

Results on VBF, Diboson Production and aTGCs part I

Senka Đurić (University of Wisconsin-Madison)

On behalf of the CMS and ATLAS Collaborations

Multi-Boson Interactions (MBI) 2016 Madison, Wisconsin

LHC performance

CMS Integrated Luminosity, pp

- Wonderful performance of LHC accelerator in past years
- Large amount of data collected by ATLAS and CMS experiments of proton-proton collisions at a center-of-mass energies of Vs = 7, 8 and 13 TeV
- Huge amount of measurements performed, including milestone discovery of Higgs boson !

(Extreamly short!) Summary of ATLAS and CMS results

In this talk

ATLAS and CMS results:

- Neutral diboson production
 - ZZ -> 4l, 2l+2v
 - Zγ -> 2l+γ, 2ν+γ
- Charged diboson production with semileptonic decay
 - WV(W/Z) -> lv+jj
- Electroweak Z production
 - Vector boson fusion (VBF) Z -> 2I

Related talks at MBI2016:

- K. Lohwasser (Charged diboson production and VBF W)
- K. Long (VV+jets)
- J. Searcy and J. Faulkner (VBS and aQGC)
- J. Djuvsland (triboson and aQGC)
- V. Dao and J. Lauwers (Run 2 LHC and HL-LHC)

Diboson production at LHC

Diboson production

- Important test of the Standard Model
- Large cross section of multiboson production at LHC in pp collisions
- Clean signature and small branching ratio for vector bosons decaying leptonicaly
- Not clean signature but large branching ratio for hadronic decays
- Backgrounds for New Physics and Higgs measurements

Sensitive to theoretical calculation

- Large NLO QCD corrections at high Vs
- Non-negligible NNLO QCD and NLO QED corrections

Sensitive to new physics

- New particles decaying to vector bosons: W', Z', ...
- Anomalies in vector boson scattering
- <u>Anomalies in triple boson vector boson couplings (aTGC) = indirect</u> <u>search for New Physics</u>

In most ATLAS and CMS multiboson analysis together with cross section measurement we measure anomalous gauge couplings

Anomalous coupling signature

- Anomalous couplings result in an increase of cross section at high energies (ŝ) -> observables dependent on the invariant mass of the diboson system and the boson p_T are particularly sensitive (m_{VV}, m_{II}, pT_V, pT_I, ...)
- Couplings are measured (or limits are set) by performing **binned fit in single sensitive observable**
- Sensitivity mostly in highest bins
 - Last bin is always overflow bin
 - Limiting factor: observed statistics in the tail (primary) and systematic and statistical uncertainty on the signal model (secondary)
- In different analyses: different observables are the most sensitive
- Sensitivity depends on absolute size of anomalous coupling signal, absolute size of expected background and uncertainties
 - Expected limit increases with absolute increase of background, decrease of signal and increase of uncertainty
- Binning is optimized to reach highest expected sensitivity
- Fit is usually performed simultaneously on electron and muon channel

Phys. Rev. D 93, 112002 (2016)

ZZ and Zγ: Anomalous coupling parametrizations

Using additional assumptions to reduce the number of parameters

EFFECTIVE VERTEX PARAMETRIZATION

add higher order operators that respect symmetries

Nucl. Phys. B282 (1987) 253

Assumptions Zy channel: CP conservation

(Hagiwara et al., Nucl.Phys.B282 (1987) 253 (+ missing "i" factor))

$$\begin{split} \Gamma^{\alpha\beta\mu}_{Z\gamma V} &= i \; e \frac{q_V^2 - m_V^2}{m_Z^2} \left\{ \; h_1^V \; \left(q_\gamma^\mu g^{\alpha\beta} - q_\gamma^\alpha g^{\beta\mu} \right) \right. \\ &+ \; h_2^V \; \frac{q_V^\alpha}{m_Z^2} \; \left(q_\gamma q_V \; g^{\beta\mu} - q_\gamma^\mu \; q_V^\beta \right) \\ &+ \; h_3^V \; \epsilon^{\alpha\beta\mu\rho} \; q_{\gamma\rho} \\ &+ \; h_4^V \; \frac{q_V^\alpha}{m_Z^2} \; \epsilon^{\mu\beta\rho\sigma} \; q_{V\rho} \; q_{\gamma\sigma} \; \right\} \end{split}$$

Assumptions ZZ channel: Electromagnetic gauge invariance

(Hagiwara et al., Nucl.Phys.B282:253,1987)

$$egin{array}{l} \Gamma^{lphaeta\mu}_{Z_{1}Z_{2}V} = i \; e rac{q_{V}^{2}-m_{V}^{2}}{m_{Z}^{2}} \left\{ \; f_{4}^{V} \; (q_{V}^{lpha} \; g^{eta\mu} + q_{V}^{eta} \; g^{\mulpha})
ight. \ + \; f_{5}^{V} \; \epsilon^{lphaeta\mu
ho} \; (q_{Z_{1}
ho} - q_{Z_{2}
ho}) \;
ight\} \end{array}$$

channel	couplings	parametrization	parameters	Dimensionality of operator
7	77		h ₃	dim6
Ζγ	Ζγ ΖΖγ, γΖγ		h ₄	dim8
77	ZZZ, γZZ	Effective vertex	f ₄	dim6
ZZ			f ₅	dim6

Using additional assumptions to reduce the number of parameters

$$\begin{aligned} & \text{WWZ/} \text{y vertex} \\ \textbf{WWZ/} \text{y vertex} \\ \textbf{WWZ} \\ \textbf{WZ} \\ \textbf{WWZ} \\ \textbf{WZ} \\ \textbf{WZ} \\ \textbf{WWZ} \\ \textbf{WWZ} \\ \textbf{WZ} \\ \textbf{WZ} \\ \textbf{WWZ} \\ \textbf{WZ} \\ \textbf{WWZ} \\ \textbf{WZ} \\ \textbf{WZ} \\ \textbf{WWZ} \\ \textbf{WZ} \\ \textbf{WZ} \\ \textbf{WWZ} \\ \textbf{WZ} \\$$

Statistical method: anomalous coupling measurement

 $\vec{\theta}$ = nuisance parameters

- $\vec{\alpha}$ = anomalous coupling parameters
- L = likelihood function
- $\lambda(\vec{\alpha})$ = profile likelihood ratio

test statistics: $t(\vec{\alpha}) = -2 \ln \lambda(\vec{\alpha})$

Limit setting criteria (both supported by CMS statistics committee as methods for aC limit setting):

- 1. <u>"deltaNLL" limit</u>: use of Wilks theorem, distribution of t_{α} , under assumption α , is approximated with χ^2 distribution
 - Asymptotic, high statistics approximation
 - Fast but coverage is not guaranteed
- 2. <u>"Feldman-Cousins (F-C)" limit</u>: distribution of t_{α} , under assumption α , is determined by throwing toys
 - Computing time consuming but guaranties coverage

Fitting aC parameters => measurement of aC parameters => due to large uncertainties wrt best value we quote 95% CL limits

Several definitions of expected limits are available

- Pre-fit or post-fit expected limit
- Toys or Asimov dataset
- ✓ Usually we have been using pre-fit Asimov dataset for expected limit

Usually the two methods agree within 10%.

Systematic uncertainties covered via nuisance parameters.

Nuisance parameters are profiled.

Nuisance effect is lognormal (InN) by default (CMS statistics committee recommendation).

ZZ production at LHC

ZZ production at LHC

Leading order Feynman diagrams for ZZ production

					New results!
	ZZ	7 TeV		8 TeV	13 TeV
	Z->4I		PRL 112, 231806 (2014)	-
ATLAS	ZZ->4I	JHEP 03 (2013) 128 Cross section and aTGC	ATLAS-CONF-2013-020	PLB 753 (2016) 552-572 (4I) Differential and total cross section	PRL 116, 101801 (2016) Cross section
	ZZ->2 2v	measurement	cross section	- /	-
	Z->4I	JHEP 12 (2012) 034 Cross section		-	arXiv:1607.08834
CMS	ZZ->4I	JHEP 01 (2013) 063 Cross section and aTGC measurement	PLB 740 (2015) 250, CMS-PAS-SMP-15-012 Cross section and aTGC measurement		(CMS-SMP-16-001) Cross section
	ZZ->2 2v	Cro	EPJC 75 (2015) 511 oss section and aTGC measu	rement	-

ZZ production at LHC

Leading order Feynman diagrams for ZZ production

... + EWK production (see talk by J. Searcy and J. Faulkner)

ZZ->4I:

- Clean signal signature
- ✓ Low background
- Small BR

ZZ->2|2v:

- ✓ Clean signal signature
- Larger background
- ✓ Larger BR

ZZ->2l2j:

- Not clean signal signature
 - Large experimental systematic uncertainties
- Large background
- ✓ Large BR

EPJC 74 (2014) 2973

Senka Duric

ZZ differential measurements

Uncertainties dominated by the statistical uncertainties of the data !

MBI 2016

CMS-PAS-SMP-15-012

ZZ production from gg initial state?

Uncertainty dominated by the statistical uncertainties of the data !

Good agreement with NLO and NNLO calculations across LHC vs!

Uncertainty dominated by the statistical uncertainties of the data !

MBI 2016

Z->4l measurement with Run2 data

Cross section measurement	Fiducial requirements
Common requirements	$p_{\rm T}^{\ell_1} > 20{ m GeV}$, $p_{\rm T}^{\ell_2} > 10{ m GeV}$, $p_{\rm T}^{\ell_{3,4}} > 5{ m GeV}$,
	$ \eta^{\ell} < 2.5, m_{\ell^+\ell^-} > 4 \text{GeV}$ (any opposite-sign same-flavor pair)
$Z ightarrow \ell^+ \ell^- \ell'^+ \ell'^-$	$m_{Z_1} > 40 \text{GeV}$
	$80 < m_{\ell^+\ell^-\ell'^+\ell'^-} < 100 \text{GeV}$
$ZZ \to \ell^+ \ell^- \ell'^+ \ell'^-$	$60 < m_{Z_1}, m_{Z_2} < 120 \text{GeV}$

Final	Expected	Background	Total	Observed
state	$N_{\ell^+\ell^-\ell'^+\ell'^-}$		expected	
4μ	$16.88 \pm 0.14 \pm 0.62$	$0.31 \pm 0.30 \pm 0.12$	$17.19 \pm 0.33 \pm 0.63$	17
2e2µ	$15.88 \pm 0.14 \pm 0.87$	$0.37 \pm 0.27 \pm 0.15$	$16.25 \pm 0.31 \pm 0.88$	16
4e	$5.58 \pm 0.08 \pm 0.53$	$0.21 \pm 0.10 \pm 0.08$	$5.78 \pm 0.13 \pm 0.53$	6
Total	$38.33 \pm 0.21 \pm 1.19$	$0.89 \pm 0.42 \pm 0.22$	$39.22 \pm 0.47 \pm 1.21$	39

Including measurement of Z->4I!

$$\sigma_{\rm fid}({\rm pp} \to {\rm Z} \to \ell^+ \ell^- \ell'^+ \ell'^-) = 30.5^{+5.2}_{-4.7} \,({\rm stat})^{+1.8}_{-1.4} \,({\rm syst}) \pm 0.8 \,({\rm lumi}) \,{\rm fb},$$

Expected (NLO Powheg) = $27.9^{+1.0}_{-1.5} \pm 0.6$ fb

$$\mathcal{B}(Z \to \ell^+ \ell^- \ell'^+ \ell'^-) = \underbrace{\sigma(pp \to Z \to \ell^+ \ell^- \ell'^+ \ell'^-)}_{\mathcal{C}_{80-100}^{60-120} \sigma(pp \to Z \to \ell^+ \ell^-)} / \underbrace{\mathcal{B}(Z \to \ell^+ \ell^-)}_{\mathcal{B}(Z \to \ell^+ \ell^-)} / \underbrace{\mathcal{B}(Z \to \ell^+ \ell^-)}_{M_{1+L} > 4 \text{ GeV}}$$
Correction for Z mass window, estimated using POWHEG
Calculated at NNLO with FEWZ v2.0 PDG value

 $\mathcal{B}(Z \to \ell^+ \ell^- \ell'^+ \ell'^-) = 4.9^{+0.8}_{-0.7} (\text{stat})^{+0.3}_{-0.2} (\text{syst})^{+0.2}_{-0.1} (\text{theo}) \pm 0.1 (\text{lumi}) \times 10^{-6},$ Expected (MG5_aMC@NLO) = 4.6×10^{-6}

Good agreement with SM expectation!

Statistics dominated measurement!

MBI 2016

ZZ aTGC limits

EPJC 75 (2015) 511

PLB 740 (2015) 250

- Limits derived from binned fit to M(4I)/pT(II) distribution in ZZ->4I/ZZ->2I2v
- No significant deviation in the high M/pT tail

	ATLAS		Channel	Limits	<i>∫L</i> dt	v s
, —		-	ZZ	[-1.5e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
4	—		ZZ	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	—		ZZ (2l2v)	[-3.6e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 Te
	—		ZZ (comb)	[-3.0e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 Te
z F		-	ZZ	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
•	—		ZZ	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
	—		ZZ (2l2v)	[-2.7e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 Te
	—		ZZ (comb)	[-2.1e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 Te
· •			ZZ	[-1.6e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
2			ZZ	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	—		ZZ(2l2v)	[-3.3e-03, 3.6e-03]	24.7 fb ⁻¹	7,8 Te
	—		ZZ(comb)	[-2.6e-03, 2.7e-03]	24.7 fb ⁻¹	7,8 Te
z –		-	ZZ	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
2	H		ZZ	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
	—		ZZ (2l2v)	[-2.9e-03, 3.0e-03]	24.7 fb ⁻¹	7,8 Te
			ZZ (comb)	[-2.2e-03, 2.3e-03]	24.7 fb ⁻¹	7,8 Te
-0.02	0	0	.02	0.04		0.06

• Similar sensitivity from ZZ->4l and ZZ->2l2v channels !

Zγ production at LHC

$Z\gamma$ ->ll γ & $Z\gamma$ ->vv γ production

Ζγ->ΙΙγ:

- + large S/B
- + clean signal signature
- \rightarrow Good precision for cross section measurement

Ζγ->ννγ:

- + larger BR
- Smaller S/B
- Significant instrumental background
- $\rightarrow~$ Measurement limited to high p_{T}^{γ}
- \rightarrow Good aTGC sensitivity

	Ζγ	7 TeV	8 TeV	13 TeV
	Ζγ->ΙΙγ	PRD 87, 112003 (2013)	PRD 93, 112002 (2016)	-
ATLAS	Ζγ->ννγ	Cross section and aTGC measurement	Cross section and aTGC measurement	-
6146	Ζγ->ΙΙγ	PRD 89, 092005 (2014) Cross section and aTGC measurement	JHEP 04 (2015) 164 Cross section and aTGC measurement	-
CIVIS	Ζγ->ννγ	JHEP 10 (2013) 164 Cross section and aTGC measurement	PLB 760 (2016) 448 Cross section and aTGC measurement	CMS-PAS-SMP-16-004 Cross section

$Z\gamma$ ->ll γ production

JHEP 04 (2015) 164

PRD 93, 112002 (2016)

Basic selection:

- Two isolated leptons with significant pT(I)
- Opposite sign same flavor pair within Z mass window
- Isolated photon with significant pT(γ)

Backgrounds:

• Z+jets (template fit from two shower shape observables), ZZ, WZ, WW, top

- Bkg dominated by events in which hadronic jets, which contain photons from π^0 or η decays, are misidentified as prompt photons = Z+jets
 - Estimated from data
 - ATLAS: two-dimensional sideband method ("ABCD method")
 - CMS: template fit from two shower shape observables
- Smaller backgrounds estimated from MC
- Systematics dominated measurement: uncertainty in the template method, photon energy scale and lepton isolation

19.6 fb⁻¹ (8 TeV) Events/GeV 0 CMS Preliminary γ +jet, W($\mu\nu$), $\gamma\gamma$, Z(II) γ Beam halo QCD W→ ev $W_{\gamma} \rightarrow h_{\gamma\gamma}$ $Z\gamma \rightarrow \nu \nu \gamma$ Data Bkg. uncertainty h3=-0.001. h4=0.0 10⁻¹ 10⁻² 10⁻³ Data/SM 2 1.5 0.5 200 600 300 400 500 700 800 900 1000 ∉_⊤ [GeV]

Basic selection:

- Very high MET (>140/100GeV CMS/ATLAS)
- Photon with large pT (>145/130GeV CMS/ATLAS)
- Lepton veto (reducing W and Wγ bkg)

Backgrounds:

 W (fake rate/MC for e/μ), jets (fake rate), γ+jet(control region and MC), Vγ (MC and data control region), γγ, beam halo (timing information),...

The most sensitive channel for $ZZ\gamma$, $\gamma Z\gamma$ vertices aTGC measurement due to access to high p_T^{γ} !

MBI 2016

Zγ->vvγ measurement with Run2 data

CMS-PAS-SMP-16-004

2.3 fb⁻¹ (13 TeV) **CMS** Preliminary Events/GeV 0 et, $W \rightarrow \mu \nu$, $Z\gamma \rightarrow Ih\gamma$, $W \rightarrow \tau \nu$, $tt\gamma$ Beam halo Spurious ECAL signal jet→γ MisID electron→γ MisID Wγ→lvγ $Z\gamma \rightarrow v\overline{v}\gamma$ bg uncertainty 10⁻¹ 10⁻² 10⁻³ Data/SM 1.5 ⁰200 800 900 1000 Ε_T [GeV] 500 700 300 400 600 Process Estimate $Z\gamma \rightarrow \nu \overline{\nu} \gamma$ 41.74 ± 6.67 $W\gamma \rightarrow \ell \nu \gamma$ 10.60 ± 1.58 $W \rightarrow e\nu$ 7.80 ± 1.78 Jet $\rightarrow \gamma$ misidentified 1.75 ± 0.61 Beam halo 5.90 ± 4.70 Spurious ECAL signals 5.63 ± 2.20 Rare backgrounds 3.03 ± 0.69 **Total Expectation** 76.45 ± 8.82 Data 77

Sources	Effect on cross section (%)
Luminosity	3.3
PDF and QCD scale	6.8
Electroweak corrections	11.3
Jets misidentified as γ	1.3
Electron misidentified as γ	3.6
Beam halo	11.0
Spurious ECAL signals	5.0
$E_{\rm T}^{\rm miss}$, photon energy scales, pileup	7.1
Data/sim. scale factors	9.7
Senka Duric	

Basic selection wrt Run1:

- Higher MET requirement (>170GeV CMS)
- Higher photon pT (>175GeV) requirement due to on-line trigger selection

Backgrounds:

• Methods similar to Run1 analysis

Good agreement with SM expectation!

Dominant systematics: theoretical uncertainty on signal, non-collision background estimate (beam-halo)

Analysis with 2015 Run2 data (2.3fb⁻¹). Need more Run2 data to supersede Run1 aTGC sensitivity!

MBI 2016

Zγ cross section results summary

← Inclusive (Njets ≥ 0) and exclusive (Njets > 0) measurement!

No significant discrepancy is observed between the data and the expectations.

Systematics dominated measurements !

WV->lvjj production at LHC

WV(WZ or WW)->lvjj production

Compared to purely leptonic decay mode:

- S/B much worse \rightarrow stronger cuts need to extract the signal
- Larger experimental systematic

 \rightarrow Can not provide as precise measurement of cross section as fully leptonic decays

- + 6x larger branching ratio
- + Clear mass peak

+ Access to higher boson pT and diboson mass -> important for aTGC measurements !!!

Basic selection:

- Lepton with sizable pT and $|\eta_{\mu(e)}|$ restriction
- Large MET, MTW
- Hadronic boson decay
 - Exactly 2 jets high pT jets (7 TeV analysis)
 - Boosted topology:
 - at least 1 high pT fat jet (AK8)
 pT>200GeV (13 TeV analysis)
 - M_{wv}>900GeV

Hadronic boson decay:

- Highly **boosted** boson will decay to two close jets reconstructed as single "fat jet"
 - Higher sensitivity to aTGC then non-boosted

Z(II)+jets EWK	7 TeV	8 TeV	13 TeV
ATLAS	JHEP01 (2015) 049 Cross section and aTGC measurement	-	
CMS	EPJ. C 73 (2013) 2283 Cross section and aTGC measurement	-	CMS-PAS-SMP-16-012

Events / 5 GeV

Data/Fit

WV(WZ or WW)->lvjj cross section measurement

WW/WZ

- shapes of the expected M_{y} distribution are used as templates for the cross section fit and background estimate
 - expected shapes and rates of the distributions are mainly obtained from the MC simulation samples

WV(WZ or WW)->lvjj aTGC measurement

Mar 2016	• .					
	Central Fit Value		Channel	Limits	<i>∫L</i> dt	√s
Δκ.			- Wγ	[-4.1e-01, 4.6e-01]	4.6 fb ⁻¹	7 TeV
r		I	Wγ	[-3.8e-01, 2.9e-01]	5.0 fb ⁻¹	7 TeV
			WW	[-1.2e-01, 1.7e-01]	20.3 fb ⁻¹	8 TeV
		H	WW	[-2.1e-01, 2.2e-01]	4.9 fb ⁻¹	7 TeV
		⊢ •−−1	WW	[-1.3e-01, 9.5e-02]	19.4 fb ⁻¹	8 TeV
		· ·	K WV	[-2.1e-01, 2.2e-01]	4.6 fb ⁻¹	7 TeV
		· · · · · · · · · · · · · · · · · · ·	K WV	[-1.1e-01, 1.4e-01]	5.0 fb ⁻¹	7 TeV
		⊢	D0 Comb.	[-1.6e-01, 2.5e-01]	8.6 fb ⁻¹	1.96 TeV
		┝━━━┥	LEP Comb.	[-9.9e-02, 6.6e-02]	0.7 fb ⁻¹	0.20 TeV
λ.		—	Wγ	[-6.5e-02, 6.1e-02]	4.6 fb ⁻¹	7 TeV
T		H	Wγ	[-5.0e-02, 3.7e-02]	5.0 fb ⁻¹	7 TeV
		н	WW	[-1.9e-02, 1.9e-02]	20.3 fb ⁻¹	8 TeV
		—	WW	[-4.8e-02, 4.8e-02]	4.9 fb ⁻¹	7 TeV
		H	WW	[-2.4e-02, 2.4e-02]	19.4 fb ⁻¹	8 TeV
		H 🖛	WV	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV
		H 🚧	WV	[-3.8e-02, 3.0e-02]	5.0 fb ⁻¹	7 TeV
		H	D0 Comb.	[-3.6e-02, 4.4e-02]	8.6 fb ⁻¹	1.96 TeV
		⊢ ⊷1	LEP Comb.	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV
	-0.5	0	0.5	1	1.5	
				aTGC Lin	its @95	% C.L.

- no deviation in high pT tail is observed
- limits are extracted in a simultaneous binned maximum likelihood fit in pTjj
 - Comparing to aTGC results from fully leptonic channels (using the same dataset) semileptonic WV provides the best sensitivity due to access to higher pT/diboson mass!

WV(WZ or WW)->lvjj measurement with Run2 data

- large number of particles in jet -> bad resolution
 - jet pruning (generally grooming) removes soft and large angle radiation
- M_{boosted iet} resolution does not allow separation between W and Z

Sideband:

- used to estimate contribution from leading backgrounds (Wjets, ttbar)
- Used to derive the shape of aTGC sensitive observable (M_{WV}) of the main background (Wjets)

Signal region:

- WW and WZ processes have different sensitivities to some aTGC parameters
 - Splitting the signal region to WW- and WZ-like parts can help to distinguish aTGCs
- ttbar is also validated in two additional control regions

WV(WZ or WW)->lvjj measurement with Run2 data

CMS-PAS-SMP-16-012

- in order to avoid the loss of signal efficiency in WZ events with Z \rightarrow bb decays events that contain one or more b-tagged jet (away from fat jet) are rejected to reduce ttbar background
- challenging boosted topology also implies additional systematic uncertainty
- limits are extracted in a simultaneous **unbinned** maximum ٠ likelihood fit in M_{WV}
- shape of the dominant bkg (Wjets) is estimated from data in control region

First CMS aTGC results with Run2 data!

WV(WZ or WW)->lvjj measurement with Run2 data

			2	.3 fb ⁻¹ (13 TeV)						
	CMS 4	ugust 2016	o •							
8 10 ³ p	oreliminary	Ū	Central Fit Value			Channel	Limits	∫ <i>L</i> dt	vs	nts with Z
)/s		Δκ-		—		WW	[-4.3e-02, 4.3e-02]	4.6 fb ⁻¹	7 TeV	liet (away
10 ²		2		H-1		WW	[-2.5e-02, 2.0e-02]	20.3 fb ⁻¹	8 TeV	i jet (away
	and in the second se			⊢ •−−1		WW	[-6.0e-02, 4.6e-02]	19.4 fb ⁻¹	8 TeV	
10			F			WZ	[-1.3e-01, 2.4e-01]	33.6 fb ⁻¹	8,13 TeV	stomatic
						WV	[-9.0e-02, 1.0e-01]	4.6 fb ⁻¹	7 TeV	Stematic
				—		WV	[-4.3e-02, 3.3e-02]	5.0 fb ⁻¹	7 TeV	
1				► ⊢ ⊢ ♦		WV	[-4.0e-02, 4.1e-02]	2.3 fb ⁻¹	13 TeV	
				⊢ •−−1		LEP Comb.	[-7.4e-02, 5.1e-02]	0.7 fb ⁻¹	0.20 TeV	
10 ⁻¹		λ-				WW	[-6.2e-02, 5.9e-02]	4.6 fb ⁻¹	7 TeV	num
		Z		H		WW	[-1.9e-02, 1.9e-02]	20.3 fb ⁻¹	8 TeV	
date of date				—		WW	[-4.8e-02, 4.8e-02]	4.9 fb ⁻¹	7 TeV	
°_2 ⊨				Hen		WW	[-2.4e-02, 2.4e-02]	19.4 fb ⁻¹	8 TeV	data in
100	0 15(—		WZ	[-4.6e-02, 4.7e-02]	4.6 fb ⁻¹	7 TeV	
				н		WZ	[-1.4e-02, 1.3e-02]	33.6 fb ⁻¹	8,13 TeV	
				—		WV	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV	
						WV	[-3.8e-02, 3.0e-02]	5.0 fb ⁻¹	7 TeV	
CIVIS-PAS-S	IVIP-16-01			· • •		WV	[-3.9e-02, 3.9e-02]	2.3 fb ⁻¹	13 TeV	2.3 fb ⁻¹ (13 TeV)
				├──● ─┤		D0 Comb.	[-3.6e-02, 4.4e-02]	8.6 fb ⁻¹	1.96 TeV	
						LEP Comb.	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV	
	a'l	Δg ^z		—		WW	[-3.9e-02, 5.2e-02]	4.6 fb ⁻¹	7 TeV	Observed 95% C.L.
	CWWW	1		H-4		WW	[-1.6e-02, 2.7e-02]	20.3 fb ⁻	8 TeV	* Best fit value
ЕЧ	Λ^2			 		WW	[-9.5e-02, 9.5e-02]	4.9 fb ⁻	7 <u>T</u> eV	
E S	$\frac{C_W}{\Lambda^2}$ (r			┝╼╾┥		WW	[-4.7e-02, 2.2e-02]	19.4 fb ⁻ '	8 TeV	
H eo	C_R (r					WZ	[-5.7e-02, 9.3e-02]	4.6 fb ⁻ '	7 TeV	
	$\frac{\Delta B}{\Lambda^2}$ (H H		WZ	[-1.5e-02, 3.0e-02]	33.6 fb̥⁻'	8,13 Iev	
Хċ						WV	[-5.5e-02, 7.1e-02]	4.6 fb⁻¦	7 TeV	
an						WV	[-6.7e-02, 6.6e-02]	2.3 fb ⁻	13 IeV	
er	\square					D0 Comb.	[-3.4e-02, 8.4e-02]	8.6 fb ⁻	1.96 IeV	
Þğ	\wedge			, ⊢ ∙┬┩ , ,		LEP Comb.	[-5.4e-02, 2.1e-02]	0.7 fb ⁻ '	0.20 IeV	-
		_04	_02	0	02	04	0.6	0.8) 10 20
		U . 1	0.2	v	0.2	0.1		ita @05		$(\Lambda^{2})^{2}$
								112 692	70 U.L.	WW, TY (ION)

First CMS aTGC results with Run2 data!

Vector Boson Fusion (VBF) Z production

$\begin{array}{c} Tag \ jet \\ q_2 \\ V \\ q_1 \\ V \\ q_1 \\ Tag \ jet \end{array}$

Vector Boson Fusion (VBF)

- Higgs production via Vector Boson Fusion is second [dd] (X+H ← √s= 8 TeV H (NNLO+NNLL QCD + NLO EW production mechanism at LHC after ggH 10 EWK V+2 jets production H (NNLO QCD + NLO EW Z+2 jets pp → WH (NNLO QCD + NLO EW) W+2 jets (talk by K. Lohwasser) $nn \rightarrow 7H (NNL O OCD \pm NL O E$ 10 JHEP 10 (2013) 062 120 122 124 126 128 130 132 √s = 7 TeV CMS Simulation M_H [GeV] مر 0.18 DY µµjj EW µµjj 흔0.16 VBF H, m_=120 GeV 0.14 $Z(\mu\mu)+2$ jets candidate event (CMS 7 TeV) 0.12 0.1F 0.08 Experiment at LHC, CERN Data recorded: Sat Apr 30 19:57:22 2011 CEST Run/Event: 163759 / 41507939 0.06 umi section: 63 Muon 2, pt: 87.6 G Orbit/Crossing: 16475899 / 10 0.04 0.02 Jet 1, eta=2.8, pt=49.9 GeV JHEP04 (2014) 031 Normalised to unity ATLAS Background 10 Muon 1, pt: 33.9 GeV 10 10 10 2500 3000 m_{ii} [GeV] 500 1000 1500 2000
- Possibility to measure aTGC but statistics (for now) too small to compete with measurements from inclusive VV production
- includes TGC vertex (VBF), suppressed by a factor ~2.5 by interference terms

VBF characteristic signature:

- Two high pT jets in the forwardbackward region
- Large rapidity separation between jets $(\Delta \eta_{jj})$, with low hadronic activity between them
- Large di-jet invariant mass (M_{ii})

Senka Duric

MBI 2016 https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGCrossSectionsFigures

VBF: Z+jets production

QCD background

presence of a large negative interference between the pure VBF process and the two other categories!

Z(II)+jets EWK	7 TeV	8 TeV
ATLAS	-	JHEP 04 (2014) 031 Cross section and aTGC measurement
CMS	JHEP 10 (2013) 062 First measurement of the electroweak production	EPJC 75 (2015) 66 Cross section measurement

VBF: Z+jets cross section results

EWK cross section is measured with binned maximum likelihood template fit:

- CMS: fitting the MVA simultaneously across the control and signal categories the strength modifiers for the EW Zjj and DY Zjj processes (constrained)
- ATLAS: fitting the dijet invariant mass reconstructed in the search region

Systematic dominated measurement!

- Main systematic (th): modeling of the DY Zjj background, interference with the EW Zjj signal, EWK signal modeling
- Dominant experimental systematic uncertainty: JES

Background-only hypothesis is excluded with a significance greater than $5\sigma!$

19.7 fb ⁻¹ (8 TeV)		σ(Z(II)+2jets EWK) [fb]			
st s 1.05		7 TeV	8 TeV		
	ATLAS	-	54.7±4.6(stat)+9.8(syst)±1.5(lumi) σ LO(Powheg) = 46.1±0.2(stat)+0.3(scale)±0.8(PDF)±0.5(model) > 5 σ significance		
0.99 Observed Expected 	CMS	154±24(stat.)±46(exp.syst.)±27(th.syst.)±3(lum.) σNLO(VBFNLO) = 166 2.6 σ significance	174±15(stat)±40(syst) σLO(MG) = 208±18 > 5 σ significance		

Cross sections are in different phase spaces!

VBF topology measurement

Measurement of VBF topology

- Study of jets distributions and jet veto efficiency studies in a region with a larger contribution of EW Zjj processes
- Expected suppression of the hadronic activity in signal EWK events

aTGC measurement from VBF

- TGC vertex (VBF), suppressed by a factor ~2.5 by interference terms
 - Extracted number of events in the search region with mjj > 1 TeV is used to place limits on the aTGCs
 - this region is the least affected by the background normalisation and signal template shape
 - VV production: all three gauge bosons entering the WWZ vertex have timelike four- momentum
 - VBF production: two of the gauge bosons entering the WWZ vertex have space-like four-momentum transfer
 - EWK production offers a complementary test of aTGCs (effects of boson propagators present in EWK production are different from those in vector boson pair production)

WZ inclu	sive ATLAS	PRD 93, 092004 (2	2016)	
$\Lambda_{ m co}$	Coupling	Expected	Observed	
	Δg_1^Z	[-0.023; 0.055]	[-0.029; 0.050]	
$2 { m TeV}$	$\Delta \kappa^Z$	[-0.22; 0.36]	[-0.23; 0.46]	
	λ^Z	[-0.026; 0.026]	[-0.028; 0.028]	
	Δg_1^Z	[-0.016; 0.033]	[-0.019; 0.029]	
$15 { m TeV}$	$\Delta \kappa^Z$	[-0.17 ; 0.25]	[-0.19; 0.30]	
	λ^Z	[-0.016; 0.016]	[-0.017; 0.017]	
	Δg_1^Z	[-0.016; 0.032]	[-0.019; 0.029]	
∞	$\Delta \kappa^Z$	[-0.17 ; 0.25]	[-0.19; 0.30]	27
	λ^Z	[-0.016; 0.016]	[-0.016; 0.016]	57

Tag jet

7

aTGC	$\Lambda = 6{ m TeV}~{ m (obs)}$	$\Lambda = 6{ m TeV}({ m exp})$	$\Lambda = \infty \text{ (obs)}$	$\Lambda = \infty \ (\exp)$
$\Delta g_{1,Z}$	[-0.65,0.33]	[-0.58, 0.27]	[-0.50, 0.26]	[-0.45, 0.22]
λ_Z	[-0.22, 0.19]	[-0.19,0.16]	[-0.15,0.13]	[-0.14, 0.11]

Comparison with inclusive WZ results: limits from EWK production are ~10X looser

Senka Duric

MBI 2016

aTGC sensitivity and combinations

Combinations within experiments

ATLAS-CONF-2016-036 ; CMS-PAS-SMP-15-001

Combination between channels with similar aTGC sensitivity: ZZ->4l and ZZ->2l2v channels.

CMS combination

ATLAS combination

Gain: ~20% tighter limits.

Combinations between experiments: ATLAS and CMS ZZ 7TeV

ATLAS-CONF-2016-036 ; CMS-PAS-SMP-15-001

Observed limit	f_4^γ	f_4^Z	f_5^{γ}	f_5^Z
deltaNLL ATLAS	[-0.015, 0.015]	[-0.013, 0.013]	[-0.015, 0.015]	[-0.013, 0.012]
deltaNLL CMS	[-0.012, 0.013]	[-0.010, 0.011]	[-0.013, 0.013]	[-0.011, 0.011]
deltaNLL combined	[-0.010, 0.011]	[-0.0087, 0.0091]	[-0.011, 0.010]	[-0.0091, 0.0089]
F-C combined	[-0.010, 0.011]	[-0.0089, 0.0092]	[-0.011, 0.010]	[-0.0092, 0.0089]

The sensitivity to aTGC parameters is improved by about 20% compared to the sensitivity of a single experiment.

First effort to combine ATLAS and CMS aTGC results

- ✓ Synchronization of the ATLAS and CMS limit setting tools and statistical procedure
- Requiring a good agreement between results of different tools is required to ensure consistency
- ✓ For the deltaNLL (FC) the results are in relative agreement at the 1% (5%) level

Combination procedure that can serve as guidance for future combinations of aTGC parameters at the LHC !

aTGC sensitivity vs time

- + collision energy increasing
- + integrated luminosity increasing
- → Accessing higher diboson system masses/pT → aTGC sensitivity increasing
- but also more challenging conditions for measurements (higher PU, ...)!

Upcoming analyses with Run2 2016 data will provide new world best limits!

aTGC summary

Mar 2016		CMS							
	Central Fit Value	D0 LEP			Channel	Lim	its	∫ <i>L</i> dt	√s
Δκ				-	Wγ	[-4.1e-01,	4.6e-01]	4.6 fb ⁻¹	7 TeV
т					Wγ	[-3.8e-01,	2.9e-01]	5.0 fb ⁻¹	7 TeV
		-	<u> </u>		WW	[-1.2e-01,	1.7e-01]	20.3 fb ⁻¹	8 TeV
		—	I		WW	[-2.1e-01,	2.2e-01]	4.9 fb ⁻¹	7 TeV
		-			WW	[-1.3e-01,	9.5e-02]	19.4 fb ⁻¹	8 TeV
		—			WV	[-2.1e-01,	2.2e-01]	4.6 fb ⁻¹	7 TeV
					WV	[-1.1e-01,	1.4e-01]	5.0 fb ⁻¹	7 TeV
			• 1		D0 Comb.	[-1.6e-01,	2.5e-01]	8.6 fb ⁻¹	1.96 TeV
		⊢•			LEP Comb.	[-9.9e-02,	6.6e-02]	0.7 fb ⁻¹	0.20 TeV
λ.			-		Wγ	[-6.5e-02,	6.1e-02]	4.6 fb ⁻¹	7 TeV
7					Wγ	[-5.0e-02,	3.7e-02]	5.0 fb ⁻¹	7 TeV
		E F	4		WW	[-1.9e-02,	1.9e-02]	20.3 fb ⁻¹	8 TeV
					WW	[-4.8e-02,	4.8e-02]	4.9 fb ⁻¹	7 TeV
		H	H		WW	[-2.4e-02,	2.4e-02]	19.4 fb ⁻¹	8 TeV
		H	-		WV	[-3.9e-02,	4.0e-02]	4.6 fb ⁻¹	7 TeV
		H	-		WV	[-3.8e-02,	3.0e-02]	5.0 fb ⁻¹	7 TeV
		H	•-1		D0 Comb.	[-3.6e-02,	4.4e-02]	8.6 fb ⁻¹	1.96 TeV
	1	++	⊣ └		LEP Comb.	[-5.9e-02,	1.7e-02]	0.7 fb ⁻¹	0.20 TeV
-(0.5	()	0.5		1 aTC	GC Limi	1.5 ts @95	% C.L.

August 2016	Control						
	Fit Value			Channel	Limits	∫Ldt	√s
Δκ				WW	[-4.3e-02, 4.3e-02]	4.6 fb ⁻¹	7 TeV
		H-4		WW	[-2.5e-02, 2.0e-02]	20.3 fb ⁻¹	8 TeV
		—		WW	[-6.0e-02, 4.6e-02]	19.4 fb ⁻¹	8 TeV
				WZ	[-1.3e-01, 2.4e-01]	33.6 fb ⁻¹	8,13 TeV
		—		WV	[-9.0e-02, 1.0e-01]	4.6 fb ⁻¹	7 TeV
		H		WV	[-4.3e-02, 3.3e-02]	5.0 fb ⁻¹	7 TeV
		⊢ •−−1		LEP Comb.	[-7.4e-02, 5.1e-02]	0.7 fb ⁻¹	0.20 TeV
2-		—		WW	[-6.2e-02, 5.9e-02]	4.6 fb ⁻¹	7 TeV
2		H-1		WW	[-1.9e-02, 1.9e-02]	20.3 fb ⁻¹	8 TeV
		—		WW	[-4.8e-02, 4.8e-02]	4.9 fb ⁻¹	7 TeV
		HH		WW	[-2.4e-02, 2.4e-02]	19.4 fb ⁻¹	8 TeV
				WZ	[-4.6e-02, 4.7e-02]	4.6 fb ⁻¹	7 TeV
		н		WZ	[-1.4e-02, 1.3e-02]	33.6 fb ⁻¹	8,13 TeV
				WV	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV
		—		WV	[-3.8e-02, 3.0e-02]	5.0 fb ⁻¹	7 TeV
		H		D0 Comb.	[-3.6e-02, 4.4e-02]	8.6 fb ⁻¹	1.96 TeV
		⊢• –I		LEP Comb.	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV
Δg ^z		—		WW	[-3.9e-02, 5.2e-02]	4.6 fb ⁻¹	7 TeV
-1		H		WW	[-1.6e-02, 2.7e-02]	20.3 fb ⁻¹	8 TeV
		—		WW	[-9.5e-02, 9.5e-02]	4.9 fb ⁻¹	7 TeV
		H •-1		WW	[-4.7e-02, 2.2e-02]	19.4 fb ⁻¹	8 TeV
				WZ	[-5.7e-02, 9.3e-02]	4.6 fb ⁻¹	7 TeV
		H		WZ	[-1.5e-02, 3.0e-02]	33.6 fb ⁻¹	8,13 TeV
				WV	[-5.5e-02, 7.1e-02]	4.6 fb ⁻¹	7 TeV
		⊢ •−−1		D0 Comb.	[-3.4e-02, 8.4e-02]	8.6 fb ⁻¹	1.96 TeV
				LEP Comb.	[-5.4e-02, 2.1e-02]	0.7 fb ⁻¹	0.20 TeV
-0.4	-0.2	0	0.2	0.4	0.6	0.8	
					aTGC Lin	nits @95	% C.L.

Mar 2016	CMS				
		Channel	Limits	∫Ldt	√s
ť.	H	ZZ	[-1.5e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
-4		ZZ	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	—	ZZ (2l2v)	[-3.6e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
	⊢−−− I	ZZ (comb)	[-3.0e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
ť	II	ZZ	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
-4	—	ZZ	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
	— —	ZZ (2l2v)	[-2.7e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
	H	ZZ (comb)	[-2.1e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
f	H	ZZ	[-1.6e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
5	F	ZZ	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	⊢−−−−	ZZ(2l2v)	[-3.3e-03, 3.6e-03]	24.7 fb ⁻¹	7,8 TeV
	⊢−−− 1	ZZ(comb)	[-2.6e-03, 2.7e-03]	24.7 fb ⁻¹	7,8 TeV
fz	II	ZZ	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
5		ZZ	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
	— —	ZZ (2l2v)	[-2.9e-03, 3.0e-03]	24.7 fb ⁻¹	7,8 TeV
		ZZ (comb)	[-2.2e-03, 2.3e-03]	24.7 fb ⁻¹	7,8 TeV
-0.02	0	0.02	0.04 aTGC Limi	its @95	0.06 % C.L

Cross section summary

- ATLAS and CMS experiments provided numerous results in diboson channels with Run1 data (7 and 8 TeV)
- Results with Run2 data starting to come out
- Diboson and VBF production results are in good agreement with SM expectations

Backup

CMS and ATLAS experiments

CMS and ATLAS experiments

Shielding

Hadronic Calorimeters

Barrel Toroid

Anomalous couplings as search for New Physics?

Two general ways to look for deviations from the SM:

- a) Assume a specific model of New Physics: SUSY scenario, dark matter, ... Anomalous coupling measurement
- b) Look for model independent deviations and measure "the deviation from SM" (deviations still have to be parametrized)

And also choose between:

1. Looking for a peak in observed distribution

Anomalous coupling measurement

2. Looking for a deviation in the tails of observed distribution (broad deviation)

Lagrangian that we feel at low energies can be expressed as the SM + additional terms

Effective vertex approach (used in ZZ and Zγ analyses)

Nucl. Phys. B282 (1987) 253

$$\Gamma_{Z_{1}Z_{2}V}^{\alpha\beta\mu} = i \ e \frac{q_{V}^{2} - m_{V}^{2}}{m_{Z}^{2}} \left\{ f_{4}^{V} \left(q_{V}^{\alpha} \ g^{\beta\mu} + q_{V}^{\beta} \ g^{\mu\alpha} \right) + f_{5}^{V} \ \epsilon^{\alpha\beta\mu\rho} \left(q_{Z_{1}\rho} - q_{Z_{2}\rho} \right) \right\}$$

$$\Gamma_{Z_{\gamma}V}^{\alpha\beta\mu} = i \ e \frac{q_{V}^{2} - m_{V}^{2}}{m_{Z}^{2}} \left\{ h_{1}^{V} \left(q_{\gamma}^{\mu} g^{\alpha\beta} - q_{\gamma}^{\alpha} g^{\beta\mu} \right) + h_{2}^{V} \frac{q_{V}^{\alpha}}{m_{Z}^{2}} \left(q_{\gamma} q_{V} \ g^{\beta\mu} - q_{\gamma}^{\mu} \ q_{V}^{\beta} \right) + h_{3}^{V} \epsilon^{\alpha\beta\mu\rho} \ q_{\gamma\rho} + h_{4}^{V} \frac{q_{V}^{\alpha}}{m_{Z}^{2}} \epsilon^{\mu\beta\rho\sigma} \ q_{V\rho} \ q_{V\rho$$

• Effective Lagrangian approach='phenomenological Lagrangian' (WV analyses)

$$\mathcal{L}_{SM} \longrightarrow \mathcal{L}_{WWV} = -ig_{WWV} \left\{ g_1^V \Big(W_{\mu\nu}^+ W^{-\mu} V^{\nu} - W_{\mu}^+ V_{\nu} W^{-\mu\nu} \Big) + \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} \right. \xrightarrow{\text{Phys. Rev. D41 (1990) 2113}} \\ + \frac{\lambda_V}{m_W^2} W_{\mu\nu}^+ W^{-\nu\rho} V_{\rho}^{\ \mu} - ig_5^V \epsilon^{\mu\nu\rho\sigma} \Big[W_{\mu}^+ (\partial_{\rho} W_{\nu}^-) - (\partial_{\rho} W_{\mu}^+) W_{\nu}^- \Big] V_{\sigma} \right\},$$

• Effective Field Theory (EFT) approach (WW analysis, VBF analyses and triboson analyses)

Phys. Rev. D48 (1993) 2182

$$\mathcal{L}_{SM} \longrightarrow \mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{n=1}^{\infty} \sum_{i} \frac{c_i^{(n)}}{\Lambda^n} \mathcal{O}_i^{(n+4)}$$
Phys. Rev. D 90, 032008 (2014)

MBI 2016

Statistical method: anomalous coupling measurement

 $\vec{\theta}$ = nuisance parameters $\vec{\alpha}$ = anomalous coupling parameters

- L = likelihood function
- $\lambda(\vec{\alpha})$ = profile likelihood ratio

Limit setting criteria (both supported by CMS statistics committee as methods for aC limit setting):

- 1. <u>"deltaNLL" limit</u>: use of Wilks theorem, distribution of t_{α} , under assumption α , is approximated with χ^2 distribution
 - Asymptotic, high statistics approximation
 - Fast but coverage is not guaranteed
- 2. <u>"Feldman-Cousins (F-C)" limit</u>: distribution of t_{α} , under assumption α , is determined by throwing toys
 - Computing time consuming but guaranties coverage

Fitting aC parameters => measurement of aC parameters => due to large uncertainties wrt best value we quote 95% CL limits

Several definitions of expected limits are available

- Pre-fit or post-fit expected limit
- Toys or Asimov dataset
- ✓ Usually we have been using pre-fit Asimov dataset for expected limit

Usually the two methods agree within 10%.

Systematic uncertainties covered via nuisance parameters.

Nuisance parameters are profiled.

Nuisance effect is lognormal (InN) by default (CMS statistics committee recommendation).

MBI 2016

Statistical method: anomalous coupling limit setting

 $\bar{\theta}$ = nuisance parameters μ = signal strenght

- L = likelihood function
- $\lambda(\mu)$ = profile likelihood ratio

$$\lambda_{\vec{\alpha}}(\mu) = \frac{L_{\vec{\alpha}}(\mu, \hat{\vec{\theta}}_{\mu})}{L_{\vec{\alpha}}(\hat{\mu}, \hat{\vec{\theta}})}, \quad 0 \le \hat{\mu} \le \mu \quad \text{tes}$$

🔈 maximize L in μ and θ

For every $\boldsymbol{\alpha}$ in anaomalous coupling parameter space!

Limit setting criteria : Eur.Phys.J., C71:1554, 2011

- 1. <u>"CLs" limit</u>: asymptotic calculation of CLs
 - Asymptotic, high statistics approximation
 - Fast but coverage is not guaranteed

$$CL_S = \frac{p_{S+B}}{1 - p_B}$$

<u>Fitting signal strength</u> in every point in anomalous coupling space => testing individually points in parameter space => limit setting

test statistics: $t_{\vec{\alpha}}(\mu) = -2 \ln \lambda(\mu)$

Usually all three methods

(deltaNLL, F-C, CLs) agree within 10%.

Vector boson couplings in SM

Triple and quartic vector boson couplings

- Fundamental prediction of Standard Model (SM)
- Consequence of the non-Abelian nature of the SU(2)xU(1) gauge theory
- Have exact values in SM!

LEP2 confirmed the presence of the TGCs and the nonabelian structure of the SU(2)_L × U(1)_Y gauge simmetry

Phys. Rept. 532 (2013) 119

Charged couplings are allowed at the tree level while neutral are forbidden in SM.

Triple gauge couplings (TGC)

Senka Duric

MBI 2016

•

Deviation of vector boson couplings

Allowing vector boson couplings to vary away from SM values.

How to perform a measurement?

- Anomalous couplings contributions to gauge couplings have to be parametrized
- Ideally: performing global fit to all parameters \rightarrow too many independent variables
- Need to apply assumptions (physically motivated) to reduce the number of paramaters to measure

Charged couplings are allowed at the tree level while neutral are forbidden in SM.

Anomalous Triple gauge couplings (aTGC)

Anomalous Quartic gauge couplings (aQGC)

MBI 2016

Anomalous coupling parametrizations: EFT summary

dim6 operators and vertices (aTGC and aQGC)

	\mathcal{O}_{WWW}	\mathcal{O}_{WW}	\mathcal{O}_W	\mathcal{O}_{BB}	\mathcal{O}_B	$\mathcal{O}_{ ilde{B}}$	$\mathcal{O}_{ ilde{B}B}$	$\mathcal{O}_{ ilde{W}W}$	$\mathcal{O}_{ ilde{W}WW}$	$\mathcal{O}_{ ilde{D}W}$
WWZ	×		×		×	×			×	×
WWA	×		×		×	×			×	×
ZZH		×	×	×		×	×	×		
WWH		×	×					×		
AAH		×		×			×	×		
AZH		×	×	×	×	×	×	×		
WWWW	×		×						×	×
WWZZ	×		×						×	×
WWAA	×								×	×
WWAZ	×		×						×	×
WWHH		×	×					×		
ZZHH		×	×	×	×	×	×	×		
AZHH		×	×	×	×	×	×	×		
AAHH		×		×			×	×		

Unitarity: neutral and charged aTGC

- Limits with form factor of $\Lambda_{FF} > 3$ TeV give results similar to $\Lambda_{FF} = \infty$ (no form-factor)
- Neutral TGC (ZγZ/γ and ZZZ/γ) results are in the unitarity violating regime

- For charged aTGCs (WWV vertex) observed limits are 2 orders of magnitude smaller then the unitarity bound
- Charged aTGC results are in the unitarity non-violating regime

MBI 2016

Question of unitarity

- Any non-zero value of anomalous coupling will lead to tree-level unitarity violation at sufficiently high energy
- At these high energies we will not have an effective theory (that we see at energies where we perform the measurement) but full New Physics theory that conserves unitarity

Effective Lagrangian and effective vertex formulation

- Unitarity is preserved with applying a form-factor
 - Adding two new parameters and assuming their values a-priori: Λ_{FF} (form factor scale) and n
 - Form factor structure comes from New Physics structure
 - Form factor structure is unknown a-priori, so it is arbitrary

Effective field theory formulation

- Already has a scale (new physics scale Λ)
- Usually no need of form-factor

We will never observe the unitarity violation! However measurement can be "over-sensitive" if using models that break the unitarity for signal model building.

In CMS we have been setting limits without the use of form-factor, equivalent to $\Lambda_{FF} = \infty$.

$$\alpha(\hat{s}) = \frac{\alpha_0}{\left(1 + \hat{s} / \Lambda_{FF}\right)^n}$$

$$\mathcal{L}_{SM} + \sum_{n=1}^{\infty} \sum_{i} \underbrace{\frac{c_i^{(n)}}{\Lambda^n}}_{i} \mathcal{O}_i^{(n+4)}$$

Translation between formulations possible only for no form-factor approach!

 $\mathcal{L}_{eff} =$

<u>QGC</u> (WVγ->lvjjγ)

- Limits with form factor of $\Lambda_{FF} > 4$ TeV give results similar to $\Lambda_{FF} = \infty$ (no form-factor)
- Effective field theory terms violate unitarity at parameter values close to the measured limits
- For the case of dipol form factor neutral WWγZ/γ results are in the unitarity violating regime

<u>Neutral TGC</u>

- Limits with form factor of Λ_{FF} >~3 TeV give results similar to Λ_{FF} =∞ (no form-factor)
- Neutral TGC (ΖγΖ/γ and ΖΖΖ/γ) results are close to unitarity bound for limits from Zγ->llγ, but in unitarity non-violating regime for limits from Zγ->vvγ

Charged TGC

Observed limits are 2 orders of magnitude smaller then the unitarity bound -> results are in the unitarity non-violating regime