; 0.62]

[0.08:0.80]

0.67

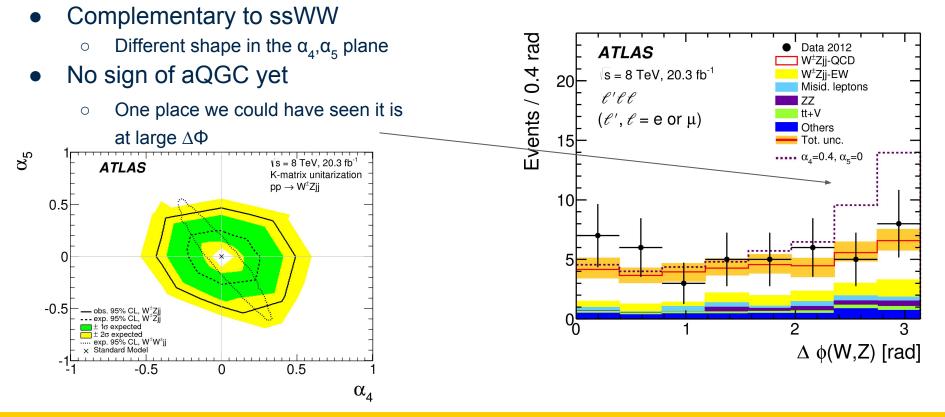
0.49

[0.33; 0.67]

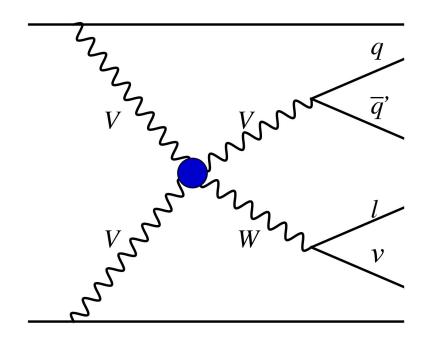

[0.19; 0.84]

Observed

Expected


 $\pm 1\sigma$ Expected

 $\pm 2\sigma$ Expected



ATLAS-STDM-2014-02

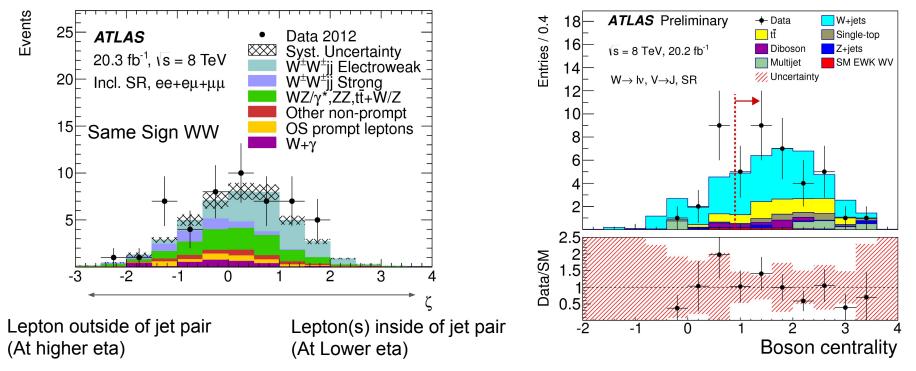
WZ - aQGC

VBS WV+jj

- Measuring VBS in a semi-leptonic channel has many advantages
 - Signal from multiple sources
 - OS WW
 - SS WW
 - WZ
 - Can reconstruct boson kinematics
- Tends to suffer from higher background
 - Makes SM measurements hard
 - Background falls as you move to higher pTs, making this channel ideal for aQGC measurements

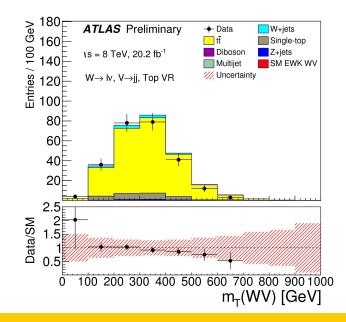
Analysis

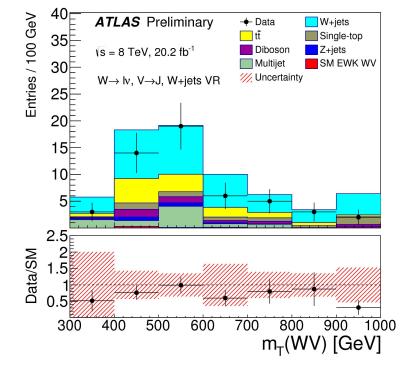
- Resolved (small-R jet) selection:
 - At least 4 small-R jets
 - Select jet pair with 64<m(jj)<96 GeV as W-jet candidates.
 - From the non W-jets, max mjj pair are the VBS "tagging" jets
- Merged (large-R jet) selection:
 - At least 2 small-R jets and 1 large-R jet.
 - \circ 64 < m(J) < 96 GeV
 - Large-R jet with mass closest to W-mass is chosen to be V->qq candidate.
 - max mjj pair -> VBS "tagging" jets


- Event Selection
 - \circ M(j,j) > 900 GeV (tag jets)
 - \circ MET > 30 GeV
 - \circ Boson Centrality > 0.9
 - $\zeta = \min\{\Delta\eta_-, \Delta\eta_+\}\,,$

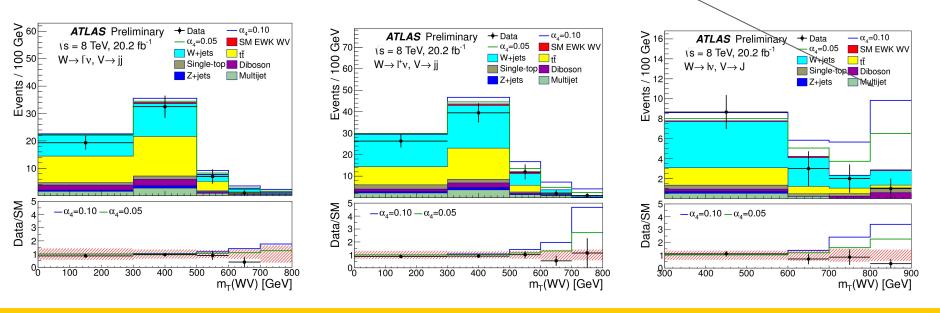
$$\Delta \eta_{-} = \min\{\eta_{i}\} - \min\{\eta_{j_{t1}}, \eta_{j_{t2}}\},\$$

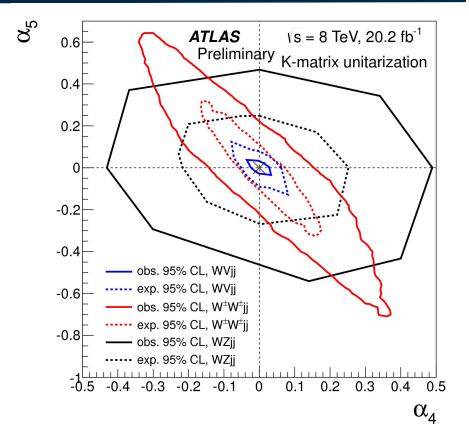
$$\Delta \eta_{+} = max\{\eta_{j_{t1}}, \eta_{j_{t2}}\} - max\{\eta_{i}\}.$$


Boson Centrality


- Like M(j,j), and dY(j,j), boson centrality is a good VBS separator
 - Also correlated to M(j,j) / dY(j,j)

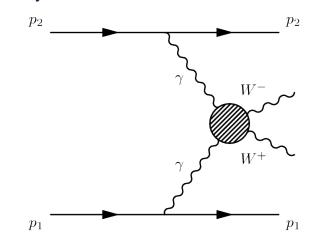
Backgrounds and Modeling

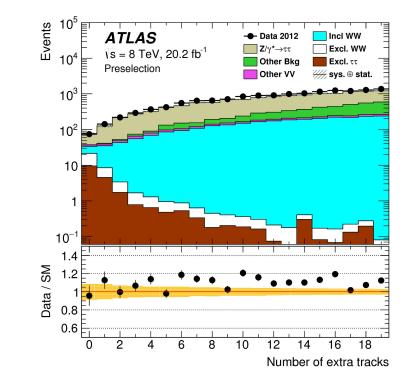

- Dominant backgrounds are top quark pair production and W+jets
 - Model with MC, but use data driven normalizations
 - Validate in control regions


aQGC Fit

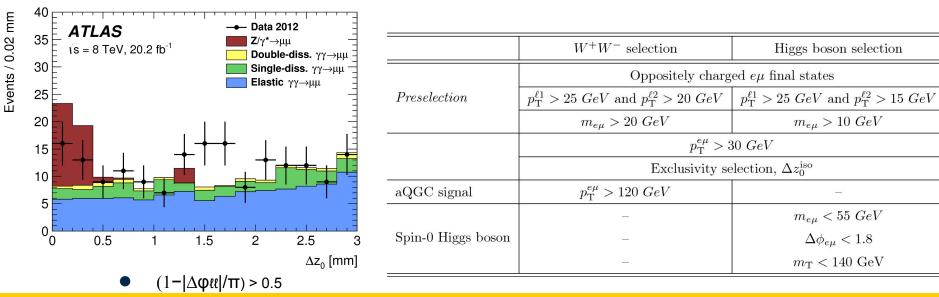
- After cut fit for aQGC points in three regions, resolved I⁺, resolved I⁻, merged
- Excellent aQGC sensitivity in resolved channel

aQGC Limit Comparison


- Deficit seen in regions most sensitive to aQGC
 - Better limit than expect
- Most stringent limit to date on α₄,
 α₅ by significant margin
 - Both expected and observed
- Look for paper to be submitted soon

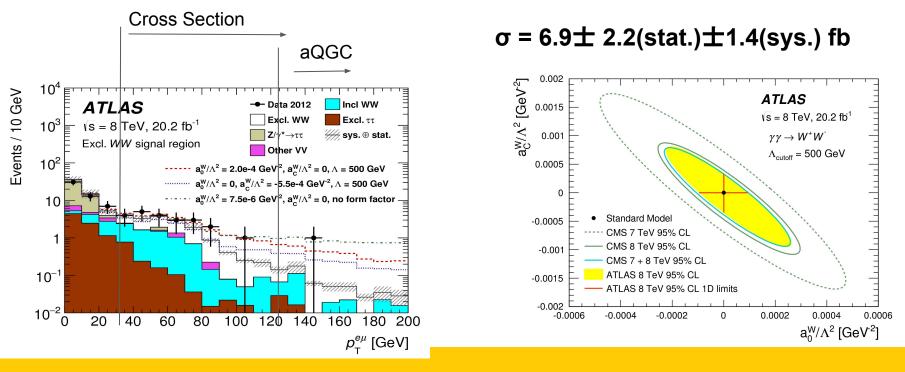


Exclusive WW production


ATLAS-STDM-2015-10

- A different set of aQGC involving photons and higgs production can be probed with exclusive production
- Protons can survive these interactions relatively intact, and go directly down the beam pipe
- Signature here is two leptons, with very little other activity in the event

- $e+\mu$ final state used to reduce $Z \square \ell \ell$ background
- "Extra tracks" are matched back to the lepton pair's vertex
 - \circ ΔZ with the closest extra track used as a discriminant


0

Run: 203432 Event: 53911100 2012-05-15 13:35:15 CEST

γγ→WW

- Additional cuts on the pT of the e/mu system can be used to extract a cross section (> 30 GeV) and even tighter cuts can be used for the aQGC (> 120 GeV)
- Cross section (fiducial) agrees with SM prediction of 4.4 \pm 0.3 fb

Conclusions

- The LHC 8 TeV has provided a wealth of information about electroweak interactions
 - We've gone from having no experimental knowledge in this sector to some measurements and several good limits
 - So far predictions are not completely different from experiment, but it is hard to claim more than this with current precision
 - Statistics remain the dominant uncertainty
- There is still an awfully lot to do
 - With the LHC at 13 TeV expect more data and better precision
 - The data is coming in fast, so you may not have to wait long!