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MBI in WI?

I always thought UW Madison was more of a 
fermion place…. 



Why MBI?


The need for NNLO for MBI 


What goes into an NNLO calculation?


Slicing methods for NNLO calculations 


Recent results for Diboson studies 
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have given us the 
defining results of the 
collider: the discovery 
of the Higgs boson
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Figure 1: Invariant mass distribution of the selected diphoton events. Residual number of events with respect to the
fit result are shown in the bottom pane. The first two bins in the lower pane are outside the vertical plot range.

The events in this region are scrutinized. No detector or reconstruction e�ect that could explain the larger
rate is found, nor any indication of anomalous background contamination. The kinematic properties of
these events are studied with respect to those of events populating the invariant mass regions above and
below the excess, and no significant di�erence is observed.

The Run-1 analysis presented in Ref. [13] is extended to invariant masses larger than 600 GeV by using the
new background modeling techniques presented in this note (cf. Section 7). The compatibility between
the results obtained with the 8 TeV and 13 TeV datasets is estimated under the NWA hypothesis and
assuming a large-width resonance with ↵ = 6%, using the best fit value of the ratio of cross sections. For
an s-channel gluon-initiated process, the parton-luminosity ratio is expected to be 4.7 [43]. Under those
assumptions, the results obtained with the two datasets are found to be compatible within 2.2 and 1.4
standard deviations for the two width hypotheses respectively.

The 95% CL expected and observed upper limits on �fiducial⇥BR(X ! ��), corresponding to the fiducial
volume defined in Section 6, are computed using the CLs technique [39, 44] for a scalar resonance with
narrow width as a function of the mass hypothesis mX , and are presented in Figure 3. The larger diphoton
rate in the mass region around 750 GeV is translated to a higher-than-expected cross section limit at the

13

And famously stole Christmas… 
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5.2 Background Estimation in High Mass Search 17
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Figure 10: Top: mZV distributions in the signal region for the low purity category of the high
mass search, for muons (left) and electrons (right). Bottom: mZV distributions in the signal
region for the high purity category of the high mass search, for muons (left) and electrons
(right).
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Measured �

fid
WW (fb) Predicted �

fid
WW (fb) Measured �WW (pb) Predicted �WW (pb)

ee 56.4± 6.8± 9.8± 2.2 54.6± 3.7 46.9± 5.7± 8.2± 1.8 44.7+2.1
�1.9

µµ 73.9± 5.9± 6.9± 2.9 58.9± 4.0 56.7± 4.5± 5.5± 2.2 44.7+2.1
�1.9

eµ 262.3± 12.3± 20.7± 10.2 231.4± 15.7 51.1± 2.4± 4.2± 2.0 44.7+2.1
�1.9

Combined · · · · · · 51.9± 2.0± 3.9± 2.0 44.7+2.1
�1.9

TABLE VI: The measured fiducial and total cross sections for the three channels separately and also the total cross section
for the combined channels, compared with theoretical predictions. The fiducial cross sections include the branching ratio for
both W bosons decaying into e⌫ or µ⌫ (including decays through ⌧ leptons with additional neutrinos). For the measured
cross sections, the first uncertainty is statistical, the second is systematic without luminosity uncertainty and the third is the
luminosity uncertainty.
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FIG. 7: The normalized di↵erential WW fiducial cross section as a function of the leading lepton pT compared to the SM
prediction.

independent parameters is only two for the Equal Cou-
plings scenario and the HISZ scenario, and three for the
LEP scenario. Limits are also set assuming no relation-
ships among these five parameters.

A reweighting method is applied to SM WW events
generated with mc@nlo and processed through the full
detector simulation to obtain the leading lepton p

T

dis-
tribution with anomalous couplings. The reweighting
method uses an event weight to predict the rate with
which a given event would be generated if anomalous
couplings were present. The event weight is the ratio of
the squared matrix elements with and without anomalous
couplings i.e., |M|2/|M|2

SM

, where |M|2 is the matrix
element squared in the presence of anomalous couplings
and |M|2

SM

is the matrix element squared in the SM.
The event generator bho [47] is used for the calculation
of the two matrix elements. Generator-level comparisons
of WW production between mc@nlo and bho with all
anomalous couplings set to zero are performed and con-
sistent results are obtained. Samples with di↵erent sets
of anomalous couplings are generated and the ratio of

the leading lepton p
T

distribution to the SM prediction
is parameterized as a function of the input anomalous
coupling parameters. This function is then used to inter-
polate the leading lepton p

T

distribution for any given
anomalous couplings. To verify the reweighting method,
the event weights for a given set of anomalous couplings
are calculated and applied to events generated with bho

assuming no anomalous couplings. The reweighted dis-
tributions are compared to those predicted by the bho

generator, and good agreement is observed for the inclu-
sive cross section and for the kinematic distributions as
shown in Fig. 8(a).

Figure 8(b) compares the reconstructed leading lep-
ton p

T

spectrum in data with that from the sum of ex-
pected signal and background contributions. The pre-
dicted leading lepton p

T

distributions for three di↵erent
anomalous TGC values are also shown. Events at high
values of the leading lepton p

T

distribution are sensitive
to anomalous TGCs. Limits on anomalous TGCs are ob-
tained by forming a likelihood test incorporating the ob-
served number of candidate events, the expected signal as

In fact Dibosons generate 
excitement almost 
continually…. 
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Although thus far, we haven't quite cracked the SM nut…. 
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This Lagrangian possess a global symmetry � ! ��. Lets suppose that � > 0 then we have two possibilities for the
potential, which correspond to the two choices of the sign of µ
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We plot a representation of the two configurations in Fig 1. First we consider µ

2
> 0 in this instance the Lagrangian

describes a self interacting scalar with mass m = µ. It’s clear that the ground state (the vacuum) corresponds to
� = 0, and that it obeys the reflection symmetry of the Lagrangian � ! ��.

What about the second option µ

2
< 0. Now the Lagrangian has the wrong sign for a mass term, since the relative

sign between the potential and kinetic energy pieces is not correct. The minimum of the potential in this instance
correspond to the solutions
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2) = 0 (6)

The minimum of the potential thus occur at

� = ±v v =

r
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(7)

The solution at � = 0 is a local maximum and not the lowest energy solution to the potential. Perturbative calculations
should involve expansions around the classical minimum � = v or � = �v, we therefore write

�(x) = v + ⌘(x) (8)

Where ⌘(x) corresponds to the quantum fluctuations around this minimum. We have chosen the +v solution, but we
could have equally well chosen the �v solution, nature also has to spontaneously make the same choice. Inserting our
definition into the Lagrangian we find,
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The field ⌘ has a mass term and it’s the correct sign! The Lagrangian for a free scalar field of mass m is of the form

L =
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2
m

2
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2 (10)

so we can determine the mass of ⌘

m
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=
p
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2 =
p

�2µ

2 (11)

Hierarchy Problem 


Dark Matter (WIMP miracle?)


Neutrino masses? 


Origin of EWSB 


CP violation + flavour puzzles  

9

The “Smug” SM should be careful…. 
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The “Smug” SM should be careful…. 

All are intimately related to the weak sector, 
and hence MBI interactions.
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MBI for Run II 16 9 Limits on anomalous gauge couplings
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Figure 3: Normalized differential W+W� cross section as a function of the leading lepton
pT (p`T, max) (top left), the transverse momentum of the dilepton system (p``T ) (top right), the
invariant mass (m``) (bottom left) and the angular separation between leptons (Df``) (bottom
right). Both statistical and systematic uncertainties are included. The hatched area in the ratio
plots corresponds to the relative error of the data in each bin. The measurement, including
gg ! W+W� is compared to predictions from MADGRAPH, POWHEG, and MC@NLO.

1507.03268

If Run II fails to find 
directly produced 
resonances. Then 
precision measurements 
to constrain anomalous 
interactions are vital. 

NLO+PS tools tend to 
give a wide spectrum of 
predictions in the tails, 
due to different 
mechanisms of 
exponentiation. 
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Figure 3: Normalized differential W+W� cross section as a function of the leading lepton
pT (p`T, max) (top left), the transverse momentum of the dilepton system (p``T ) (top right), the
invariant mass (m``) (bottom left) and the angular separation between leptons (Df``) (bottom
right). Both statistical and systematic uncertainties are included. The hatched area in the ratio
plots corresponds to the relative error of the data in each bin. The measurement, including
gg ! W+W� is compared to predictions from MADGRAPH, POWHEG, and MC@NLO.
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Figure 3: Normalized differential W+W� cross section as a function of the leading lepton
pT (p`T, max) (top left), the transverse momentum of the dilepton system (p``T ) (top right), the
invariant mass (m``) (bottom left) and the angular separation between leptons (Df``) (bottom
right). Both statistical and systematic uncertainties are included. The hatched area in the ratio
plots corresponds to the relative error of the data in each bin. The measurement, including
gg ! W+W� is compared to predictions from MADGRAPH, POWHEG, and MC@NLO.

Minimizing this 
differences by choosing 
the right observables is 
crucial. 

(IMO) Will be a very interesting application of 
NNLO to “debug” the NLO+PS tails and see 
which procedure reproduces NNLO 
predictions more consistently…  
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Figure 5: Two-dimensional observed (thick lines) and expected (thin lines) 68% and 95% CL
contours. The contours are obtained from profile log-likelihood comparisons to data assuming
two nonzero coupling constants: cWWW/L2 ⇥ cW/L2, cWWW/L2 ⇥ cB/L2, and cW/L2 ⇥ cB/L2.
The cross markers indicate the best-fit values, and the diamond markers indicate the SM ones.

MBI for Run II 

Improving the precision of a variety of observables 
will allow for greater dynamics in constraining 
anomalous interactions. 

Again, my opinion: the most important issue is to try 
to constrain the scale of NP.  I don't advocate fits to 
50 (or more) parameters in the EFT-SM.  What we 
need to know is what energy we should shoot for for 
direct production of the UV sector. 
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Fig. 6. The 68% (dark) and 95% (light) confidence regions for the fit to the c̄HW and 
c̃HW Wilson coefficients. All other Wilson coefficients are set to zero, except for c̄HB
and c̃HB which are set to be equal to c̄HW and c̃HW , respectively. The shaded area 
represents the allowed region of parameter space and the marker indicates the SM 
value.

Table 1
Observed allowed ranges at 95% CL for the c̄γ , c̄g and c̄HW Wil-
son coefficients and their CP-conjugate partners. Limits on c̄γ , c̄g , 
c̃γ and c̃g are each derived with all other Wilson coefficients set 
to zero. Limits on c̄HW and c̃HW are derived with c̄HB = c̄HW and 
c̃HB = c̃HW , respectively. Two allowed regions are observed for c̄γ

and c̄g , with the region between the solutions producing too small 
pp → H → γ γ cross section due to destructive interference be-
tween new interactions and the SM.

Coefficient 95% 1 − CL limit

c̄γ [−7.4,5.7] × 10−4 ∪ [3.8,5.1] × 10−3

c̃γ [−1.8,1.8] × 10−3

c̄g [−0.7,1.3] × 10−4 ∪ [−5.8,−3.8] × 10−4

c̃g [−2.4,2.4] × 10−4

c̄HW [−8.6,9.2] × 10−2

c̃HW [−0.23,0.23]

products in the WW∗ and ZZ∗ decay channels [36]. The trans-
lated limits are −0.08 < κ̃HVV/κSM < 0.09 and −0.22 < tan(α) ·
κ̃AVV/κSM < 0.22, where the variables κ̃HVV, κ̃AVV, κSM and α are 
defined in Refs. [16,36]. The limits obtained in this analysis are 
a factor of approximately seven stronger than those in Ref. [36], 
due to increased sensitivity to the different Higgs boson produc-
tion channels arising from the inclusion of rate and jet kinematic 
information in the signal hypothesis.

The observed limits on c̄HW and c̃HW are also not excluded 
by current signal strength measurements. For example, the signal 
strength in the H → Z Z∗ and H → W W ∗ channels is predicted to 
be approximately 1.3 for c̄HW = 0.1, which is consistent with the 
dedicated measurements [37,38].

The 95% confidence regions for a one-dimensional scan of the 
Wilson coefficients are given in Table 1.

7. Summary

The strength and structure of the Higgs boson’s interac-
tions with other particles have been investigated using an ef-
fective Lagrangian. Limits are placed on anomalous CP-even and 
CP-odd interactions between the Higgs boson and photons, gluons, 
W -bosons and Z -bosons, using a fit to five differential cross sec-
tions previously measured by ATLAS in the H → γ γ decay channel 
at 

√
s = 8 TeV [9]. No significant deviations from the SM predic-

tions are observed. To allow a simultaneous fit to all distributions, 
the statistical correlations between these distributions have been 

determined by re-analysing the candidate H → γ γ events in the 
proton–proton collision data. These correlations are made pub-
licly [15] available to allow for future analysis of theories with 
non-SM Higgs boson interactions.
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fore final-state radiation, with pT > 20 GeV and |h| < 2.5. Events with one or more jets with
pT > 30 GeV and |h| < 4.7 are rejected.

The systematic uncertainties in each bin are assessed from the variations of the nominal cross
section by repeating the full analysis for every systematic variation. The difference with re-
spect to the nominal value is taken as the final systematic uncertainty for each bin and each
measured observable. By using this method, the possible correlations of the systematic uncer-
tainties between bins are taken into account. Those systematic uncertainties that are correlated
across all bins of the measurement, and therefore mainly affect the normalization, cancel out
at least partially in the normalized cross section. The uncertainty also includes the statistical
error propagation through the unfolding method using the covariance matrix and the differ-
ence in the response matrix from MADGRAPH, POWHEG, and MC@NLO, the latter being almost
negligible.

Various differential cross sections in interesting kinematic variables are presented in Fig. 3. The
measurements, including gg ! W+W�, are compared to the predictions from MADGRAPH,
POWHEG, and MC@NLO, normalized to the recent QCD calculations up to approximate NNLO
precision [6]. The predictions from MADGRAPH are shown with statistical uncertainties only.
No single generator performs best for all the kinematic variables, although POWHEG does better
than the others. Data and theory show a good agreement for the m`` and the p``T distributions,
within uncertainties, except for the MC@NLO generator which predicts a softer p``T spectrum
than observed. In case of the p`T, max distribution, the MADGRAPH prediction shows an excess
of events in the tail of the distribution compared to data, while POWHEG shows a reasonable
agreement and MC@NLO shows a good agreement. We observe more significant differences
in the shape of the Df`` for all the three generators as compared to the data. Depending on
the choice of MC generator, some of the differential cross sections show discrepancies up to
20%, in extreme cases even up to 50%, when comparing with a LO generator. These deviations
are covered by the typical background uncertainties of Run 1 searches for physics beyond the
SM. A better modelling of the WW background will be required to reduce the corresponding
systematic uncertainties for Run 2, however.

9 Limits on anomalous gauge couplings

Beyond-standard-model (BSM) physics effects in pp ! W+W� can be described by a series of
operators with mass dimensions larger than four in addition to the dimension-four operators
in the SM Lagrangian. In the electroweak sector of the SM, in an EFT interpretation [10], the
first higher-dimension operators made solely from electroweak vector fields and the Higgs
doublet have mass dimension six. There are six different dimension-six operators that generate
ATGCs. Three of them are C- and P-conserving while the others are not. In this analysis, we
only consider models with C- and P-conserving operators. In the HISZ basis [56], these three
operators are written as:

cWWW

L2 OWWW =
cWWW

L2 Tr[WµnWnrW µ
r ],

cW

L2OW =
cW

L2 (DµF)†Wµn(DnF),
cB

L2OB =
cB

L2 (DµF)†Bµn(DnF).

(3)

The parameter L is the mass scale that characterizes the coefficients of the higher-dimension
operators, which can be regarded as the scale of new physics. The three operators in Eq. (3)
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We plot a representation of the two configurations in Fig 1. First we consider µ

2
> 0 in this instance the Lagrangian

describes a self interacting scalar with mass m = µ. It’s clear that the ground state (the vacuum) corresponds to
� = 0, and that it obeys the reflection symmetry of the Lagrangian � ! ��.

What about the second option µ

2
< 0. Now the Lagrangian has the wrong sign for a mass term, since the relative

sign between the potential and kinetic energy pieces is not correct. The minimum of the potential in this instance
correspond to the solutions
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The solution at � = 0 is a local maximum and not the lowest energy solution to the potential. Perturbative calculations
should involve expansions around the classical minimum � = v or � = �v, we therefore write

�(x) = v + ⌘(x) (8)

Where ⌘(x) corresponds to the quantum fluctuations around this minimum. We have chosen the +v solution, but we
could have equally well chosen the �v solution, nature also has to spontaneously make the same choice. Inserting our
definition into the Lagrangian we find,
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2
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The field ⌘ has a mass term and it’s the correct sign! The Lagrangian for a free scalar field of mass m is of the form

L =
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2
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2
m

2
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2 (10)

so we can determine the mass of ⌘
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=
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p
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2 (11)
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Figure 12: Total cross sections for various values of the triple Higgs coupling. Panel

(b) zooms into the region around the minimum. The curves are the result of an inter-

polation of integer values for � 2 {�1, . . . , 5}.

A more complete analysis of such e↵ects would require an approach where further

operators are taken into account, for example operators which mediate direct tt̄HH

couplings (and Higgs-gluon couplings which can di↵er from the SM HEFT ones), see

e.g. [37–39]. However, the conclusions drawn from the calculation of NLO corrections in

the mt ! 1 limit to the extended set of EFT Wilson coe�cients have to be taken with

a grain of salt, as the full top quark mass dependence may a↵ect them considerably.

In this section we would like to focus on just a single line in the parameter space of

possible non-SM Higgs couplings and investigate the behaviour of the mhh distribution

under variations of �, where we have defined �hhh = 3m2
h�, see Eq. (2.7).

In Fig. 12 we show the total cross section as a function of �. As already observed for

the LO cross section [22], it has a minimum around � = 2. Negative � values, which

are not excluded neither theoretically nor experimentally (within certain broad limits

given e.g. by vacuum stability), do not lead to destructive interference and therefore

result in a much larger cross section. For large positive values, � ⇠ 5, the total cross

section is of comparable size to the one for � ' 0, but the shape of the mhh distribution

is completely di↵erent. This can be seen in Fig. 13, where we show the Higgs boson

pair invariant mass distribution for various values of the Higgs boson self-coupling, atp
s = 14 TeV and

p
s = 100 TeV. For � = 5, the di↵erential cross section is mainly

dominated by contributions containing the Higgs boson self coupling and peaks at low

mhh values. In contrast, the � = 0 case, which does not contain any triple Higgs

coupling contribution, peaks shortly beyond the 2mt threshold at mhh ⇠ 400 GeV, as

does the case � = �1. In the latter case, however, the total cross section is much larger.

The case � = 2 shows a dip at mhh ⇠ 300 GeV, which is due to destructive interference

e↵ects as mentioned above. At 100 TeV, the shape of the distributions is very similar.
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Figure 5: Higgs boson pair invariant mass distribution mhh at
p

s = 14 TeV andp
s = 100 TeV for absolute values (left panels) and normalised to the corresponding

total cross section (right panels).

boson pair invariant mass distribution mhh at
p

s = 14 TeV and
p

s = 100 TeV, com-

paring the full NLO result to various approximations. In particular, we compare to

the “basic HEFT” approximation at
p

s = 14 TeV, showing that it fails to describe

the distribution. Comparing the results at 14 TeV and 100 TeV, we observe that the

di↵erences of the full NLO result to the Born-improved HEFT and also to the FTapprox

result are amplified at 100 TeV, as expected, as the HEFT approximation does not

have the correct high energy behaviour. This scaling behaviour will be discussed more

in detail below. We also see that the K-factor is far from being uniform for the mhh

distribution, while the “basic HEFT” results suggest a uniform K-factor.
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The solution at � = 0 is a local maximum and not the lowest energy solution to the potential. Perturbative calculations
should involve expansions around the classical minimum � = v or � = �v, we therefore write

�(x) = v + ⌘(x) (8)

Where ⌘(x) corresponds to the quantum fluctuations around this minimum. We have chosen the +v solution, but we
could have equally well chosen the �v solution, nature also has to spontaneously make the same choice. Inserting our
definition into the Lagrangian we find,
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The ultimate MBI
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Why MBI @ NNLO?

Legal Disclaimer: For the purposes of this talk NNLO means NNLO with slicing 
methods. The field of NNLO is in rapid development. Other methods exist and are 
producing cutting edge results, but thus far slicing methods have been the most 
widely applied to dibosons so I’ll focus on them for this talk….
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Initial State, is favorable 
to LO due to PDFs

Final State, production 
of 2 heavy bosons 
leaves small phase 
space for additional 
emissions 

HIGHER ORDER CORRECTIONS SHOULD BE SMALL
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ZZ ! lll 0l 0 Analysis and Result

Four-Lepton Invariant Mass (GeV)
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5
Data
ZZ
Instrumental
Migration

40×Higgs Signal 
=125 GeVHM

ZZ→H→gg
ZH

-1 9.8 fb≤D0, L (a)

Process Yield(CDF) Yield(D0)
ZZ 9.59± 1.55 15.31± 1.84
Bkg. 0.06± 0.03 1.48± 0.31
Data 7 13

Instrumental background:
Z/�⇤ with two additional
misidentified jets/photons

Fake rate from jet-trigger
events

Applied to 2/3 lepton + jets
events

D0: Looser acceptance,
separate lepton categories

�(pp̄ ! ZZ ) (pb) (lll 0l 0)
CDF 0.99+0.45

�0.35(stat)+0.11
�0.07(syst)

D0 1.05+0.37
�0.30(stat)+0.14

�0.12(syst)± 0.06(lumi)
MCFM 1.4± 0.1

CDF: PRD 89, 112001 (2014); D0: PRD 88, 032008 (2013)
Will Parker, UW Madison BNL, October 28th, 2014 Tevatron Diboson 6/ 28
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TNG MBI
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Final State, production of heavy 
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mass energy. Lots of phase space for 
emissions!



18

Initial State, is unfavorable to LO due 
to PDFs

Final State, production of heavy 
bosons is cheap given large center of 
mass energy. Lots of phase space for 
emissions!

NLO = “LO”! Higher order corrections large

So this type of contributions is critical 
to obtain a decent prediction. 
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What goes into an NNLO calculation?
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�NLO =

Z
|MV V |2dm�+

Z
|MRV |2dm+1�+

Z
|MRR|2dm+2�

At NNLO we have three types of final state phase spaces 

Two-loop double virtual one-loop squared double virtual 
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�NLO =

Z
|MV V |2dm�+

Z
|MRV |2dm+1�+

Z
|MRR|2dm+2�

At NNLO we have three types of final state phase spaces 

Real-virtual (one-loop +1 x 
real + 1) 
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�NLO =

Z
|MV V |2dm�+

Z
|MRV |2dm+1�+

Z
|MRR|2dm+2�

At NNLO we have three types of final state phase spaces 

Real-real 
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✓ ! 0

All of our contributions (VV, RV, RR) are divergent, of particular menace 
are the Infra Red poles. 

There are two types of IR pole in real matrix element, 

q ! 0

Soft  (particle momenta 
vanishes)

Collinear (angle between two 
massless particles vanishes)

At NNLO there are many ways to lose two partons, (double soft, 
triple collinear etc etc….) 

IR poles
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Slicing methods at NNLO
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A “simple” way of dealing with the IR singularities is phase space slicing 
(eg. Giele Glover 92)
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Collinear
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A “simple” way of dealing with the IR singularities is phase space slicing 
(eg. Giele Glover 92)

Collinear
Soft
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�NNLO =

Z
dqT

d�

dqT
✓(qcutT � qT ) +

Z
dqT

d�

dqT
✓(qT � qcutT )

For color neutral final states the transverse momentum of the 
recoiling EW particles determines the double and singly unresolved 
regions of phase space. (Catani Grazzini 07)  

QT Subtraction
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�NNLO =

Z
dqT

d�

dqT
✓(qcutT � qT ) +

Z
dqT

d�

dqT
✓(qT � qcutT )

For color neutral final states the transverse momentum of the 
recoiling EW particles determines the double and singly unresolved 
regions of phase space. (Catani Grazzini 07)  

Obtained from the Collins-Soper-Sterman 
factorization theorem for small qT

This is an NLO cross section for one 

additional parton 

QT Subtraction



27

For color neutral final states the transverse momentum of the 
recoiling EW particles determines the double and singly unresolved 
regions of phase space. (Catani Grazzini 07)  

�NNLO =

Z
dqT

d�

dqT
✓(qcutT � qT ) +

Z
dqT

d�

dqT
✓(qT � qcutT )

p1p2

pEW

qT

qT

QT Subtraction
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The subtraction scheme fails when final state jets are present at LO, 
since then there is no separation of the doubly and singly unresolved 
regions based on qT

We need a resolution parameter which separates out the regions, but 
works for final state jets too! 

Doubly unresolved Singly  unresolved
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The idea is to use the event shape variable N-jettiness (Stewart, 
Tackmann, Waalewijn 09) to separate the phase space into two regions 
(Boughezal, Liu, Petreillo 15’, Gaunt, Stahlhofen, Tackmann Walsh 15) which 
separates the doubly-from singly unresolved regions. 


Small N-jettiness, use 
factorization theorem. 

Doubly unresolved Singly  unresolved

“Large” N-jettiness, is an NLO 
calculation. Of X + 1 jet

N-jettiness slicing
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When there is no ambiguity, we will associate i ⌘ i (e.g., we use fa ⌘ fa), and we use

the collective label  to denote the whole partonic channel, i.e.,

 ⌘ {a,b;1, . . . ,N} ⌘ {a, b; 1, . . . , N} . (3.3)

We write the massless Born momenta qi as

qµi = Ei n
µ
i , nµ

i = (1,~ni) , |~ni| = 1 . (3.4)

In particular, for the incoming momenta we have

Ea,b = xa,b
Ecm

2
, nµ

a = (1, ẑ) , nµ
b = (1,�ẑ) , (3.5)

where Ecm is the total (hadronic) center-of-mass energy and ẑ points along the beam axis.

The xa,b are the light-cone momentum fractions of the incoming partons, and momentum

conservation implies

xaEcm = nb · (q1 + · · ·+ qN + q) , xbEcm = na · (q1 + · · ·+ qN + q) . (3.6)

The total invariant mass-squared Q2 and rapidity Y of the Born phase space are

Q2 = xaxbE
2
cm , Y =

1

2
ln

xa
xb

, xaEcm = QeY , xbEcm = Qe�Y . (3.7)

The complete d�N phase-space measure corresponds to

Z

d�N ⌘ 1

2E2
cm

Z

dxa
xa

dxb
xb

Z

d�N (qa + qb; q1, . . . , qN , q)
dq2

2⇡
d�L(q)

X



s , (3.8)

where d�N (...) on the right-hand side denotes the standard Lorentz-invariant N -particle

phase space, the sum over  runs over all partonic channels, and s is the appropriate

factor to take care of symmetry, flavor and spin averaging for each partonic channel.

3.1.2 N-jettiness

Given an M -particle phase space point with M � N , N -jettiness is defined as [50]

TN (�M ) =
M
X

k=1

min
i

n2qi · pk
Qi

o

, (3.9)

where i runs over a, b, 1, . . . , N . (Here we use a dimension-one definition of TN following

refs. [52, 62].) For ep or ee collisions, one or both of the incoming directions are absent.

The Qi are normalization factors, which are explained below. The pk are the M final-state

parton momenta (so excluding the nonhadronic final state) of �M . The qi in eq. (3.9)

are massless Born “reference momenta”, and the corresponding directions ~ni = ~qi/|~qi| are
referred to as the N -jettiness axes. For later convenience we also define the normalized

vectors

q̂i =
qi
Qi

. (3.10)

– 13 –

N-jettiness is an event shape variable, designed to veto final state jets 
(Stewart, Tackmann, Waalewijn 09) 
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N-jettiness is an event shape variable, designed to veto final state jets 
(Stewart, Tackmann, Waalewijn 09) 
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When there is no ambiguity, we will associate i ⌘ i (e.g., we use fa ⌘ fa), and we use

the collective label  to denote the whole partonic channel, i.e.,
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We write the massless Born momenta qi as

qµi = Ei n
µ
i , nµ

i = (1,~ni) , |~ni| = 1 . (3.4)

In particular, for the incoming momenta we have

Ea,b = xa,b
Ecm

2
, nµ

a = (1, ẑ) , nµ
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– 13 –

All radiation is either soft or collinear to a beam/jet 

⌧N ⇡ 0

p1p1

q1 q1q2
q2

q3
q3
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When there is no ambiguity, we will associate i ⌘ i (e.g., we use fa ⌘ fa), and we use

the collective label  to denote the whole partonic channel, i.e.,
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– 13 –

(At least) one additional radiation is resolved, 

(looks like an NLO N+1 parton calculation)  

⌧N > 0

This parameter can be used to separate the doubly and singly 
unresolved regions of phase space!

p1p1

q1 q1q2
q2

q3
q3
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The method can be used as a regularization scheme (Boughezal, 
Focke, Liu, Petriello 15, Gaunt, Stahlhofen, Tackmann Walsh 15) using 
N-jettiness to separate the doubly and singly unresolved regions. 

�NNLO =

Z
d�N |MN |2 +

Z
d�N+1|MN+1|2✓<N

+

Z
d�N+2|MN+2|2✓<N +

Z
d�N+1|MN+1|2✓>N

+

Z
d�N+2|MN+2|2✓>N
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The method can be used as a regularization scheme (Boughezal, 
Focke, Liu, Petriello 15, Gaunt, Stahlhofen, Tackmann Walsh 15) using 
N-jettiness to separate the doubly and singly unresolved regions. 

�NNLO =

Z
d�N |MN |2 +

Z
d�N+1|MN+1|2✓<N

+

Z
d�N+2|MN+2|2✓<N +

Z
d�N+1|MN+1|2✓>N

+

Z
d�N+2|MN+2|2✓>N

= Below the cut (can use factorization theorem) 

= Above the cut (can use NLO code) 
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We need to understand the below cut region for the method to be 
applied. Happily, a factorization theorem (Stewart, Tackmann 
Waalewijn 09), based upon SCET (Bauer, Stewart et al 00’s), has been 
derived 

�(⌧N < ⌧ cutN ) =

Z
H ⌦B ⌦B ⌦ S ⌦

"
NY

n

Jn

#
+O(⌧ cutN )

B@NNLO : Gaunt Stahlhofen, Tackmann (14)


S@NNLO : Boughezal, Liu, Petreillo (14)


J@NNLO : Becher Neubert (06), Becher, Bell (11)
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We need to understand the below cut region for the method to be 
applied. Happily, a factorization theorem (Stewart, Tackmann 
Waalewijn 09), based upon SCET (Bauer, Stewart et al 00’s), has been 
derived 

�(⌧N < ⌧ cutN ) =

Z
H ⌦B ⌦B ⌦ S ⌦

"
NY

n

Jn

#
+O(⌧ cutN )

Hard function, includes 2-loop virtual

Beam functions, describes radiation 
collinear to initial state 

Soft function, describes soft radiation 

Jet functions, describes radiation 
collinear to final state jets

B@NNLO : Gaunt Stahlhofen, Tackmann (14)


S@NNLO : Boughezal, Liu, Petreillo (14)


J@NNLO : Becher Neubert (06), Becher, Bell (11)
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Perils of slicing
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Power Corrections
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When doing a slicing calculation, it is always 
tempting to make this sort of plot showing above 
and below cut cancellations.
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When doing a slicing calculation, it is always 
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and below cut cancellations.
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However, you cant trust this plot. Its 
a scam. It completely hides the 
power corrections of the thing I’m 
actually providing you with. The 
NNLO coefficient. 
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3

jet in pp ! Whhj to be arbitrarily soft or collinear to
the initial-state partons. In practice, the only problem
is that the numerical result may converge slowly if qcut

T

is chosen to be too small. In this work, we use Mad-
Graph5 aMC@NLO [58] to calculate the NLO correc-
tions automatically. Actually, this is one of the advan-
tages when using q

T

subtraction, i.e., the present tools
and programs of NLO calculations can be utilized with-
out any substantial change.

Combining the two parts together, we obtain the
NNLO di↵erential cross section of the process pp ! Whh

d�
Whh

d�3dy

���
NNLO

=

Z
q

cut

T

0

dq
T

d�
Whh

d�3dydqT| {z }
SCET

+

Z
q

max

T

q

cut

T

dq
T

d�
Whhj

d�3dydqT
| {z }
MadGraph5 aMC@NLO

(3)

where qmax
T

is set by the partonic center-of-mass energy
and the invariant mass of Whh.

Numerical results : We now present the numerical re-
sults for Whh (including W+hh and W�hh) production
at the 14 TeV LHC and a future 100 TeV hadron collider.
We use CT14 PDF set [59] and associated strong cou-
pling evaluated at each corresponding order throughout
our calculation. The relevant non-vanishing CKMmatrix
elements are [60] V

ud

= 0.97425, V
us

= 0.2253, V
ub

=
4.13⇥10�3, V

cd

= 0.225, V
cs

= 0.986, V
cb

= 4.11⇥10�2.
The other input parameters are chosen as:

M
W

= 80.419 GeV, m
h

= 125 GeV, sin2 ✓
W

= 0.222

↵ =
1

132.507
, �

hhh

=
m2

h

2v
. (4)

The default factorization scale µ
F

and renormalization
scale µ

R

are set equal to M in order to avoid possible
large logarithms. As shown in Eq.(3), the two contribu-
tions on the right-hand side depend on the cut-o↵ param-
eter qcut

T

individually, though their sum on the left-hand
side is independent of it. Therefore, it is crucial to first
check this feature of the method numerically. In Fig.1,
we show the total cross section of pp ! Whh production
at NNLO in QCD as a function of qcut

T

. One can see that
the total cross section is almost unchanged as qcut

T

varies
from 2 GeV to 20 GeV. Notice that the typical scale of
this process is about M ⇠ 500 GeV. Therefore, the power
corrections in this method are about (qcut

T

/M)2 ⇠ 0.04%
for the choice of qcut

T

= 10 GeV, which can be safely ne-
glected. In the following discussion we choose qcut

T

at 10
GeV. As a cross check, we have compared our NLO dif-
ferential cross section obtained by Eq.(3) with that by
the standard NLO program and found good agreement.

Then we report the total cross section at di↵erent col-
lision energies in Fig.2. One can see that the cross sec-
tion increases quickly with the increasing of collision en-
ergy. The LO results su↵er from large scale uncertain-
ties when the collision energy is large. In contrast, the
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FIG. 1: The total cross section of pp ! Whh production at
NNLO in QCD. In the bottom plot, the deviation is defined
as �(qcutT )/�(qcutT = 10 GeV) .
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FIG. 2: The total cross section of pp ! Whh production as
a function of the collision energy. The bands denote the scale
uncertainties when varying µ = µF = µR by a factor of two.

NLO and NNLO results have very small scale uncertain-
ties, and thus provide more precise predictions. The K-
factors, defined as the ratio of higher-order results over
the lower-order ones, indicate the e↵ects of higher-order
corrections. The NLO and NNLO K-factors are nearly
the same, both around 1.25 ⇠ 1.3 when the collision en-
ergy changes from 14 TeV to 100 TeV. By adopting the
same PDF sets, we also reproduce the total cross sections
given in the literature [9], which can be considered as a
strong check of our calculation.

Li , Wang  16

Sadly these plots are still in the literature, I need 
further convincing that the power corrections are 
under control here for instance…. 
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�[fb] LO NLO NNLO
µF = µR = m��/2 5045 ± 1 26581 ± 23 45588 ± 97
µF = µR = m�� 5712 ± 2 26402 ± 25 43315 ± 54
µF = µR = 2m�� 6319 ± 2 26045 ± 24 41794 ± 77

Table 1. Cross sections reported in ref. [? ].

pieces always as �NNLO
+ ��N3LO

gg,nF
. Our default scale choice for the renormalization and

factorization scales will be µ = m�� .

3 Validation

In this section we compare our results for pp ! �� with those presented in ref. [? ]. A
summary of cross-sections that have been computed in that work is shown in Table ??.
To emulate their calculation we impose a series of phase space selection cuts. The cuts on
the transverse momenta of the photons depend on their relative size, phardT > 40 GeV and
psoftT > 25 GeV. The photons are also required to be central, |⌘� | < 2.5 and in addition we
require that the invariant mass of the photon-photon system lies in the interval 20  m�� 
250 GeV. Finally at NLO and NNLO we impose the following isolation requirement [? ]

Ehad
T (r)  ✏�p

T
�

✓
1� cos r

1� cosR

◆n

, (3.1)

with n = 1, ✏� = 0.5 and R = 0.4. We use ↵ = 1/137 and the remaining EW parameters
are set to the default values in MCFM. The PDFs are taken from MSTW2008 [? ] and
are matched to the appropriate order in perturbation theory. The renormalization and
factorization scales are mostly set to the invariant mass of the photon pair µF = µF = m�� ,
although we will also present results for µF = µR = m��/2 and µF = µR = 2m�� .

The results that we obtain from our implementation in MCFM are presented in Table ??
and should be compared with the results from ref. [? ] that are shown in Table ??. Whilst
our LO and NLO predictions are in good accord, we find no such agreement for the NNLO
cross sections, for any of the choices of scale. The discrepancy is approximately 3pb, or
around 8% of the total NNLO prediction. However we do note that the size of the scale
variation, i.e. the departures from the central choice, is the same for both calculations.

Since we therefore do not agree with the essential results of the existing literature we
now describe the further checks that we have performed on our calculation. Several of
the ingredients for the below-cut contribution have been reused from previous calculations
where good agreement with the literature results was obtained. Specifically, the soft and
beam functions have already been used to compute the Drell-Yan and associated Higgs
production processes [? ? ]. The MCFM predictions for these cross sections agree perfectly
with the known results from the literature. The remaining below-cut contribution, the
hard function, has been implemented in two independent codes that check both the SCET

– 6 –

�[fb] LO NLO NNLO
µF = µR = m��/2 5043 ± 1 26578 ± 13 42685 ± 35
µF = µR = m�� 5710 ± 1 26444 ± 12 40453 ± 30
µF = µR = 2m�� 6315 ± 2 26110 ± 13 38842 ± 27

Table 2. Cross section results obtained using MCFM. The NLO contribution is always computed
using Catani-Seymour dipole subtraction; the NNLO coefficient corresponds to the ⌧ ! 0 limit of
a calculation using N -jettiness regularization (c.f. Figure ??). In the NNLO calculation the errors
are obtained by adding the fitting and NLO Monte Carlo uncertainties in quadrature.

matching and the proper inclusion of the double-virtual results of ref. [? ]1. Additionally
we have checked that by setting µ2

= s, and implementing the hard function for a specific
scale, we can reproduce the full result by application of the renormalization group equations.
This test is extremely non-trivial since the µ2 dependence occurs both in the finite functions
taken from ref. [? ] (in their notation, a dependence on S) and also in the matching to the
SCET formalism. This check therefore ensures that no mistakes are made in the relative
normalization between the two parts of the hard function calculation. For the gg ! ��

pieces we have reproduced the results of refs. [? ? ], which were implemented previously in
MCFM [? ]. For the above-cut pieces we have compared our NLO prediction for ��j with
the results presented in ref. [? ], finding agreement for the isolation procedure used here
(“smooth-cone”). We have also checked the analytic calculation of the helicity amplitudes
for the real and virtual contributions to ��j production against an in-house implementation
of the numerical D-dimensional algorithm [? ].

In order to eliminate the N -jettiness slicing procedure as a cause of the difference, we
have also implemented QT -slicing in MCFM.2 This implementation has been additionally
checked, for large values of Qcut

T , with a calculation using a completely different setup. The
alternate QT -slicing calculation is implemented using the Sherpa framework [? ] and uses
the OpenLoops [? ] and BlackHat [? ? ] programs to evaluate the above-cut matrix
elements. An obvious cause for concern in either of these slicing-based methods is the
dependence on the regulating parameter. When comparing our predictions it is therefore
crucial to investigate the dependence of them on this unphysical slicing parameter, either
⌧ cut or Qcut

T as appropriate.
As a point of reference, we first study the dependence of the total NLO cross section

on the slicing parameter in Figure ??. To assess the agreement with the known result,
we divide the results of these calculations with the one obtained from the existing NLO
calculation of MCFM. This implementation of the pp ! �� process [? ] uses Catani-
Seymour dipoles [? ] to regulate the infrared divergences and thus contains no dependence
on a slicing parameter. The figure indicates that the slicing results approach the correct

1
We have adjusted the results of ref. [? ] to account for small typos in the manuscript, as detailed in

Appendix ??.

2
The QT -slicing method is based on the same factorization and ingredients that were used in the previous

QT -subtraction calculation [? ].

– 7 –

(S. Catani, L. Cieri, D. de Florian, G. 
Ferrera and M. Grazini 11)   MCFM  (Campbell, Ellis Li CW 16)
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µF = µR = 2m�� 6319 ± 2 26045 ± 24 41794 ± 77

Table 1. Cross sections reported in ref. [? ].

pieces always as �NNLO
+ ��N3LO

gg,nF
. Our default scale choice for the renormalization and

factorization scales will be µ = m�� .

3 Validation

In this section we compare our results for pp ! �� with those presented in ref. [? ]. A
summary of cross-sections that have been computed in that work is shown in Table ??.
To emulate their calculation we impose a series of phase space selection cuts. The cuts on
the transverse momenta of the photons depend on their relative size, phardT > 40 GeV and
psoftT > 25 GeV. The photons are also required to be central, |⌘� | < 2.5 and in addition we
require that the invariant mass of the photon-photon system lies in the interval 20  m�� 
250 GeV. Finally at NLO and NNLO we impose the following isolation requirement [? ]

Ehad
T (r)  ✏�p

T
�

✓
1� cos r

1� cosR

◆n

, (3.1)

with n = 1, ✏� = 0.5 and R = 0.4. We use ↵ = 1/137 and the remaining EW parameters
are set to the default values in MCFM. The PDFs are taken from MSTW2008 [? ] and
are matched to the appropriate order in perturbation theory. The renormalization and
factorization scales are mostly set to the invariant mass of the photon pair µF = µF = m�� ,
although we will also present results for µF = µR = m��/2 and µF = µR = 2m�� .

The results that we obtain from our implementation in MCFM are presented in Table ??
and should be compared with the results from ref. [? ] that are shown in Table ??. Whilst
our LO and NLO predictions are in good accord, we find no such agreement for the NNLO
cross sections, for any of the choices of scale. The discrepancy is approximately 3pb, or
around 8% of the total NNLO prediction. However we do note that the size of the scale
variation, i.e. the departures from the central choice, is the same for both calculations.

Since we therefore do not agree with the essential results of the existing literature we
now describe the further checks that we have performed on our calculation. Several of
the ingredients for the below-cut contribution have been reused from previous calculations
where good agreement with the literature results was obtained. Specifically, the soft and
beam functions have already been used to compute the Drell-Yan and associated Higgs
production processes [? ? ]. The MCFM predictions for these cross sections agree perfectly
with the known results from the literature. The remaining below-cut contribution, the
hard function, has been implemented in two independent codes that check both the SCET

– 6 –

�[fb] LO NLO NNLO
µF = µR = m��/2 5043 ± 1 26578 ± 13 42685 ± 35
µF = µR = m�� 5710 ± 1 26444 ± 12 40453 ± 30
µF = µR = 2m�� 6315 ± 2 26110 ± 13 38842 ± 27

Table 2. Cross section results obtained using MCFM. The NLO contribution is always computed
using Catani-Seymour dipole subtraction; the NNLO coefficient corresponds to the ⌧ ! 0 limit of
a calculation using N -jettiness regularization (c.f. Figure ??). In the NNLO calculation the errors
are obtained by adding the fitting and NLO Monte Carlo uncertainties in quadrature.

matching and the proper inclusion of the double-virtual results of ref. [? ]1. Additionally
we have checked that by setting µ2

= s, and implementing the hard function for a specific
scale, we can reproduce the full result by application of the renormalization group equations.
This test is extremely non-trivial since the µ2 dependence occurs both in the finite functions
taken from ref. [? ] (in their notation, a dependence on S) and also in the matching to the
SCET formalism. This check therefore ensures that no mistakes are made in the relative
normalization between the two parts of the hard function calculation. For the gg ! ��

pieces we have reproduced the results of refs. [? ? ], which were implemented previously in
MCFM [? ]. For the above-cut pieces we have compared our NLO prediction for ��j with
the results presented in ref. [? ], finding agreement for the isolation procedure used here
(“smooth-cone”). We have also checked the analytic calculation of the helicity amplitudes
for the real and virtual contributions to ��j production against an in-house implementation
of the numerical D-dimensional algorithm [? ].

In order to eliminate the N -jettiness slicing procedure as a cause of the difference, we
have also implemented QT -slicing in MCFM.2 This implementation has been additionally
checked, for large values of Qcut

T , with a calculation using a completely different setup. The
alternate QT -slicing calculation is implemented using the Sherpa framework [? ] and uses
the OpenLoops [? ] and BlackHat [? ? ] programs to evaluate the above-cut matrix
elements. An obvious cause for concern in either of these slicing-based methods is the
dependence on the regulating parameter. When comparing our predictions it is therefore
crucial to investigate the dependence of them on this unphysical slicing parameter, either
⌧ cut or Qcut

T as appropriate.
As a point of reference, we first study the dependence of the total NLO cross section

on the slicing parameter in Figure ??. To assess the agreement with the known result,
we divide the results of these calculations with the one obtained from the existing NLO
calculation of MCFM. This implementation of the pp ! �� process [? ] uses Catani-
Seymour dipoles [? ] to regulate the infrared divergences and thus contains no dependence
on a slicing parameter. The figure indicates that the slicing results approach the correct

1
We have adjusted the results of ref. [? ] to account for small typos in the manuscript, as detailed in

Appendix ??.

2
The QT -slicing method is based on the same factorization and ingredients that were used in the previous

QT -subtraction calculation [? ].
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(S. Catani, L. Cieri, D. de Florian, G. 
Ferrera and M. Grazini 11)   MCFM  (Campbell, Ellis Li CW 16)

Has since been corrected to numbers consistent with the MCFM 
calculation.
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CF 8
Boughezal,  Campbell,  Ellis, Focke,  Giele, Liu, Petriello and CW 16, 

Our attempt to address this is, 
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Processes in 8.0

Figure 4. The ratio of the MCFM calculation of the NNLO coefficient to the known result presented
in Table 6, as a function of the N -jettiness resolution parameter T cut

0 (in GeV). The comparison
is performed for gg ! H, Z, W+, ZH and W±H production and the lines represent fits to the
individual points using the form given in Eq. (5.1).

crucial to apply the basic fiducial cuts introduced earlier in order to obtain a percent level
agreement with the NNLO coefficient.
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Figure 10. The evaluation time (in seconds) needed to calculate the total cross section for the
processes pp ! W+ ! l+⌫, pp ! Z ! l+l�, pp ! H ! ��, pp ! H + W+ ! �� + l+⌫,
pp ! H + Z ! �� +

+l� and pp ! �� at NNLO as a function of the number of MPI processes
used (each MPI process uses openMP on 6 cores).

T cut
0 W+ Z H HW+ HZ ��

0.001 2% (1397) 0.9% (2770) 0.05% (1256) 10% (1263) 6% (1939) 0.4% (3706)
0.005 0.7% (1358) 0.4% (2701) 0.04% (1234) 3% (1238) 2% (1906) 0.2% (3661)
0.01 0.5% (1356) 0.2% (2677) 0.04% (1214) 2% (1222) 1% (1847) 0.15% (3585)
0.05 0.2% (1315) 0.08% (2572) 0.04% (1197) 0.6% (1206) 0.4% (1841) 0.09% (3492)
0.1 0.09% (1307) 0.05% (2526) 0.04% (1186) 0.3% (1186) 0.2% (1847) 0.08% (3427)
0.5 0.04% (1266) 0.04% (2356) 0.04% (1176) 0.1% (1150) 0.09% (1768) 0.07% (3376)

Table 10. The relative statistical precision (in percentages) on the pp ! W+ ! l+⌫, pp ! Z !
l+l�, pp ! H ! ��, pp ! H + W+ ! �� + l+⌫ pp ! H + Z ! �� + l+l� and pp ! �� cross
sections at NNLO as a function of T cut

0 (in GeV) using 4 ⇥ 2 ⇥ 6 cores. Also given in brackets is
the evaluation time (in seconds).

the power corrections. Looking at Table 11 we see the required value of T cut
0 to reduce the

power corrections to a 1% or a 0.2% level.3 First, focussing on the 1% uncertainty we see
that in all cases statistical error obtained with the 10,000,000 events is smaller than 1%.
The worst case is the inclusive W+ production with a statistical uncertainty of 0.7%. For
all other cases the statistical error is more than on order of magnitude smaller. To achieve
a systematic error of about 0.2% we see that we need to reduce the statistical uncertainty
significantly in order to be smaller than the systematic error. The reduction for some

3
The size of the power corrections for the diphoton process is obtained from the results of ref. [33].
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Boughezal,  Campbell,  Ellis, Focke,  Giele, Liu, Petriello and CW 16, 

Code is public and can be downloaded from 
mcfm.fnal.gov 

We are interested in feedback from users on how 
easy it is to run/install the code. How stable it is 
etc. A successful run out of the singlet code may 
make future release of a public NNLO +jet more 
likely…

http://mcfm.fnal.gov
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Recent results for Dibosons
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At LO and NLO we have topologies which are the same as for single 
vector boson production (Drell-Yan)

Figure 1. Drell-Yan like production modes for the associated production of a Higgs boson. Shown
are representative Feynman diagrams needed to compute the O(↵0

S) (left) and O(↵S) (center and
right) parts of the production cross section.

Figure 2. Drell-Yan like production modes for the associated production of a Higgs boson. Shown
are representative Feynman diagrams needed to compute the O(↵2

S) corrections to the process.
Examples are shown for each of the 0-, 1-, and 2-parton phase space configurations.

d�
(2),DY
pp!`1`2H

contains singularities of IR origin. In order to regularize these we use the re-
cently developed ⌧ -cutoff prescription [27–29]. This prescription uses the N-jetiness variable
of SCET to define a ⌧ parameter which splits the NNLO calculation into two pieces. Below
the ⌧ -cutoff parameter SCET is used to provide an approximation for the full calculation.
Above the ⌧ -cutoff the calculation is an NLO (V H+ j) process, and can be evaluated using
traditional techniques. Since the SCET formalism below the ⌧ is approximate, the value of
⌧ should be taken as small as is feasibly possible. A check of the implementation is thus
obtained by checking the complete cancellation of the logarithmic pieces above and below
the cut. For our process, which does not contain any final state jets in the Born phase
space, the ⌧ -cutoff prescription is similar to the qT subtraction [30] used in previous calcu-
lations [9]. For more details on the implementation of the regularization scheme in MCFM,
we refer the reader to [? ]. CW my discussion here was probably a bit brief and we

probably need some more references

Therefore in order to implement the DY pieces into MCFM we need the two-loop
virtual amplitude [6] interpreted in terms of the hard function of SCET, and the NLO
implementation of V Hj. The results for the two-loop virtual amplitude are readily available
in the literature, and we have calculated the NLO corrections to V Hj and implemented
them in MCFM, details of the calculation are presented in Appendix ??.

– 4 –

At NNLO we have extensions to these topologies

Double virtual, Can be obtained from

classic form factor calculation  WH1 jet @ NLO

Campbell,  Ellis, CW 16



Figure 3. Production modes for the contributions which are proportional to the top Yukawa
coupling yt for the associated production of a Higgs boson. These type of topologies occur for
either WH or ZH, and interfere with the LO amplitude.

Figure 4. Production modes for the contributions which are proportional to the top Yukawa
coupling yt for the associated production of a Higgs boson. These type of topologies only occur for
ZH

2.3 Top Yukawa contributions

A new type of process opens up at O(↵2
s) and corresponds to diagrams in which the Higgs

boson does not couple directly to the vector boson, but instead couples to a massive quark.
Since the top-quark has by far the largest Yukawa coupling, these contributions are dom-
inated by the top-quark loops. These yt diagrams further sub-divide into two categories.
The first kind, for which representative diagrams are presented in Fig 3, consist of a closed
loop of heavy quarks which do not radiate the vector boson. The second kind, illustrated in
Fig 4 contain a closed loop of fermions which radiates both the Higgs and the vector boson.
Flavor conservation mandates that the latter examples are forbidden if the radiated boson
is a W . Therefore the first topologies (Fig. 3) occur for both WH and ZH and the latter
topologies occur only for ZH. Both sets of topologies can have two-loop qq topologies,
which interfere with the LO amplitude, and one-loop qqg topologies, which interfere with
the qqgV H tree amplitude. These pieces have been computed for on-shell final state parti-
cles [7] and we follow the nomenclature introduced in their paper. We refer to the two-loop
diagrams as V and the one-loop diagrams as R, the two topologies are distinguished by I

(for those which occur for both WH and ZH) and II (ZH) only. In ref. [7] these pieces
were computed and found to contribute around 1 � 3% of the total NNLO cross section.
Whilst this may appear to be a small (and hence neglectible) contribution, the total NNLO
correction from the DY pieces discussed previously is itself of the same order. Therefore in
order to obtain an reliable prediction at O(↵2

s) it is crucial to include these pieces. Hence
the inclusion of these contributions in a fully flexible Monte Carlo code is one of the primary
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In addition at NNLO there are new channels which open up which 
depend on the top Yukawa coupling (and not through HVV)
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In addition at NNLO there are new channels which open up which 
depend on the top Yukawa coupling (and not through HVV)

Gluon PDFS will make this bit 
important! 
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Figure 9. The cross-section in femtobarns as a function of the minimum transverse momentum of
the Z boson pZT . The upper panel presents the total cross-section, the middle panel presents the
impact of the higher order corrections, the lower plot presents the total ↵2

S coefficient.

Figure 10. The cross-section in femtobarns as a function of the number of jets (light plus b-jets)
for W+H at 13 TeV. The solid lines represent predictions which include the H ! bb decay at NLO.

jets in the final state, with the (n + 2)-jet bin corresponding to the LO prediction for
V H + n jets. In Fig. 10 we present NLO and NNLO predictions, with NLO (solid) and
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Figure 8. The cross-section in femtobarns as a function of the minimum transverse momentum
of the W+ (left) and W� (right) boson, pWT . The upper panel presents the total cross-section, the
middle panel presents the impact of the higher order corrections, the lower plot presents the DY

and yt ↵
2
S coefficients.

the total cross section as a function of the minimum transverse momentum of the vector
boson in Figs. 8 (WH) and 9 (ZH). We focus on the LHC operating at

p
s = 13 TeV. To

produce these results we apply the basic cuts described above. The results of the previous
figures are also manifest in these plots: the initial impact of higher order corrections for
W�H is slightly larger (at NLO), but the impact of the NNLO corrections is similar for
both charges in W±H. It is also clear that ZH has much larger NNLO corrections than
WH. Particularly rich signal bins in the experimental analysis correspond to pVT > 120 GeV
and pVT > 160 GeV. For these choices the signal cross-section is around 30-40% and 15�20%

of the pVT -inclusive result, respectively. The impact of NLO is a mild enhancement in the
tail of the pVT distribution for all process. For WH production the NNLO corrections
are reasonably flat in pVT , while the NNLO corrections to the ZH process become more
pronounced in the high pVT region. This is due almost exclusively to the yt correction,
which hardens the spectrum as can be clearly seen in the middle panel of Fig. 9.

We now turn our attention to jet-based observables. In Figure 10 we present the cross-
section as a function of the total number of jets (i.e. b-jets plus light jets). The plot on the
left-hand side has only the basic lepton cuts applied, while on the right pVT > 120 GeV is
required in addition to the basic lepton cuts. Since the Higgs boson is a resonance decaying
to massive quarks, a well-defined cross-section can be computed without any requirement
on the number of b-jets present. An NnLO prediction can then have between 0 and (n+2)

– 12 –

Experimental analysis require fairly hard cuts on vector boson transverse momenta 
to suppress top backgrounds.  

Top loops make up ~30-50% of total NNLO correction (not in previous MC)

NNLO effects are much larger in ZH, due to gg=>ZH loops. 
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Already in Run I pp=>V(H=>WW)=> leptons was an experimentally viable 
channel. In Run II its going to be studied in much greater detail. 

For us the process is particularly interesting, since it provides a great test of N-
jettiness slicing for a  challenging final state phase space. 
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Already in Run I pp=>V(H=>WW)=> leptons was an experimentally viable 
channel. In Run II its going to be studied in much greater detail. 

For us the process is particularly interesting, since it provides a great test of N-
jettiness slicing for a  challenging final state phase space. 

The LO phase space is 16 dimensional

Real phase space at NLO is 19 dimensional

Double real phase space is 22 dimensional
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Figure 14. Differential predictions for the transverse mass of the lepton-/ET system for W+H(left)
and ZH (right) production at the 14 TeV LHC.

Figure 15. The cross-section as a function of the number of jets, nj , for W+H (left) and ZH

(right) with H ! WW ⇤ decays at the 14 TeV LHC

Finally in Fig. 15 we present the cross-section as a function of the number of additional
jets, where the basic jet definition is used from the previous section, pjT > 25 GeV and
|⌘j | < 2.5. The nj distribution for these decays are different from those studied previously
in the H ! bb section, since now the jets are only produced through initial state radiation,
with no contamination from jets arising from the decay. For the WH process, around 40%
of the events have one or more jets in the final state. For ZH production the percentage
drops to around 35% due to the presence of the gg ! ZH contribution that only populates

– 18 –

We are able to run the code at NNLO and make distributions!
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Figure 14. Differential predictions for the transverse mass of the lepton-/ET system for W+H(left)
and ZH (right) production at the 14 TeV LHC.

Figure 15. The cross-section as a function of the number of jets, nj , for W+H (left) and ZH

(right) with H ! WW ⇤ decays at the 14 TeV LHC

Finally in Fig. 15 we present the cross-section as a function of the number of additional
jets, where the basic jet definition is used from the previous section, pjT > 25 GeV and
|⌘j | < 2.5. The nj distribution for these decays are different from those studied previously
in the H ! bb section, since now the jets are only produced through initial state radiation,
with no contamination from jets arising from the decay. For the WH process, around 40%
of the events have one or more jets in the final state. For ZH production the percentage
drops to around 35% due to the presence of the gg ! ZH contribution that only populates
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We are able to run the code at NNLO and make distributions!

Figure 3. Production modes for the contributions which are proportional to the top Yukawa
coupling yt for the associated production of a Higgs boson. These type of topologies occur for
either WH or ZH, and interfere with the LO amplitude.

Figure 4. Production modes for the contributions which are proportional to the top Yukawa
coupling yt for the associated production of a Higgs boson. These type of topologies only occur for
ZH

2.3 Top Yukawa contributions

A new type of process opens up at O(↵2
s) and corresponds to diagrams in which the Higgs

boson does not couple directly to the vector boson, but instead couples to a massive quark.
Since the top-quark has by far the largest Yukawa coupling, these contributions are dom-
inated by the top-quark loops. These yt diagrams further sub-divide into two categories.
The first kind, for which representative diagrams are presented in Fig 3, consist of a closed
loop of heavy quarks which do not radiate the vector boson. The second kind, illustrated in
Fig 4 contain a closed loop of fermions which radiates both the Higgs and the vector boson.
Flavor conservation mandates that the latter examples are forbidden if the radiated boson
is a W . Therefore the first topologies (Fig. 3) occur for both WH and ZH and the latter
topologies occur only for ZH. Both sets of topologies can have two-loop qq topologies,
which interfere with the LO amplitude, and one-loop qqg topologies, which interfere with
the qqgV H tree amplitude. These pieces have been computed for on-shell final state parti-
cles [7] and we follow the nomenclature introduced in their paper. We refer to the two-loop
diagrams as V and the one-loop diagrams as R, the two topologies are distinguished by I

(for those which occur for both WH and ZH) and II (ZH) only. In ref. [7] these pieces
were computed and found to contribute around 1 � 3% of the total NNLO cross section.
Whilst this may appear to be a small (and hence neglectible) contribution, the total NNLO
correction from the DY pieces discussed previously is itself of the same order. Therefore in
order to obtain an reliable prediction at O(↵2

s) it is crucial to include these pieces. Hence
the inclusion of these contributions in a fully flexible Monte Carlo code is one of the primary
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Figure 1. Representative Feynman diagrams for the calculation of pp ! �� at NNLO. From
left to right these correspond to double virtual (calculated in ref. [48]), real-virtual and real-real
corrections.

calculation.

2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation

�NLO
�� = �LO +��NLO

�NNLO
�� = �NLO +��NNLO

= �LO +��NLO
+��NNLO (2.1)

In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref [48], and for the real-virtual in [49], tree-level amplitudes for the real-real can
be found in [50].

After UV renormalization the individual component pieces of the calculation still con-
tain copious singularities of infrared (IR) origin. These infrared poles must be regulated
and combined across the different phase spaces in order to ensure that a sensible prediction
is obtained. As discussed in the introduction, we will use the N -jettiness slicing technique
proposed in refs [29, 37] for this task. This results in an above-cut contribution correspond-
ing to the calculation of pp ! ��j at NLO. The below-cut contribution requires 2-loop
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Figure 2. Representative Feynman diagrams for the calculation of gg ! �� at LO (top left) and
NLO (the remainder). The virtual two-loop corrections are shown in the top right, while the bottom
row corresponds to real radiation contributions.

soft [51, 52] and beam [53] functions, together with the process-dependent hard function.
Various component pieces of this calculation, including explicit results for the hard function,
are given in Appendix A

2.2 gg initiated loops at LO and NLO

The NNLO calculation of �� production represents the first order in perturbation theory
that is sensitive to gg initial states. One class of gg configurations corresponds to real-real
corrections, i.e. the gg ! qq�� matrix element that is related to the contribution shown in
figure 1 (right) by crossing. These pieces are combined with contributions from the DGLAP
evolution of the parton distribution functions in the real-virtual and double-virtual terms
to ensure an IR-finite result. The second type of contribution is due to nF “box” loops, for
which a representative Feynman diagram is shown in the top left corner of Figure 2. This
contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (⇡ �LO), primarily due to the large
gluon flux at LHC energies and the fact that this contribution sums over different quark
flavors in the loop. In this section, we focus on nF = 5 light quark loops. Since this
contribution is clearly important for phenomenology it is interesting to try to isolate and
compute higher order corrections to it. We illustrate typical component pieces of these
NLO corrections in the remaining diagrams in Figure 2. They comprise two-loop gg ! ��

amplitudes, and one-loop ggg�� and gqq�� amplitudes. A NLO calculation of gg ! ��

including the two-loop and one-loop ggg�� amplitudes was presented in refs. [20, 21]. An
infrared-finite calculation can be obtained from the gg ! �� two loop amplitudes and the
ggg�� one-loop amplitudes, provided that a suitable modification to the quark PDFs is used
(essentially using a LO evolution for the quark PDFs and a NLO evolution for the gluon
PDFs). On the other hand if the qqg�� amplitudes are included then the corresponding
collinear singularity can be absorbed into the quark PDFs as normal at NLO, allowing
for a fully consistent treatment. In the original calculation [20, 21] (and the corresponding
implementation in MCFM [46]) the first approach was taken. Here we will follow the second
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�[fb] LO NLO NNLO
µF = µR = m��/2 5045 ± 1 26581 ± 23 45588 ± 97
µF = µR = m�� 5712 ± 2 26402 ± 25 43315 ± 54
µF = µR = 2m�� 6319 ± 2 26045 ± 24 41794 ± 77

Table 1. Cross sections reported in ref. [? ].

pieces always as �NNLO
+ ��N3LO

gg,nF
. Our default scale choice for the renormalization and

factorization scales will be µ = m�� .

3 Validation

In this section we compare our results for pp ! �� with those presented in ref. [? ]. A
summary of cross-sections that have been computed in that work is shown in Table ??.
To emulate their calculation we impose a series of phase space selection cuts. The cuts on
the transverse momenta of the photons depend on their relative size, phardT > 40 GeV and
psoftT > 25 GeV. The photons are also required to be central, |⌘� | < 2.5 and in addition we
require that the invariant mass of the photon-photon system lies in the interval 20  m�� 
250 GeV. Finally at NLO and NNLO we impose the following isolation requirement [? ]
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T
�

✓
1� cos r

1� cosR

◆n

, (3.1)

with n = 1, ✏� = 0.5 and R = 0.4. We use ↵ = 1/137 and the remaining EW parameters
are set to the default values in MCFM. The PDFs are taken from MSTW2008 [? ] and
are matched to the appropriate order in perturbation theory. The renormalization and
factorization scales are mostly set to the invariant mass of the photon pair µF = µF = m�� ,
although we will also present results for µF = µR = m��/2 and µF = µR = 2m�� .

The results that we obtain from our implementation in MCFM are presented in Table ??
and should be compared with the results from ref. [? ] that are shown in Table ??. Whilst
our LO and NLO predictions are in good accord, we find no such agreement for the NNLO
cross sections, for any of the choices of scale. The discrepancy is approximately 3pb, or
around 8% of the total NNLO prediction. However we do note that the size of the scale
variation, i.e. the departures from the central choice, is the same for both calculations.

Since we therefore do not agree with the essential results of the existing literature we
now describe the further checks that we have performed on our calculation. Several of
the ingredients for the below-cut contribution have been reused from previous calculations
where good agreement with the literature results was obtained. Specifically, the soft and
beam functions have already been used to compute the Drell-Yan and associated Higgs
production processes [? ? ]. The MCFM predictions for these cross sections agree perfectly
with the known results from the literature. The remaining below-cut contribution, the
hard function, has been implemented in two independent codes that check both the SCET
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Figure 1. Representative Feynman diagrams for the calculation of pp ! �� at NNLO. From
left to right these correspond to double virtual (calculated in ref. [48]), real-virtual and real-real
corrections.
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2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation

�NLO
�� = �LO +��NLO

�NNLO
�� = �NLO +��NNLO

= �LO +��NLO
+��NNLO (2.1)

In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref [48], and for the real-virtual in [49], tree-level amplitudes for the real-real can
be found in [50].

After UV renormalization the individual component pieces of the calculation still con-
tain copious singularities of infrared (IR) origin. These infrared poles must be regulated
and combined across the different phase spaces in order to ensure that a sensible prediction
is obtained. As discussed in the introduction, we will use the N -jettiness slicing technique
proposed in refs [29, 37] for this task. This results in an above-cut contribution correspond-
ing to the calculation of pp ! ��j at NLO. The below-cut contribution requires 2-loop
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Figure 2. Representative Feynman diagrams for the calculation of gg ! �� at LO (top left) and
NLO (the remainder). The virtual two-loop corrections are shown in the top right, while the bottom
row corresponds to real radiation contributions.

soft [51, 52] and beam [53] functions, together with the process-dependent hard function.
Various component pieces of this calculation, including explicit results for the hard function,
are given in Appendix A

2.2 gg initiated loops at LO and NLO

The NNLO calculation of �� production represents the first order in perturbation theory
that is sensitive to gg initial states. One class of gg configurations corresponds to real-real
corrections, i.e. the gg ! qq�� matrix element that is related to the contribution shown in
figure 1 (right) by crossing. These pieces are combined with contributions from the DGLAP
evolution of the parton distribution functions in the real-virtual and double-virtual terms
to ensure an IR-finite result. The second type of contribution is due to nF “box” loops, for
which a representative Feynman diagram is shown in the top left corner of Figure 2. This
contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (⇡ �LO), primarily due to the large
gluon flux at LHC energies and the fact that this contribution sums over different quark
flavors in the loop. In this section, we focus on nF = 5 light quark loops. Since this
contribution is clearly important for phenomenology it is interesting to try to isolate and
compute higher order corrections to it. We illustrate typical component pieces of these
NLO corrections in the remaining diagrams in Figure 2. They comprise two-loop gg ! ��

amplitudes, and one-loop ggg�� and gqq�� amplitudes. A NLO calculation of gg ! ��

including the two-loop and one-loop ggg�� amplitudes was presented in refs. [20, 21]. An
infrared-finite calculation can be obtained from the gg ! �� two loop amplitudes and the
ggg�� one-loop amplitudes, provided that a suitable modification to the quark PDFs is used
(essentially using a LO evolution for the quark PDFs and a NLO evolution for the gluon
PDFs). On the other hand if the qqg�� amplitudes are included then the corresponding
collinear singularity can be absorbed into the quark PDFs as normal at NLO, allowing
for a fully consistent treatment. In the original calculation [20, 21] (and the corresponding
implementation in MCFM [46]) the first approach was taken. Here we will follow the second
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3 Validation

In this section we compare our results for pp ! �� with those presented in ref. [? ]. A
summary of cross-sections that have been computed in that work is shown in Table ??.
To emulate their calculation we impose a series of phase space selection cuts. The cuts on
the transverse momenta of the photons depend on their relative size, phardT > 40 GeV and
psoftT > 25 GeV. The photons are also required to be central, |⌘� | < 2.5 and in addition we
require that the invariant mass of the photon-photon system lies in the interval 20  m�� 
250 GeV. Finally at NLO and NNLO we impose the following isolation requirement [? ]
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with n = 1, ✏� = 0.5 and R = 0.4. We use ↵ = 1/137 and the remaining EW parameters
are set to the default values in MCFM. The PDFs are taken from MSTW2008 [? ] and
are matched to the appropriate order in perturbation theory. The renormalization and
factorization scales are mostly set to the invariant mass of the photon pair µF = µF = m�� ,
although we will also present results for µF = µR = m��/2 and µF = µR = 2m�� .

The results that we obtain from our implementation in MCFM are presented in Table ??
and should be compared with the results from ref. [? ] that are shown in Table ??. Whilst
our LO and NLO predictions are in good accord, we find no such agreement for the NNLO
cross sections, for any of the choices of scale. The discrepancy is approximately 3pb, or
around 8% of the total NNLO prediction. However we do note that the size of the scale
variation, i.e. the departures from the central choice, is the same for both calculations.

Since we therefore do not agree with the essential results of the existing literature we
now describe the further checks that we have performed on our calculation. Several of
the ingredients for the below-cut contribution have been reused from previous calculations
where good agreement with the literature results was obtained. Specifically, the soft and
beam functions have already been used to compute the Drell-Yan and associated Higgs
production processes [? ? ]. The MCFM predictions for these cross sections agree perfectly
with the known results from the literature. The remaining below-cut contribution, the
hard function, has been implemented in two independent codes that check both the SCET
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Figure 1. Representative Feynman diagrams for the calculation of pp ! �� at NNLO. From
left to right these correspond to double virtual (calculated in ref. [48]), real-virtual and real-real
corrections.
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In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation
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In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref [48], and for the real-virtual in [49], tree-level amplitudes for the real-real can
be found in [50].

After UV renormalization the individual component pieces of the calculation still con-
tain copious singularities of infrared (IR) origin. These infrared poles must be regulated
and combined across the different phase spaces in order to ensure that a sensible prediction
is obtained. As discussed in the introduction, we will use the N -jettiness slicing technique
proposed in refs [29, 37] for this task. This results in an above-cut contribution correspond-
ing to the calculation of pp ! ��j at NLO. The below-cut contribution requires 2-loop
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Figure 2. Representative Feynman diagrams for the calculation of gg ! �� at LO (top left) and
NLO (the remainder). The virtual two-loop corrections are shown in the top right, while the bottom
row corresponds to real radiation contributions.

soft [51, 52] and beam [53] functions, together with the process-dependent hard function.
Various component pieces of this calculation, including explicit results for the hard function,
are given in Appendix A

2.2 gg initiated loops at LO and NLO

The NNLO calculation of �� production represents the first order in perturbation theory
that is sensitive to gg initial states. One class of gg configurations corresponds to real-real
corrections, i.e. the gg ! qq�� matrix element that is related to the contribution shown in
figure 1 (right) by crossing. These pieces are combined with contributions from the DGLAP
evolution of the parton distribution functions in the real-virtual and double-virtual terms
to ensure an IR-finite result. The second type of contribution is due to nF “box” loops, for
which a representative Feynman diagram is shown in the top left corner of Figure 2. This
contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (⇡ �LO), primarily due to the large
gluon flux at LHC energies and the fact that this contribution sums over different quark
flavors in the loop. In this section, we focus on nF = 5 light quark loops. Since this
contribution is clearly important for phenomenology it is interesting to try to isolate and
compute higher order corrections to it. We illustrate typical component pieces of these
NLO corrections in the remaining diagrams in Figure 2. They comprise two-loop gg ! ��

amplitudes, and one-loop ggg�� and gqq�� amplitudes. A NLO calculation of gg ! ��

including the two-loop and one-loop ggg�� amplitudes was presented in refs. [20, 21]. An
infrared-finite calculation can be obtained from the gg ! �� two loop amplitudes and the
ggg�� one-loop amplitudes, provided that a suitable modification to the quark PDFs is used
(essentially using a LO evolution for the quark PDFs and a NLO evolution for the gluon
PDFs). On the other hand if the qqg�� amplitudes are included then the corresponding
collinear singularity can be absorbed into the quark PDFs as normal at NLO, allowing
for a fully consistent treatment. In the original calculation [20, 21] (and the corresponding
implementation in MCFM [46]) the first approach was taken. Here we will follow the second

– 4 –

�[fb] LO NLO NNLO
µF = µR = m��/2 5045 ± 1 26581 ± 23 45588 ± 97
µF = µR = m�� 5712 ± 2 26402 ± 25 43315 ± 54
µF = µR = 2m�� 6319 ± 2 26045 ± 24 41794 ± 77

Table 1. Cross sections reported in ref. [? ].

pieces always as �NNLO
+ ��N3LO

gg,nF
. Our default scale choice for the renormalization and

factorization scales will be µ = m�� .
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In this section we compare our results for pp ! �� with those presented in ref. [? ]. A
summary of cross-sections that have been computed in that work is shown in Table ??.
To emulate their calculation we impose a series of phase space selection cuts. The cuts on
the transverse momenta of the photons depend on their relative size, phardT > 40 GeV and
psoftT > 25 GeV. The photons are also required to be central, |⌘� | < 2.5 and in addition we
require that the invariant mass of the photon-photon system lies in the interval 20  m�� 
250 GeV. Finally at NLO and NNLO we impose the following isolation requirement [? ]
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with n = 1, ✏� = 0.5 and R = 0.4. We use ↵ = 1/137 and the remaining EW parameters
are set to the default values in MCFM. The PDFs are taken from MSTW2008 [? ] and
are matched to the appropriate order in perturbation theory. The renormalization and
factorization scales are mostly set to the invariant mass of the photon pair µF = µF = m�� ,
although we will also present results for µF = µR = m��/2 and µF = µR = 2m�� .

The results that we obtain from our implementation in MCFM are presented in Table ??
and should be compared with the results from ref. [? ] that are shown in Table ??. Whilst
our LO and NLO predictions are in good accord, we find no such agreement for the NNLO
cross sections, for any of the choices of scale. The discrepancy is approximately 3pb, or
around 8% of the total NNLO prediction. However we do note that the size of the scale
variation, i.e. the departures from the central choice, is the same for both calculations.

Since we therefore do not agree with the essential results of the existing literature we
now describe the further checks that we have performed on our calculation. Several of
the ingredients for the below-cut contribution have been reused from previous calculations
where good agreement with the literature results was obtained. Specifically, the soft and
beam functions have already been used to compute the Drell-Yan and associated Higgs
production processes [? ? ]. The MCFM predictions for these cross sections agree perfectly
with the known results from the literature. The remaining below-cut contribution, the
hard function, has been implemented in two independent codes that check both the SCET
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Cross sections 

Its interesting to compare NNLO with NNLO + gg@NLO, at 7 TeV not 
much to tell between the two predictions and agreement with data. 


At 13 TeV predictions separate, would be interesting to see which is best  
(its non trivial, since we are missing pieces from the N3LO prediction 

which could easily drive the prediction back down). 
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Out of the box NNLO does a very nice job of describing CMS 7 TeV Data
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Out of the box NNLO does a very nice job of describing CMS 7 TeV Data

Looks like adding in additional gluon pieces helps 
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NNLO does great here too, (even though its not really an NNLO observable) 

Additional gg pieces help at higher pt, but not really in the soft region
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Figure 2: The leading-lepton pT (left) and the ∆φ (right) distributions at NLO and NNLO

compared to the CMS data. In the lower panels the ratio of our theoretical results over the

data, and the NNLO result normalized to the central NLO prediction are presented. The bands

correspond to scale variations as described in the text.

In Fig. 2 we show the analogous results for the leading-lepton pT distribution (left) and the
azimuthal separation (∆Φ) of the two Z candidates (right). As in Fig. 1, we see that the NNLO
effects on the pT distribution do not change the comparison with the data in a significant way.
The NNLO corrections are also relatively small in most of the range of pT considered, except
for the low pT region, where they increase significantly. This effect is due to the gluon-fusion
contribution, whose relative impact increases as pT decreases. The situation is different for the
∆Φ distribution. Here the NNLO corrections improve the agreement with the data, except for
the first bin, where the CMS measurement is an order of magnitude below the theoretical NNLO
prediction. The larger impact of NNLO corrections in the ∆Φ distribution can be understood
easily by the observation that at LO the reconstructed Z bosons are always back-to-back, i.e.,
∆Φ(Z1, Z2) = π. As a consequence, the NNLO calculation is effectively NLO in the region
0 ≤ ∆Φ < π. The NNLO corrections amount to about +25% when ∆Φ∼< 1.5, and decrease as
∆Φ increases. We note that this effect is entirely due to the NNLO corrections to the qq̄ channel
addressed in this paper, since the loop-induced gluon-fusion contribution, which also enters at
NNLO, affects the ∆Φ distribution only at ∆Φ = π. The NLO scale uncertainties are about
±11%, while at NNLO the uncertainties are about ±5% at low ∆Φ, and decrease to about ±2%
at high ∆Φ.

We have presented the first complete NNLO QCD calculation for the production of four charged
leptons in the ZZ signal region at the LHC. We have studied the impact of NNLO corrections on
the fiducial cross sections and distributions measured by ATLAS and CMS at the LHC. As for
the fiducial cross sections, we found about +15% NNLO corrections w.r.t. the NLO prediction,
consistent with what was found for the inclusive cross section for on-shell ZZ production [23].
The impact on the normalized distributions we considered is small compared to the experimental
uncertainties, but leads to an improved agreement with the data in the case of the ∆Φ distribution
of the two Z candidates. Our calculation was performed with the numerical program Matrix,

5

Channel σLO (fb) σNLO (fb) σNNLO (fb) σexp (fb)

e+e−e+e−
3.547(1)+2.9%

−3.9% 5.047(1)+2.8%
−2.3% 5.79(2)+3.4%

−2.6%

4.6+0.8
−0.7(stat)

+0.4
−0.4(syst.)

+0.1
−0.1(lumi.)

µ+µ−µ+µ− 5.0+0.6
−0.5(stat)

+0.2
−0.2(syst.)

+0.2
−0.2(lumi.)

e+e−µ+µ− 6.950(1)+2.9%
−3.9% 9.864(2)+2.8%

−2.3% 11.31(2)+3.2%
−2.5% 11.1+1.0

−0.9(stat)
+0.5
−0.5(syst.)

+0.3
−0.3(lumi.)

Table 1: Fiducial cross sections and scale uncertainties for ATLAS cuts at LO, NLO, and NNLO
in the three considered leptonic decay channels. The ATLAS data are also shown.

same flavours, the pairing ambiguity is resolved by choosing the pair with the smallest distance
from mZ . This pair is called Z1, the remaining pair is called Z2. The invariant masses of the two
reconstructed lepton pairs are required to fulfill 60 GeV ≤ mll ≤ 120 GeV. We note that in the
case of identical flavours this definition of the fiducial region does not prevent the invariant masses
of the other two possible lepton pairs from becoming arbitrarily small, giving rise to a collinear
γ∗ → l−l+ singularity. To avoid that, we follow CMS and add an additional cut mll > 4 GeV
on all lepton pairs of the same flavours and opposite charges.§ The corresponding fiducial cross
sections and scale uncertainties, computed as above, are reported in Tab. 2. Like for the ATLAS
analysis, the NNLO corrections increase the NLO fiducial cross section by about 15%. The scale
uncertainties are similar to those reported in Tab. 1.

Channel σLO (fb) σNLO (fb) σNNLO (fb)

e+e−e+e− 3.149(1)+3.0%
−4.0% 4.493(1)+2.8%

−2.3% 5.16(1)+3.3%
−2.6%

µ+µ−µ+µ− 2.973(1)+3.1%
−4.1% 4.255(1)+2.8%

−2.3% 4.90(1)+3.4%
−2.6%

e+e−µ+µ− 6.179(1)+3.1%
−4.0% 8.822(1)+2.8%

−2.3% 10.15(2)+3.3%
−2.6%

Table 2: Fiducial cross sections and scale uncertainties for CMS cuts at LO, NLO, and NNLO in
the three considered leptonic decay channels.

CMS does not report the fiducial cross sections corresponding to the above cuts, but only
normalized distributions, to which we compare our results. We start with the invariant-mass
distribution of the four leptons, which is depicted in Fig. 1. The lower panels show the theory/data
comparison, and the NNLO result normalized to the central NLO prediction. We see that the
NNLO corrections have a limited impact in the comparison with the data, which still have large
uncertainties. The NNLO effects on the normalized distribution are relatively small: they are
completely negligible at low invariant masses, and they increase to −5% in the high mass region.
This means that the NNLO corrections make the invariant mass distribution slightly softer. We
have checked that this effect is due to the gluon-fusion contribution, whose relative effect decreases
at high masses, due to the larger values of Bjorken x that are probed. The NLO (NNLO) scale
uncertainties range from about ±2% (±1%) at low mZZ to ±4% (±2%) at high mZZ .

§We thank Alexander Savin for providing us with this information.
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Process pp! `+`�� and pp! ⌫⌫̄�
⇤FF 1

Observed 95% C.L. Expected 95% C.L.
h�3 [�9.5, 9.9] ⇥ 10�4 [�1.8, 1.8] ⇥ 10�3

hZ
3 [�7.8, 8.6] ⇥ 10�4 [�1.5, 1.5] ⇥ 10�3

h�4 [�3.2, 3.2] ⇥ 10�6 [�6.0, 5.9] ⇥ 10�6

hZ
4 [�3.0, 2.9] ⇥ 10�6 [�5.5, 5.4] ⇥ 10�6

⇤FF 4 TeV
Observed 95% C.L. Expected 95% C.L.

h�3 [�1.6, 1.7] ⇥ 10�3 [�3.0, 3.1] ⇥ 10�3

hZ
3 [�1.3, 1.4] ⇥ 10�3 [�2.5, 2.6] ⇥ 10�3

h�4 [�1.2, 1.1] ⇥ 10�5 [�2.2, 2.1] ⇥ 10�5

hZ
4 [�1.0, 1.0] ⇥ 10�5 [�1.9, 1.9] ⇥ 10�5

Table 11: Observed and expected one-dimensional limits on hV
3 and hV

4 , assuming that any excess in data over
background predictions is due solely to hV

3 or hV
4 and that only one of them is nonzero.

 Coupling strength-3 10×

15− 10− 5− 0 5 10 15

-1=8 TeV, 20.3 fbs, γνν and γATLAS, ll
-1=8 TeV, 19.6 fbs, γννCMS, 

-1=7 TeV, 5.0 fbs, γνν and γCMS, ll
-1=8 TeV, 19.5 fbs, γCMS, ll
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Figure 13: The 95% C.L. nonunitarized intervals (⇤FF = 1) for anomalous couplings from current and previous
ATLAS results and CMS results for the neutral aTGC h�3, hZ

3 (left) and h�4, hZ
4 (right) as obtained from Z� events.
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Figure 9: The measured (points with error bars) and predicted di↵erential cross sections as a function of m`+`�� for
the pp! `+`�� process in the inclusive Njets � 0 (left) and exclusive Njets = 0 (right) extended fiducial regions. The
error bars on the data points show the statistical and systematic uncertainties added in quadrature. The MCFM and
NNLO predictions are shown with shaded bands that indicate the theoretical uncertainties described in Section 7.1.
The Sherpa predictions are shown with shaded bands indicating the statistical uncertainties from the size of the MC
samples. The lower plots show the ratios of the predictions to data (shaded bands). The error bars on the points
show the relative uncertainties of the data measurements themselves. The bin size varies from 10 GeV to 1360 GeV.

7.2 Extended fiducial cross sections compared to SM predictions

The measured extended fiducial cross sections for pp ! `+`��+X and pp ! ⌫⌫̄� + X production are
compared to SM predictions in Table 8. The estimates of the cross section at NLO and NNLO and
their systematic uncertainties are obtained as described above. Predictions are made for both inclusive
production (no restriction on the system recoil X) and exclusive production of events having no central (|⌘|
< 4.5) jet with pT > 30 GeV. There is generally good agreement between the cross-section measurements
for these Z� channels and the SM predictions; the NNLO calculation of the inclusive cross section for the
Z(`+`�)� channel gives better agreement with the measurement than the NLO calculation.

Requiring two photons with ET > 15 GeV results in a `+`��� cross section a factor of approximately
400 times smaller than `+`�� production. The measurements for both the `+`��� and ⌫⌫̄�� channels are
compared to the NLO MCFM predictions in Table 8. The measurements in these channels are statistically
limited, but the data are consistent with the predicted SM cross sections. The measured cross sections
and the MCFM predictions are compatible within 1.7 (0.9) standard deviations in the inclusive (exclusive)
`+`��� channel, and within 1.2 standard deviations in the ⌫⌫̄�� channel.

7.3 Di↵erential cross sections compared to SM predictions

The background-subtracted, unfolded di↵erential cross sections for the E�T spectra from pp! `+`��+ X
and pp ! ⌫⌫̄� + X production are compared to SM expectations in Figures 7 and 8. For inclusive
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Figure 4: Distribution in the invariant mass of the W+W� pair, mW+W� = mµ+e�⌫µ⌫̄e . No
acceptance cuts are applied. Absolute LO (black, dotted), NLO (red, dashed) and NNLO (blue,
solid) predictions at

p
s = 8TeV (left) and

p
s = 13TeV (right) are plotted in the upper frames.

The lower frames display NLO0+gg (green, dot-dashed) and NNLO predictions normalized to NLO.
The bands illustrate the scale dependence of the NLO and NNLO predictions. In the case of ratios,
scale variations are applied only to the numerator, while the NLO prediction in the denominator
corresponds to the central scale.

contributes only at its leading order at O(↵2
S) and thus could receive large relative corrections, was

not expected to break this picture due to its overall smallness already in Ref. [46]. That conclusion
is supported by the recent calculation of the NLO corrections to the loop-induced gg channel [37].

In Figures 4–7 we present distributions that characterize the kinematics of the reconstructed
W bosons¶. Absolute predictions at the various perturbative orders are complemented by ratio
plots that illustrate the relative di↵erences with respect to NLO. In order to assess the importance
of genuine NNLO corrections, full NNLO results are compared to NLO0+gg predictions in the
ratio plots.

In Figure 4 we show the distribution in the total invariant mass, mW+W� = mµ+e�⌫µ⌫̄e . This
observable features the characteristic threshold behaviour around 2mW , with a rather long tail
and a steeply falling cross section in the o↵-shell region below threshold. Although suppressed by
two orders of magnitude, the Z-boson resonance that originates from topologies of type (b) and
(c) in Figure 1 is clearly visible at mµ+e�⌫µ⌫̄e = mZ . Radiative QCD e↵ects turn out to be largely
insensitive to the EW dynamics that governs o↵-shell W -boson decays and dictates the shape of

¶The various kinematic variables are defined in terms of the o↵-shell W -boson momenta, pW+ = pµ+ + p⌫µ and
pW� = pe� + p⌫̄e .
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Figure 1: On-shell W±Z cross section as a function of the centre-of-mass energy at LO, NLO
and NNLO. In the lower panel the curves of the main frame are normalized to the central NLO
prediction. The bands correspond to scale variations as described in the text.

tainties. When considering the relative effects of radiative corrections, the impact of the different
mass windows is completely negligible. Nevertheless, we will consistently apply the respective
mass windows when comparing to data in the following.

We first present results for the ATLAS definition of the W±Z cross sections, reported in Ta-
ble 3, where we compare with the 7 and 8TeV ATLAS measurements of Ref. [4] and Ref. [5],
respectively. Comparing these cross sections in absolute terms to the on-shell case, we find a
reduction by roughly 3% due to the applied mass-window cut and genuine off-shell effects; how-
ever, as anticipated, the relative impact of radiative corrections remains widely unchanged, again
ranging between 63% and 83% at NLO and between 8% and 11% at NNLO for the collider ener-
gies under consideration. Also the scale uncertainty bands stay almost identical when including
off-shell effects and applying the ATLAS mass cut.

Comparing with the experimentally measured cross sections from Refs. [4, 5], we find that
the inclusion of NNLO corrections clearly improves the agreement between data and theory, in
particular at 8TeV, where the measurement is most precise. While the central NLO prediction is
roughly 2σ away from the measured cross section at 8TeV, the NNLO prediction is right on top
of the data with fully overlapping uncertainty bands.

Next, we provide theory predictions for the W±Z cross sections as defined by CMS in Table 4,
where we also quote the results of the CMS measurements performed at 7 and 8TeV (reported in
Ref. [6]), and at 13TeV (reported in Ref. [7]). As already anticipated, the precise definition of the
Z-mass window has only a very mild impact on the cross section. In particular, both the relative

4

Grazzini, Kallweit, Pozzorini, Rathlev. 16 

WZ has also been calculated by the Zurich group, and 
completes the VV setup. 



56

Conclusions

The study of the production of multiple electroweak bosons 
remains a cornerstone of the LHC mission going forward. 


Given the high quality of the experimental analysis NNLO 
precision is mandated. At the accuracy we are shooting for 
EW corrections are also critical (see Ansgar’s talk)


NNLO techniques are maturing, VV is nearly all completed 


The best way to release NNLO results to the wider 
community is a challenging issue. 


MCFM 8.0 contains several singlet processes, with a full 
diboson release expected before the end of the year. 


