Theories Beyond the Standard Model and

final states with W, Z and Higgs bosons

Bogdan Dobrescu

Fermilab, Theoretical Physics Department

August 26, 2016 – Multi-Boson Interactions Conference - Univ. of Madison

Run I and the start of Run II at the LHC have confirmed many aspects of the Standard Model, and measured:

 $M_h = 125.09 \pm 0.24$ GeV (ATLAS + CMS, 1503.07589).

The LHC is probing the laws of nature at the shortest distances accessible by humans so far.

We do not know what the full Run II will find ...

Observed elementary particles:

- Chiral fermions (spin 1/2): 6 quarks and 6 leptons (left-handed doublets and right-handed singlets)
- Gauge bosons (spin 1): γ, W, Z, g .
- Scalar (spin 0): Higgs boson

Legacy of LHC Run 1: a 4th generation of chiral quarks and leptons is ruled out.

Direct searches set limits $\gtrsim 700 - 800$ GeV on b_4, t_4 masses, e.g. $m_{t_4} > 770$ GeV from $t_4 \rightarrow Wb$ (ATLAS 1505.04306) $\rightarrow h\bar{t}_4 t_4$ Yukawa coupling no longer perturbative.

Vectorlike fermions

Vectorlike (i.e. non-chiral) fermions — a new form of matter.

Masses allowed by $SU(3)_c \times SU(2)_W \times U(1)_Y$ gauge symmetry \Rightarrow naturally heavier than the t quark.

Unlike chiral fermions, vectorlike fermions have a decoupling limit: $m \gg v_H \approx 174 \text{ GeV} \rightarrow \text{Standard Model is recovered.}$ A vectorlike quark χ that transforms as (3,1,+2/3) under $SU(3)_c \times SU(2)_W \times U(1)_Y$ would mix with the SM top quark.

 χ is predicted in composite Higgs models (Chivukula et al, hep-ph/9809470), little Higgs models (Arkani-Hamed et al, hep-ph/0206020),

Mass eigenstates: t and t'. Mixing $\sin \theta_L \equiv s_L$. 0.7 $s_{L}^{2} << 1$ 0.6 $t' \rightarrow W b$ t' branching fractions: 0.5 0.4 B(t') $' \rightarrow h t$ 0.3 0.2 $\rightarrow Z t$ 0.1 0.0 800 400 600 1000 1200 1400 $m_{t'}$ [GeV] with K. Kong and R. Mahbubani, 0902.0792

T. Han, H. Logan, L. Wang, hep-ph/0506313

'Standard' decay widths of t':

$$\begin{split} \Gamma(t' \to W^+ b) &= \frac{s_L^2 \ m_{t'}^3}{32 \pi v_H^2} \left[1 + O\left(\frac{M_W^4}{m_{t'}^4}\right) \right] \\ \Gamma(t' \to Zt) &= \frac{s_L^2 c_L^2 \ m_{t'}^3}{64 \pi v_H^2} \left[1 - \frac{m_t^2}{m_{t'}^2} + O\left(\frac{m_t^2}{m_{t'}^2}\right) \right] \\ \Gamma(t' \to ht) &= \frac{s_L^2 c_L^2 m_{t'}^3}{64 \pi v_H^2} \left[1 + 5 \frac{m_t^2}{m_{t'}^2} + O\left(\frac{m_t^4}{m_{t'}^4}\right) \right] \end{split}$$

For $s_L \ll 1$, exotic decays of vectorlike quarks could dominate:

(work with Felix Yu)

New gauge bosons

Is $SU(3)_c \times SU(2)_W \times U(1)_Y$ embedded into a larger gauge group?

New gauge bosons

Is $SU(3)_c \times SU(2)_W \times U(1)_Y$ embedded into a larger gauge group?

Fields	$SU(3)_c$	$SU(2)_L$	$SU(2)_R$	$U(1)_{B-L}$
$q_L = (u_L, \ d_L)^ op$	3	2	1	+1/3
$q_R = (u_R, \; d_R)^ op$	3	1	2	+1/3
$L_L = (u_L, \ \ell_L)^ op$	1	2	1	-1
$L_R = (N_R, \; \ell_R)^ op$	1	1	2	-1

Marshak, Mohapatra, 1980

Electroweak and flavor constraints push the masses of the $SU(2)_R$ gauge bosons above O(1) TeV, a region recently opened for exploration at the LHC.

Classic prediction of Left-Right symmetric model:

(Keung, Senjanovic, 1983)

 N_R has Majorana mass $\Rightarrow \Gamma(N \to e^- u \bar{d}) = \Gamma(N \to e^+ \bar{u} d)$ \Rightarrow equal number of $e^+ e^- j j$ (opposite sign) and $e^{\pm} e^{\pm} j j$ (same sign) events

CMS observed 13 opposite-sign events out of the 14 eejj events, so a $W' \rightarrow eN \rightarrow e^+e^-jj$ interpretation would require N to have Dirac mass at the TeV scale.

Could N_R have a "left-handed" Dirac partner?

Higgs sector – T:(1,3), $\Sigma:(2,2)$ under $SU(2)_L \times SU(2)_R$

$$\begin{split} \langle T \rangle = \begin{pmatrix} 0 & 0 \\ u_T & 0 \end{pmatrix} & \langle \Sigma \rangle = v_H \begin{pmatrix} \cos\beta & 0 \\ 0 & e^{i\alpha_{\Sigma}} \sin\beta \end{pmatrix} \\ & \swarrow \\ M_{Z'} > 3.4 \text{ TeV} & v_H \approx 174 \text{ GeV} \end{split}$$

with Zhen Liu, 1507.01923;

Mass terms for the charged gauge bosons:

$$\frac{1}{2} \begin{pmatrix} W_L^{+\mu}, W_R^{+\mu} \end{pmatrix} \begin{pmatrix} g_L^2 v_H^2 & -g_L g_R v_H^2 \sin 2\beta \\ -g_L g_R v_H^2 \sin 2\beta & g_R^2 \left(2u_T^2 + v_H^2 \right) \end{pmatrix} \begin{pmatrix} W_{L\mu}^- \\ W_{R\mu}^- \end{pmatrix}$$

$$W_L - W_R$$
 mixing: $\sin heta_+ = rac{g_{
m R}}{g} \left(rac{M_W}{M_{W'}}
ight)^2 \sin 2eta$

Mass eigenstates: W and W'.

with Pilar Coloma and Jacobo Lopez-Pavon 1508.04129

Assume a flavor structure for the Majorana masses:

$$-rac{y_{\mu\mu}}{2}(\,\overline{L}^{\mu}_{R})^{c}\,i\sigma_{2}\,T\,L^{\mu}_{R}-y_{e au}(\,\overline{L}^{e}_{R})^{c}\,i\sigma_{2}\,T\,L^{ au}_{R}$$

right-handed neutrinos acquire masses:

$$-u_T \left(\overline{N}^e_R, \overline{N}^\mu_R, \overline{N}^ au_R
ight)^c \left(egin{array}{ccc} 0 & 0 & y_{e au} \ 0 & y_{\mu\mu} & 0 \ y_{e au} & 0 & 0 \end{array}
ight) \left(egin{array}{ccc} N^e_R \ N^\mu_R \ N^\mu_R \ N^ au_R \end{array}
ight)$$

Two right-handed neutrinos make a Dirac fermion N_D :

$$N_R^{ au}\equiv N_{D_L}^c \quad , \quad N_R^e\equiv N_{D_R}$$

Interactions of N_D with W':

$$rac{g_{
m R}}{\sqrt{2}} W_
u^\prime \left(\overline{N}_{D_R} \gamma^
u e_R + \overline{N}_{D_L}^c \gamma^
u au_R
ight)$$

Flavor structure can be enforced by a global U(1) symmetry with the L_R^e , L_R^μ , L_R^τ doublets carrying charges -1, 0, +1.

Implications for the LHC:

$$\begin{split} B(W'^+ &\to e^+ N_D \to e^+ e^- jj) = B(W'^+ \to \tau^+ \overline{N}_D \to \tau^+ \tau^- jj) \\ &= B(W'^+ \to e^+ N_D \to e^+ \tau^+ jj) \\ &= B(W'^+ \to \tau^+ \overline{N}_D \to \tau^+ e^+ jj) \end{split}$$

pp
ightarrow W' cross section

$$rac{g_{
m R}}{\sqrt{2}}W_{\mu}^{\prime}\left(ar{u}_{R}\gamma^{\mu}d_{R}+ar{c}_{R}\gamma^{\mu}s_{R}+ar{t}_{R}\gamma^{\mu}b_{R}
ight)$$

W' is more weakly coupled than W:

$$g_R^{} < g pprox 0.63$$

W' widths and branching fractions

Heavy Higgs bosons (part of the bidoublet), H^{\pm} , H^0 , A^0 , have approximately the same mass (assumed here at 600 GeV).

Comparison of the CMS e^+e^-jj excess with the $W' \rightarrow eN_D \rightarrow e^+e^-jj$ rate allows a determination of m_{N_D} :

with Patrick Fox, 1511.02148

 $\Rightarrow m_{N_D} pprox 1.2 - 1.5 ~{
m TeV}$

Constraints from $u\bar{d} \rightarrow W' \rightarrow jj$ and $t\bar{b}$ searches:

$\underline{W' \to WZ}$

Run 1 combination (F. Dias et al, 1512.03371):

Run 2: ATLAS-CONF-2016-055

 $\sigma_8pprox5\pm2$ fb

 $\sigma_{13}/\sigma_8pprox 6.5$ for $M_{W'}=1.9$ TeV

with Zhen Liu, 1507.01923

 $E_{\rm T}^{\rm miss}$ [GeV]

 $W'
ightarrow H^+H^0, \ H^+A^0
ightarrow (tar{b})(tar{t})
ightarrow 3W + 4b$

	۸S	15	01 0160	15		Type	N_{j}	$H_{\rm T}$ [GeV]
ATLAS 1504.04005					e^-e^-	3	807	
$\ell^+\ell^+$	+ ((>3	B)b and	$\ell^+\ell^+bb$		e^+e^+	5	862
	·	` —	,			e^+e^+	5	868
						μ^-e^-	6	1346
						$e^+\mu^+$	5	810
Туре	N_j	N_b	$H_{\rm T}$ [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]		$e^-\mu^-$	3	707
e^+e^+	4	3	709	298		$e^-\mu^-$	2	706
e^+e^+	6	3	800	137		$\mu^+ e^+$	8	882
$e^+\mu^+$	5	3	744	216		$\mu^+ e^+$	4	860
$e^+\mu^+$	4	3	888	155		$\mu^+\mu^+$	5	888
μ^+e^+	3	3	1439	239		$\mu^-e^+e^+$	5	773
$\mu^-\mu^+\mu^-$	4	4	1072	176		$\mu^-e^+e^+$	9	968

Excess explained for $M_{H^\pm} \approx M_{H^0} \approx M_{A^0} \approx 500-600~{\rm GeV}$ $(M_{W'} \approx 1.9-2~{\rm TeV})$

Signal	channel	efficiency	signal events		obs. (background)	
$bb\ell^\pm\ell^\pm$	$W' o H^\pm (H^0/A^0) o 3t+b$	$2.5 imes10^{-4}$	1.0-1.8			
	$W' \! ightarrow (\tau/e) N \! ightarrow (\tau/e) (\tau/e) tb$	$5.3 imes10^{-4}$	2.2-3.8	4-7	12 (4.3 ±1.1 ± 1.1)	
	$pp ightarrow tar{t}A^0, tar{t}H^0 ightarrow 4t$	$1.7 imes10^{-2}$	1.1			
$\geq \! 3b\ell^\pm\ell^\pm$ -	$W' \! ightarrow H^{\pm}(H^0/A^0) \ ightarrow \ 3t+b$	$6.3 imes10^{-4}$	2.5-4.4	5-7	6 (1.1±0.9±0.4)	
	$pp ightarrow tar{t}A^0, tar{t}H^0 ightarrow 4t$	$4.1 imes10^{-2}$	2.6			

Branching fractions for bosonic decays of W':

Z' couplings to quarks and leptons:

$$-rac{1}{\sqrt{g_{_{\mathrm{R}}}^2+g_{B-L}^2}} \Bigl(g_{_{\mathrm{R}}}^2T_R^3-g_{B-L}^2rac{B-L}{2}\Bigr)$$

If $SU(2)_R \times U(1)_{B-L} \to U(1)_Y$ breaking is due to an $SU(2)_R$ triplet:

 $M_{Z'}=\sqrt{2}rac{g_{
m R}}{\left(g_{
m R}^2-g_Y^2
ight)^{1/2}}\,M_{W'}$, $g_Ypprox 0.36$ is the SM hypercharge coupling

$$rac{1}{g_{B-L}^2} = rac{1}{g'^2} - rac{1}{g_{
m R}^2}$$

Cascade decays of a leptophobic Z'

Spin-1 fields are well behaved in the UV provided that they are gauge bosons (or bound states – not discussed here)

Z' is associated with a new gauge symmetry. Simple choice: $SU(3)_c \times SU(2)_W \times U(1)_Y \times U(1)_B$

 Z'_B is leptophobic, couples to quarks:

$$rac{g_B}{2} Z_\mu^\prime \sum_q \, \left(rac{1}{3} \, \overline{q}_L \gamma^\mu q_L + rac{1}{3} \, \overline{q}_R \gamma^\mu q_R
ight) \, .$$

Limits from jj resonance searches on g_B , see 1306.2629 (with Felix Yu)

Gauge anomaly cancellation

W. Bardeen, 1969, ...

Gauge symmetries may be broken by quantum effects. Cure: sums over fermion triangle diagrams must vanish.

Any leptophobic Z' that couples to quarks requires new charged fermions to cancel the anomalies (or to mix with the SM quarks).

 \Rightarrow The new fermions ("anomalons") must be vectorlike with respect to $SU(3)_c \times SU(2)_W \times U(1)_Y$, and chiral with respect to the new gauge group. New fields carrying $U(1)_B$ charge in the minimal model:

field	spin	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	$U(1)_B$
$egin{array}{c} L_L \ L_R \end{array}$	1/2	1	2	-1/2	$egin{array}{c} -1 \ +2 \end{array}$
$egin{array}{c} E_L \ E_R \end{array}$	1/2	1	1	-1	$+2 \\ -1$
$egin{array}{c} N_L \ N_R \end{array}$	1/2	1	1	0	$+2 \\ -1$
ϕ	0	1	1	0	+3

There are two charged "anomalons", E and L^e , which can mix, and two neutral anomalons, N and L^{ν} , which can also mix. Yukawa couplings of anomalons to ϕ :

$$-y_E\phi\overline{E}_LE_R-y_N\phi\overline{N}_LN_R-y_L\phi\overline{L}_RL_L$$

Yukawa couplings of anomalons to the SM Higgs doublet: $-y_{EL}\overline{E}_{L}\widetilde{H}L_{R} - y_{LE}e^{i\theta_{E}}\overline{L}_{L}HE_{R} - y_{NL}\overline{N}_{L}HL_{R} - y_{LN}e^{i\theta_{N}}\overline{L}_{L}\widetilde{H}N_{R}$ $\widetilde{H} \equiv i\sigma_{2}H^{*}$

The y_{EL} , y_{LE} , y_{NL} , y_{LN} parameters can be chosen real.

$${\cal L}_{N{
m mass}} = - \left(\overline{N}_R \ , \ \overline{L}_R^{
u}
ight) \left(egin{array}{cc} y_N \langle \phi
angle & y_{NL} v_H \ y_{LN} e^{i heta_N} v_H & y_L \langle \phi
angle \end{array}
ight) \left(egin{array}{cc} N_L \ L_L^{
u} \ L_L^{
u} \end{array}
ight) + {
m H.c.}$$

Left-handed neutral anomalons in the mass eigenstate basis:

$$\left(egin{array}{cc} N_{S_L} \ N_{D_L} \end{array}
ight) = \left(egin{array}{cc} c_N & -s_N \ s_N & c_N \end{array}
ight) \left(egin{array}{cc} N_L \ L^
u_L \end{array}
ight)$$

Right-handed ones:

$$\left(egin{array}{cc} N_{m{S}_R} \ N_{m{D}_R} \end{array}
ight) = \left(egin{array}{cc} c'_N & s'_N \ -s'_N & c'_N \end{array}
ight) \left(egin{array}{cc} N_R \ L_R^
u \end{array}
ight)$$

Mass difference between the charged and neutral physical states that are mostly part of the weak-doublet anomalon:

$$m_{E_D} - m_{N_D} \simeq \left(y_{EL}^2 - y_{NL}^2
ight) rac{v_H^2}{2y_L\langle\phi
angle} + \left[s_N^2\left(y_N^2 - y_L^2
ight) - s_E^2\left(y_E^2 - y_L^2
ight)
ight] rac{\langle\phi
angle}{2y_L}$$

The decays of the four anomalon physical states depend on their mass ordering.

 $U(1)_B$ symmetry is spontaneously broken down to Z_3 .

The anomalons have Z_3 charge +1

 \Rightarrow lightest anomalon is stable (in the minimal model), can be a DM component if it is N_S .

Consider the following ordering $m_{E_S} > m_{E_D} > m_{N_D} > m_{N_S}$.

 N_D has 2 decay modes: $N_S h^0$ and $N_S Z$.

For $m_{N_D} - m_{N_S} \gg M_h$: $B(N_D \to N_S \, h^0) pprox B(N_D \to N_S \, Z) pprox rac{1}{2}$

assuming $M_arphi > m_{N_D} - m_{N_S}$

Cascade decays via anomalons: (1506.04435)

 E_D has 2 decay modes: $N_D W$ and $N_S W$.

 E_S has 3 main decay modes: $N_D W$ and $E_D h^0$, and $E_D Z$.

Longer cascade decays:

$$Z' \rightarrow E_S^+ E_S^- \rightarrow E_D^+ E_D^- + 2(Z/h) \rightarrow N_D \bar{N}_D W W + 2(Z/h)$$

 $\rightarrow N_S \bar{N}_S W^+ W^- + 4(Z/h)$

DM particle can be a fermion (Majorana or Dirac) or a boson. DM particle(s) may be part of a large hidden sector.

Mono-W/Z search: a boosted "W/Z jet" + E_T

Various other DM searches at the LHC:

mono-Higgs (Berlin, Lin, Wang 1402.7074), $t\bar{t} + E_T$ (1303.6638), ...

Conclusions

- Run 2 of the LHC is exploring "Terra Incognita"
 - \rightarrow huge potential for surprises, data driven environment ...

Many additional searches (and novel techniques – jet substructure, quark vs. gluon jets, etc.) are necessary for probing new physics: vectorlike quarks, new gauge bosons, dark matter, ...

• An $SU(2)_R \times SU(2)_L \times U(1)_{B-L}$ gauge model with U(1) lepton flavor symmetry allows $W' \rightarrow e^+e^-jj$ (consistent with CMS result at 2 TeV).

• $W' \rightarrow H^+ A^0 \rightarrow 3t + W$ consistent with $\sim 3\sigma$ ATLAS excess in $\ell^{\pm} \ell^{\pm} + \geq 2b$.

• Z' bosons may undergo cascade decays through anomalons, leading to final states with W, Z and Higgs bosons.

Bogdan Dobrescu (Fermilab)