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Although thus far, we haven't quite cracked the SM nut....
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Although thus far, we haven't quite cracked the SM nut....

. Smug Standard Model 2+ Follow
smugsmphys

Once again, | win. #lICHEP2016 #diphoton
2T e HENABEDN -
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The “Smug” SM should be careful.... SN N A

o Hierarchy Problem

o Dark Matter (WIMP miracle?)

o Neutrino masses? - L

o Origin of EWSB 3 ¥ & § 8 3
|2

o CP violation + flavour puzzles
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The “Smug” SM should be careful.... SN N A

o Hierarchy Problem

o Dark Matter (WIMP miracle?)

o Neutrino masses? = .

o Origin of EWSB 3 ¥ & § 8 3
|2

o CP violation + flavour puzzles

All are intimately related to the weak sector. ]

and hence MBI interactions.
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MBI for Run |I
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which procedure reproduces NNLO
predictions more consistently...
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MBI for Run |I
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Why MBI @ NNLO?

Legal Disclaimer: For the purposes of this talk NNLO means NNLO with slicing
methods. The field of NNLO is in rapid development. Other methods exist and are
producing cutting edge results, but thus far slicing methods have been the most
widely applied to dibosons so I'll focus on them for this talk....
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Historical Dibosons
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Historical Dibosons

(ie)
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Initial State, is favorable
diineaiissssws®® 141 O due to PDFs
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Initial State, is favorable
to LO due to PDFs

Final State, production
of 2 heavy bosons
leaves small phase
space for additional

B cesscMissions

-
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Initial State, is favorable
to LO due to PDFs

Final State, production
of 2 heavy bosons
leaves small phase
space for additional

B cesscMissions

HIGHER ORDER CORREGTIONS SHOULD BE SMALL

-
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ZZ — III'" Analysis and Result w
§ 5§_D0,L59.8 b 5:;“&1 (@)
§4_ E:\;;is;::t'i';"ta' @ Instrumental background:
§ | Higgs Signal x40 Z /~* with two additional
& 3 + 4+ M=125GeV . e
: LU — gg-H-2Z misidentified jets/photons
T —ZH
g | @ Fake rate from jet-trigger
s o[y Py events
5 150 260 350 300 35?;0375;%)0 @ Applied to 2/3 lepton 4 Jets
Four-Lepton Invariant Mass (GeV)
Process Yield(CDF) _ Yield(DO) events
77 950+ 155 15.31+1.84 @ DO: Looser acceptance,
Bkg. 0.06:-0.03 1.484+0.31 separate lepton categories
Data 14 13

o(pp — 2Z) (pb) (I1'T)
CDF 0.9977 32 (stat) 7o g7 (syst)
DO 1.0570:34 (stat) 7o 15 (syst) £ 0.06(lumi)
MCFM 1.4+0.1

CDF: PRD 89, 112001 (2014); D0: PRD 88, 032008 (2013)
@WI” Parker, UW Madison BNL, October 28th 2014

Tevatron Diboson
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Initial State, is unfavorable to LO due
to PDFs
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Initial State, is unfavorable to LO due
to PDFs

Final State, production of heavy

bosons is cheap given large center of

. mass energy. Lots of phase space for
. emissions!
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Initial State, is unfavorable to LO due
to PDFs

Final State, production of heavy

bosons is cheap given large center of

. mass energy. Lots of phase space for
. emissions!

So this type of contributions is critical
to obtain a decent prediction.

=
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What goes into an NNLO calculation?

=
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At NNLO we have three types of final state phase spaces

O‘NLO:/‘Mvv‘Qdm(I>+/‘MRv|2dm+1(I)—|-/|MRR‘2dm+2(I>
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At NNLO we have three types of final state phase spaces

O‘NLO:/‘Mvv‘Qdm(I>+/‘MRv|2dm+1(I)—|-/|MRR‘2dm+2(I>

Two-loop double virtual one-loop squared double virtual

-
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At NNLO we have three types of final state phase spaces

O‘NLO:/‘Mvv‘Qdm(I>+/‘MRv|2dm+1(I)—|-/|MRR‘2dm+2(I>

Real-virtual (one-loop +1 X
real + 1)

-
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At NNLO we have three types of final state phase spaces

O‘NLO:/‘Mvv‘Qdm(I>+/‘MRv|2dm+1(I)—|-/|MRR‘2dm+2(I>

Real-real
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All of our contributions (VV, RV, RR) are divergent, of particular menace
are the Infra Red poles.

There are two types of IR pole in real matrix element,

3 0 — 0

Soft (particle momenta Collinear (angle between two
vanishes) massless particles vanishes)

At NNLO there are many ways to lose two partons, (double soft,

triple collinear etc etc....) m




.(é University at Buffalo The state University of New York

Slicing methods at NNLO
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A “simple” way of dealing with the IR singularities is phase space slicing
(eg. Giele Glover 92)

AT

hf"‘@(w
\\\\\\\\\\\\ I
ISL(

Z
1
i
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A “simple” way of dealing with the IR singularities is phase space slicing
(eg. Giele Glover 92)
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A “simple” way of dealing with the IR singularities is phase space slicing
(eg. Giele Glover 92)
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For color neutral final states the transverse momentum of the
recoiling EW particles determines the double and singly unresolved
regions of phase space. (Catani Grazzini 07)

do

ONNLO — /dQTEQ(Q%Ut — C]T) T /dCIT—H(QT — Q%Ut)
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For color neutral final states the transverse momentum of the
recoiling EW particles determines the double and singly unresolved
regions of phase space. (Catani Grazzini 07)

do do
ONNLO = / dgr —0(¢5" — qr) + / dgr—0(qr — q7"")

“Obtained from the CoIIins—Soper—Ster‘ ™\
_factorization theorem for small gr >
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For color neutral final states the transverse momentum of the
recoiling EW particles determines the double and singly unresolved
regions of phase space. (Catani Grazzini 07)

do
ONNLO = /dQT—Q(C]%Ut —qr) ‘|‘/

“Obtained from the CoIIins—Soper—Ster‘ ™\
_factorization theorem for small gr >

“This is an NLO cross section for one

__additional parton

. ;
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For color neutral final states the transverse momentum of the
recoiling EW particles determines the double and singly unresolved
regions of phase space. (Catani Grazzini 07)

do do
ONNLO = /dQTd TH( g7 —QT)+/dQTd TH( T — ¢
PEW
P2 P1
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The subtraction scheme fails when final state jets are present at LO,
since then there is no separation of the doubly and singly unresolved
regions based on gr

Doubly unresolved Singly unresolved

We need a resolution parameter which separates out the regions, but
works for final state jets too!
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The idea is to use the event shape variable N-jettiness (Stewart,
Tackmann, Waalewijn 09) to separate the phase space into two regions
(Boughezal, Liu, Petreillo 15’, Gaunt, Stahlhofen, Tackmann Walsh 15) which
separates the doubly-from singly unresolved regions.

Doubly unresolved Singly unresolved
Small N-jettiness, use “Large” N-jettiness, is an NLO
factorization theorem. calculation. Of X + 1 jet

-
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N-jettiness is an event shape variable, designed to veto final state jets
(Stewart, Tackmann, Waalewijn 09)
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N-jettiness is an event shape variable, designed to veto final state jets
(Stewart, Tackmann, Waalewijn 09)

* Momentum
of final state
jets and
beams

Number of

Number of final ’
state iets final state
patrons All final state A hard scale
patrons (e.g. Energy
of jets)

-
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(At least) one additional radiation is resolved,
(looks like an NLO N+1 parton calculation)

This parameter can be used to separate the doubly and singly
unresolved regions of phase space!
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The method can be used as a regularization scheme (Boughezal,
Focke, Liu, Petriello 15, Gaunt, Stahlhofen, Tackmann Walsh 15) using
N-jettiness to separate the doubly and singly unresolved regions.

ONNLO = /G@N|MN|2+/d@N+1|MN+1|29§7
—|‘/dq)N_|_2|MN_|_2|2(9§;—|-/dq)N_|_1|MN_|_1|26’;

+ / 0Dy 1o My 1|20
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The method can be used as a regularization scheme (Boughezal,
Focke, Liu, Petriello 15, Gaunt, Stahlhofen, Tackmann Walsh 15) using
N-jettiness to separate the doubly and singly unresolved regions.

ONNLO = /d@N|MN|2+/d@N+1|MN+1\29§7
+/dq)N+2|MN_|_2|26’E—|—/dq)N+1|MN_|_1‘26’§

£ / 0Dy 1| My 1|20

= Below the cut (can use factorization theorem)

= Above the cut (can use NLO code) m
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We need to understand the below cut region for the method to be

applied. Happily, a factorization theorem (Stewart, Tackmann
Waalewijn 09), based upon SCET (Bauer, Stewart et al 00’s), has
derived

O'(TN<T]CVut):/H®B®B®S® HJn + O

o B@NNLO : Gaunt Stahlhofen, Tackmann (14)
o S@NNLO : Boughezal, Liu, Petreillo (14)
o J@NNLO : Becher Neubert (06), Becher, Bell (11)

been

i)

-
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We need to understand the below cut region for the method to be
applied. Happily, a factorization theorem (Stewart, Tackmann
Waalewijn 09), based upon SCET (Bauer, Stewart et al 00’s), has been

derived Beam functions, describes radiation Jet functions, describes radiation
collinear to initial state collinear to final state jetsi_ '

O'(TN<T](<[ut):/®B®B®S®

Hard function, includes —Ioop virtual \

Soft function, describes soft radiation

o B@NNLO : Gaunt Stahlhofen, Tackmann (14)
o S@NNLO : Boughezal, Liu, Petreillo (14)
o J@NNLO : Becher Neubert (06), Becher, Bell (11)
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Perils of slicing
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When doing a slicing calculation, it is always
tempting to make this sort of plot showing above
ol | and below cut cancellations.

4 6 8 10 12 14
5% [GeV]
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When doing a slicing calculation, it is always
tempting to make this sort of plot showing above
and below cut cancellations.

However, you cant trust this plot. Its
a scam. It completely hides the
power corrections of the thing I'm
actually providing you with. The
NNLO coefficient.

12 14
e T

5" [GeV]
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When doing a slicing calculation, it is always
tempting to make this sort of plot showing above
ol | and below cut cancellations.

However, you cant trust this plot. Its
a scam. It completely hides the
power corrections of the thing I'm
actually providing you with. The
NNLO coefficient.

PR Sadly these plots are still in the literature, | need
further convincing that the power corrections are

under control here for instance....
1
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Power Corrections
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— 18F
Ha)
& 17 6cut:7_cut
8@ 16 5cut: %ut
S 15
% 14 BeassEEEEEECECEEEEEEEEEECEECECEEECECECEEEEEEEEEEEEEEEEEEEEE
3
10~ 0.001 0.010 0.100 1 10
O [GeV]

(S. Catani, L. Cieri, D. de Florian, G.
Ferrera and M. Grazini 11)

MCFM (Campbell, Ellis Li CW 16)

o|fb] LO NLO NNLO ofb) LO NLO NNLO
p = g = My /2 | 5045 + 1 | 26581 + 23 [ 45588 + 97 | | pp = pr = mo/2 | 5043 + 1 | 26578 + 13 | 42685 + 35
WF = jR = May | D712 £ 2 | 26402 + 25 | 43315 + 54 IE = R = May | 5710 £ 1 | 26444 + 12 | 40453 + 30
Wp = g = 2myy | 6319 £ 2 | 26045 + 24 | 41794 £ 77 | | prp = pr = 2m.,, | 6315 + 2 | 26110 + 13 | 38842 + 27




Power Corrections
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18F
1 7 5CUt — Tcut

b]

Q.

1 6 5cut — %ut

A O.NNLO ( 5cut) [
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14 ............. as 2 8EER TN EssasmEEEEEEEEEEEEEEEECECEEEEEEEEEEaREERNCEEEREEREEEREREE
10~* 0.001 0.010 0.100, 1 10
5CUt[GeV]

(S. Catani, L. Cieri, D. de Florian, G.
Ferrera and M. Grazini 11)

MCFM (Campbell, Ellis Li CW 16)

o|fb] LO NLO NNLO /| o|fb] LO NLO NNLO
p = iR = Meyny /2 | 5045 £ 1 | 26581 & 23 | 45588 #£ 97 | | up = pr = My /2 | 5043 £ 1 | 26578 & 13 | 42685 =& 35
W = R =My | 5712 £ 2 | 26402 + 25 | 43315 + 54 = R =My | 5710 & 1 | 26444 4+ 12 | 40453 + 30
fF = R = 2m., | 6319 £ 2 | 26045 & 24 | 41794 + 77 [E = jir = 2m~~ | 6315 £ 2 | 26110 4 13 | 38842 4 27

Has since been corrected to numbers consistent with the MCFM

calculation.
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Our attempt to address this is,

\f \f

Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello and CW 16,
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1.10

9 1.00 F § =pp—Z
2 o9sf Y \ -O-S:::W*
< 090* E 10 = & pp — HZ
1074 5 - PP — 1Y
© 125F i
o 1.00E
%b 0.75 F B
< 050F
10° =
o 1.50 R B
T 125¢ -
o 100F B
£ 075F
5 E | 1 1 1 1 T | | | |
<1 050
1 10 Number of MPI jobs
o 1'505 R
Fek Code is public and can be downloaded from
5, 07t mcfm.fnal.gov
<1 0.50 L el
o 1soETTTT We are interested in feedback from users on how
B - easy it is to run/install the code. How stable it is
2 omst : etc. A successful run out of the singlet code may
R e B T make future release of a public NNLO +jet more
e likely...

Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello and CW 16,



http://mcfm.fnal.gov
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Recent results for Dibosons
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Campbell, Ellis, CW 16

At LO and NLO we have topologies which are the same as for single
vector boson production (Drell-Yan)

Double virtual, Can be obtained from
classic form factor calculation WH1 jet @ NLO
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In addition at NNLO there are new channels which open up which
depend on the top Yukawa coupling (and not through HVV)




.(é University at Buffalo The state University of New York

In addition at NNLO there are new channels which open up which
depend on the top Yukawa coupling (and not through HVV)

Gluon PDFS will make this bit
important!
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\ED
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oeff [fb]

O 00
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Experimental analysis require fairly hard cuts on vector boson transverse momenta

O~k O

............... e
LHCI13
NNLO
NLO 7
LO
MHo=mpg+myy
NNLO/NLO NNLO/LO NLO/LO
2) y;
apPr o
\
0 50 100 150 200

Minimum p¥ [GeV]

to suppress top backgrounds.

Top loops make up ~30-50% of total NNLO correction (not in previous MC)
NNLO effects are much larger in ZH, due to gg=>ZH loops.

a? Coeff [fb]

1

CO0oO00O =
DO RNKD

............... T
LHC13
NNLO 1

NLO 1

LO ]

MHo=mpg+mgz

:/\f
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NNLO/NLO NNLO/LO  NLO/LO

-

DY Yt
ONNLO ONNLO
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Minimum p% [GeV]
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Already in Run | pp=>V(H=>WW)=> leptons was an experimentally viable
channel. In Run Il its going to be studied in much greater detail.

For us the process is particularly interesting, since it provides a great test of N-
jettiness slicing for a challenging final state phase space.
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Already in Run | pp=>V(H=>WW)=> leptons was an experimentally viable
channel. In Run Il its going to be studied in much greater detail.

For us the process is particularly interesting, since it provides a great test of N-
jettiness slicing for a challenging final state phase space.

The LO phase space is 16 dimensional

Real phase space at NLO is 19 dimensional

Double real phase space is 22 dimensio

-
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dor/dm¥H

2.x 1074}

1.x 1074}

5.x 1073}

2.x 1073}

We are able to run the code at NNLO and make distributions!

LHC14

MCFM: W*H-WWW+*—leptons
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dor/dm¥H

We are able to run the code at NNLO and make distributions!

2.x 1074}

1.x 1074}

5.x 1073}

2.x 1073}

MCFM: W*H-WWW+*—leptons

LHC14

MCFM: ZH—-ZWW*—leptons
LHCI14
5.x 1073} :
NNLO
NLO
-, LO
T 2.x105) |
S : =
g -1 ey
b | ¥ R .
o ==
- =&,
1.x 1073} ! B T
5 X 10_6 B /JO:mZ"'mH
20 =4
1.5} T .
1.0} :
05 NLO/LO § NNLO/LO NNLO/NLO
15 200 300 350 400 450

Y

250
- m# [GeV]
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Campbell, CW 14 Campbell, Ellis, Li, CW 16

AN AN '
} AN {&%{{%;é;\/
AN 0000 — 00000

(Anastasiou, Glover,

Tejeda-Yeomans 02)
NNLO N3LO
o + D04y

ey Aside from the reguipf
| | NNLO topologies, there are
7000000 . .
interesting effects from gg
Initiated pieces too.

000000y 7000000y —

A_(_:\,\N\, >m_(_:vvv\/ gg@NLO was calculated first
by (Bern, De Freitas Dixon 01),

(Bern, Dixon, Schmidt Q




% University at Buffalo The state University of New York

Campbell, CW 14 Campbell, Ellis, Li, CW 16

AVAVAVAVAV AVAVAVAVAV s AVAVAVAVAV,
Y VVV\V/ Vv

(Anastasiou, Glover,

Tejeda-Yeomans 02)
NNLO N3LO
g + A0y

000000 Aside from the reguipf
| | NNLO topologies, there are
e interesting effects from gg
Initiated pieces too.

000000y 7000000y —

A_(_:WV\, >\01m‘—«—:\/\/v\, gg@NLO was calculated first
by (Bern, De Freitas Dixon 01),

(Bern, Dixon, Schmidt Q
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Y

AVAVAVAVAV

(Anastasiou, Glover,

Tejeda-Yeomans 02)

Campbell, CW 14

Campbell, Ellis, Li, CW 16

AVAVAVAVAV s AVAVAVAVAV,
VVV\V/ Vv
00000000 <

-

=

Y

—— NN

.

O.NNLO i AO.NSLO

S A W

gg,ng

Aside from the reguiaq
NNLO topologies, there are
interesting effects from gg

Initiated pieces too.

gg@NLO was calculated first

by (Bern, De Freitas Dixon 01),
(Bern, Dixon, Schmidt Q
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40000} CMS Data MCFM

- NNLO N3LO
T "‘A(ng,np
NNLO
NLO

30000 ,-LO

9.9 9

0 1b]

20000}

10000}

lts interesting to compare NNLO with NNLO + gg@NLO, at 7 TeV not
much to tell between the two predictions and agreement with data.
At 13 TeV predictions separate, would be interesting to see which is best

(its non trivial, since we are missing pieces from the N3LO prediction I|

which could easily drive the prediction back down).
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Out of the box NNLO does a very nice job of descrlblng 'CMS 7 TeV Data
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Out of the box NNLO does a very nice job of describin C

Looks like adding in additional gluon piecs helps
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‘ | ‘ | 1} MCFM
1} MCFM CMS data | LHC7

o NNLO
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NNLO does great here too, (even though its not really an NNLO observable)
Additional gg pieces help at higher pt, but not really in the soft regio

pY [GeV]
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NNLO/NLO theory/data

Grazzini, Kallweit, Rathlev 15
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Grazzini, Kallweit, Pozzorini, Rathlev. Wiesmann 16
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Inclusion of NNLO, fixes disagreement with data. Highlights
need for NNLO (and Kkills light stops...)
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Grazzini, Kallweit, Pozzorini, Rathlev. 16
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WZ has also been calculated by the Zurich group, and
completes the VV setup.
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o The study of the production of multiple electroweak bosons
remains a cornerstone of the LHC mission going forward.

o Given the high quality of the experimental analysis NNLO
precision is mandated. At the accuracy we are shooting for
EW corrections are also critical (see Ansgar’s talk)

o NNLO techniques are maturing, VV is nearly all completed

o The best way to release NNLO results to the wider
community is a challenging issue.

o MCFM 8.0 contains several singlet processes, with a full

-

diboson release expected before the end of the year.




