Triboson Production at the LHC

Julia I. Djuvsland

KIP – Heidelberg University

WWy & WZy, Wyy, Zyy and WWW

Motivation

- Measure quartic gauge couplings
 Fixed by gauge structure in SM → Test of electroweak sector
- Complementary to the VBS analyses Advantage: 3 particles of the vertex are identified
- Model independent search for new physics Interpreted in terms of anomalous quartic gauge couplings
- Charged processes accessible for the first time $W_{\gamma\gamma}$ and WWW

Overview

In order of appearance: WWy &WZy, Wyy, Zyy, WWW

 $\rightarrow\,$ First discuss SM measurements, then BSM limits

Typically low cross section \rightarrow need large data sets All measurements use full Run 1 statistics at 8 TeV

Generals

Challenge: Isolate signal from backgrounds

- Backgrounds from detector effects (misidentified or mismeasured objects) sizeable due to low signal statistics
 - \rightarrow Usually not well modelled
 - \rightarrow Use data driven methods:
 - e.g. exploit difference in shower shapes
 - Hadronic showers much wider than EM
 - Good discriminator: isolation energy
 energy deposited around EM object
- Irreducible backgrounds typically well described and measured
 - \rightarrow Estimated using Monte Carlo

Phys. Rev. D 90, 032008 - Published 25 August 2014

First triboson analysis at the LHC:

- → Semi-leptonic WV γ final states: $evjj\gamma \& \mu vjj\gamma$
- Hadronic V-Boson decay yields larger branching ratio
- No distinction between hadronic W and Z

Event Selection

- Exactly 1 lepton $p_T^e > 30 \text{ GeV} / p_T^\mu > 25 \text{ GeV}$
- 1 photon $p_{\tau} > 30 \text{ GeV}$
- ≥ 2 jets $E_{T} > 30$ GeV, no b-tag, 70 GeV $\leq m_{ii} \leq 100$ GeV
- E_T^{miss} > 35 GeV
- m_T > 30 GeV
- Z rejection cuts in electron channel

$$m_{T} = \sqrt{p_{T}^{lep} E_{T}^{miss}} (1 - \cos \Delta \Phi^{lep.,ETmiss})$$

Phys. Rev. D 90, 032008 - Published 25 August 2014

Background estimation:

- $W\gamma + jets BG: m_{ii}$ sideband fit
- Jets misidentified as photons: extrapolated from shower shapes
- Jets misidentified as leptons: 2-component fit to E_{T}^{miss} fit
- Other BG: Monte Carlo
- → 95% C.L. limits on cross section σ = 311 fb using profile likelihood

Expected: $\sigma = (91.6 \text{ fb} \pm 21.7) \text{ fb}$

→ Good agreement with SM

ATLAS - Wyy production

Phys. Rev. Lett. 115, 031802 - Published 16 July 2015

First evidence of process: $pp \rightarrow W^{\pm}\gamma\gamma \rightarrow l^{\pm}\nu\gamma\gamma$ $(l = e/\mu)$

Event Selection

- Exactly 1 lepton $p_T > 20 \text{ GeV}$
- 2 photons p₁ > 20 GeV
- E_τ^{miss} > 25 GeV
- m_T > 40 GeV
- Z rejection cuts in e⁻ channel

Background estimation:

- Jets misidentified as photons: 2D-template fit of isolation energy
- Jets misidentified as leptons: ABCD method using E_T^{miss} and isolation energy
- Other BG: Monte Carlo

ATLAS - Wyy production

Phys. Rev. Lett. 115, 031802 - Published 16 July 2015

Inclusive and exclusive (no jets $p_{T} > 25 \text{ GeV}$) measurement

	$\sigma^{ m fid}$ [fb]	$\sigma^{ m MCFM}$ [fb]
$N_{\rm jet} \ge 0$	6.1 $^{+1.1}_{-1.0}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)	2.90 ± 0.16
$N_{\rm jet} = 0$	$2.9 + 0.8 - 0.7$ (stat.) $+ 1.0 - 0.9$ (syst.) ± 0.1 (lumi.)	1.88 ± 0.20

\rightarrow Observation of signal > 3 σ

Julia I. Djuvsland (KIP, Heidelberg University)

CMS - Wγγ & Zγγ production

CMS-PAS-SMP-15-008 - February 2016

Events / 5 GeV

Wγγ → μνγγ:

- Muon channel analysed
- Observation of signal with 2.4 σ
- Strategy similar to $Z\gamma\gamma$ analysis (below)

$Z\gamma\gamma \rightarrow ee\gamma\gamma / \mu\mu\gamma\gamma$

→ No neutral triple or quartic vertices in SM $Z\gamma\gamma$ process produced via radiation, e.g.:

Event Selection

- 2 same flavour leptons opposite sign $p_T^{lead} > 20$ GeV, $p_T^{sublead} > 10$ GeV
- 2 photons $p_T > 15$ GeV, max. 1 in endcaps
- m_{||} > 40 GeV

Analysis divided in categories corresponding to detector regions of photons (barrel-barrel, barrel-endcap, endcap-barrel)

CMS - (Wyy &) Zyy production

CMS-PAS-SMP-15-008 - February 2016

Background estimation:

 Jets misidentified as photons: 2D-template normalisation using isolation energy and photon ID individually for different detector regions

• Other multibosons: Monte Carlo

$$\sigma_{Z\gamma\gamma}^{\text{NLO}} \cdot \text{BR} \left(Z \to \ell \ell \right) = 12.95 \pm 1.47 \,\text{fb}$$

→ Good agreement with SM

ATLAS - Zyy production

Phys. Rev. D 93, 112002 - Published 2 June 2016

 $Z\gamma\gamma \rightarrow ee\gamma\gamma / \mu\mu\gamma\gamma / \nu\nu\gamma\gamma \rightarrow Also studied neutrino channel Electron and muon channel similar as CMS analysis$

<u>ννγγ Event Selection</u>

- E_T^{miss} > 110 GeV
- 2 photons E_T > 22 GeV
- ΔΦ(p_T^{miss}, γγ) > 5/6 π
- No lepton in event

Run Number: 203934, Event Number: 96866317

Date: 2012-05-26 12:18:41 CEST

ATLAS - Zyy production

Phys. Rev. D 93, 112002 - Published 2 June 2016

 $vv\gamma\gamma$ background estimation:

- Mismeasured jets: ABCD method using $E_{\!\tau}^{\rm miss}$ and photon ID
- Misidentified electrons: fake rate from $Z \rightarrow ee$
- $W\gamma\gamma$: scale factors for MC
- Other BG: Monte Carlo

Inclusive expectations \Box Signal $\forall \gamma + \text{jets } \& \gamma\gamma + \text{jet}$ (jets mismeasured) $\forall W(ev)\gamma (e \rightarrow \gamma)$ $\forall W(lv)\gamma\gamma$

 \blacksquare Other BG (Z γ , ...)

Julia I. Djuvsland (KIP, Heidelberg University)

ATLAS - Zyy production

Phys. Rev. D 93, 112002 - Published 2 June 2016

Inclusive and exclusive (no jets $p_T > 30 \text{ GeV}$) measurement

→ Good agreement with Standard Model expectations

ATLAS - WWW production

To be published

First study of: $pp \rightarrow W^{\pm}W^{\pm}W^{\mp} \rightarrow l\nu l\nu l\nu jj (1=e/\mu)$

Leptonic Selection

- Exactly 3 leptons $p_{T} > 20 \text{ GeV}$
- Maximally 1 jet $p_T > 25 \text{ GeV}$
- $\Delta \Phi(III, p_T^{miss}) > 2.5$
- No b-jet
- Z rejection cuts on m_{\parallel} and E_{τ}^{miss}

Hadronic Selection

- Exactly 2 same charge leptons $p_{T} > 30 \text{ GeV}$
- 2 jets p_T^{lead} > 30 GeV, $p_T^{sublead}$ > 30 GeV, 65 GeV < m_{jj} < 105 GeV, $|\eta_{jj}|$ < 1.5
- No b-jet
- m_{||} > 40 GeV
- Z rejection cuts in channels with e⁻

Backgrounds:

- Electron charge misidentification
 - \rightarrow From $Z \rightarrow ee$ (data)
- Leptons from misidentified jets
 - \rightarrow From matrix method (leptonic) and fake factor method (hadronic)
- Other BG: $WZ/\gamma^* + jets$, $W\gamma + jets$, $Z\gamma + jets$, ...
 - → From Monte Carlo with leptonic $WZ/\gamma^* + jets$ normalisation taken from data

W

W

W

ATLAS - WWW production

Events / 40 GeV 05 05 09 To be published ATLAS Preliminary Data www vs = 8 TeV, 20.3 fb⁻¹ WZ 50 - wwj Fake L Vγ Charge Flip Other Bkg. ee+eu+uu W mass sideband VR **Background estimation validated** 30 20 in dedicated control regions, e.g.: Data/S+B Comparison to expectations: 50 250 300 100 150 200 m_{ii} [GeV] Events / 100 GeV 0 0 0 0 Events / 40 GeV 18 ATLAS Preliminary ATLAS Preliminary Data Data www WWW WZ 16 √s = 8 TeV, 20.3 fb⁻¹ √s = 8 TeV, 20.3 fb⁻¹ WZ Fake L Fake L. www Vν h h ii Vγ 14 Charge Flip L. Charge Flip L. Other Bkg *ее+е*µ+µµ *SR* +1+2 SFOS SR Other Bkg. 12 $f_{S,0}/\Lambda^4 = 2000 \text{ TeV}^{-4}$ $f_{S,0}/\Lambda^4 = 2000 \text{ TeV}^{-4}$ $f_{\rm S} / \Lambda^4 = 2000 \, {\rm TeV}^{-4}$ $f_{c} / \Lambda^{4} = 2000 \text{ TeV}^{-4}$ 10 $f_{S,0}/\Lambda^4 = 2000 \text{ TeV}^{-4}$ $f_{S,0}/\Lambda^4 = 2000 \text{ TeV}^{-4}$ 8 f_{s}/Λ^{4} = -6000 TeV⁻⁴ $f_{s} / \Lambda^{4} = -6000 \text{ TeV}^{-4}$ 20 6 4 10 2 Data/S+B Data/S+B .5 1.5 0.5 0.5 100 200 300 400 500 600 700 0 800 900 1000 200 400 600 800 1000 1200 Σp_{τ} [GeV] m^{3I}_T [GeV] Good agreement with SM, low statistics

ATLAS – Tribosons Overview

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/ATLAS_k_SMSummary_ TriBosonFiducialRatio_Simple/ATLAS_k_SMSummary_TriBosonFiducialRatio_Simple.png

→ Analyses would profit from larger data set

Limits on Anomalous Quartic Gauge Couplings

Anomalous Quartic Gauge Couplings

arXiv:1309.7890

oounling

Limits on coupling of operators of mass-dimension-8

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{j=1,2} \frac{f_{S,j}}{\Lambda^4} \mathcal{O}_{S,j} + \sum_{j=0,\dots,9} \frac{f_{T,j}}{\Lambda^4} \mathcal{O}_{T,j} + \sum_{j=0,\dots,7} \frac{f_{M,j}}{\Lambda^4} \mathcal{O}_{M,j}$$
 operator new physics

→ 18 independent operators, scale
 Different final states sensitive to different operators
 Partly dedicated search regions defined

Limits set at 95% C.L. using profile likelihood ratio

$$\Lambda(\sigma) = \frac{\mathcal{L}(\sigma, \hat{\theta}(\sigma))}{\mathcal{L}(\hat{\sigma}, \hat{\theta})}, \quad \mathcal{L}(\sigma, \theta) = \prod_{i}^{\text{final}} \text{Poisson}(N_i \mid S_i(\sigma, \theta) + B_i(\theta)) \cdot \text{Gaussian}(\theta_0 \mid \theta)$$

with nuisance parameters θ describing systematic uncertainties

Anomalous Quartic Gauge Couplings

Only one or two coupling parameters \neq 0 for limit setting

Results with and without unitarisation

Anomalous Quartic Gauge Couplings

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

Comparison of some non-unitarised results:

April 2016	CMS H			c	
		Channe	el Limits	J <i>L</i> dt	√s
$f_{T,0} / \Lambda^4$		Wγγ	[-3.8e+01, 3.8e+01]	19.4 fb ⁻¹	8 TeV
	HH	Ζγγ	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 TeV
	+I	Wγγ	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV
		WVγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 TeV
	H	Ζγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,1}/\Lambda^4$		Wγγ	[-4.6e+01, 4.7e+01]	19.4 fb ⁻¹	8 TeV
	E-L	ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
$f_{T,5} / \Lambda^4$	⊢−−−−	Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV
	H	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,9}/\Lambda^4$	⊢−−−	Ζγγ	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV
		Zγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	-50 0 50)	100	150	
		a	QGC Limits @95	% C.L.	[TeV ⁻⁴]

 \rightarrow VBS analyses yield more stringent limits than triboson studies

Summary

Triboson processes studied at the LHC: $WW\gamma$, $WZ\gamma$, $W\gamma\gamma$, $Z\gamma\gamma$, WWW

- Charged final states accessible for first time
- Good agreement with SM expectations
- Sensitive to quartic gauge couplings
- Exclusion limits set on aQGC
- 13 TeV data set luminosity starts to make triboson measurements feasible

Thank you!

WWy & WZy production

Phys. Rev. D 90, 032008 - Published 25 August 2014

WWy & WZy production

Phys. Rev. D 90, 032008 - Published 25 August 2014

Process	Muon channel	Electron channel
	number of events	number of events
SM WW γ	6.6 ± 1.5	5.0 ± 1.1
$\mathrm{SM}\mathrm{WZ}\gamma$	0.6 ± 0.1	0.5 ± 0.1
$W\gamma$ + jets	136.9 ± 10.5	101.6 ± 8.5
WV + jet, jet $ ightarrow \gamma$	33.1 ± 4.8	21.3 ± 3.3
MC $t\bar{t}\gamma$	12.5 ± 3.0	9.1 ± 2.2
MC single top quark	2.8 ± 0.8	1.7 ± 0.6
MC Z γ + jets	1.7 ± 0.1	1.5 ± 0.1
Multijets	—	7.2 ± 5.1
Total prediction	194.2 ± 11.5	147.9 ± 10.7
Data	183	139

Wyy production

Phys. Rev. Lett. 115, 031802 - Published 16 July 2015

Exclusive: no anti- k_t jets with $p_T^{\text{jet}} > 30$ GeV, $|\eta^{\text{jet}}| < 4.4$

Wyy production

Phys. Rev. Lett. 115, 031802 - Published 16 July 2015

	Electron channel	Muon channel	Electron channel	Muon channel	
	Njet	≥ 0	$N_{\rm jet} = 0$		
$W\gamma j + Wjj$	15.3 ± 4.8 (stat.) ± 5.3 (syst.)	30.5 ± 7.7 (stat.) ± 6.8 (syst.)	5.8 ± 2.1 (stat.) ± 2.0 (syst.)	14.4 ± 4.9 (stat.) ± 4.9 (syst.)	
$\gamma\gamma$ + jets	1.5 ± 0.6 (stat.) ± 1.0 (syst.)	11.0 ± 4.0 (stat.) ± 4.9 (syst.)	0.2 ± 0.2 (stat.) ± 0.2 (syst.)	6.1 ± 3.5 (stat.) ± 3.1 (syst.)	
$Z\gamma$	11.2 ± 1.1 (stat.)	3.9 ± 0.2 (stat.)	2.4 ± 0.5 (stat.)	2.8 ± 0.2 (stat.)	
Other backgrounds	2.2 ± 0.6 (stat.)	6.7 ± 2.0 (stat.)	0.3 ± 0.1 (stat.)	1.1 ± 0.3 (stat.)	
Total background	$30.2 \pm 5.0 \text{ (stat.)} \pm 5.4 \text{ (syst.)}$	$52.1 \pm 8.9 \text{ (stat.)} \pm 8.4 \text{ (syst.)}$	8.7 ± 2.2 (stat.) ± 2.0 (syst.)	24.4 ± 6.0 (stat.) ± 5.8 (syst.)	
Data	47	110	15	53	

Julia I. Djuvsland (KIP, Heidelberg University)

Wyy production

Phys. Rev. Lett. 115, 031802 - Published 16 July 2015

			$\sigma^{ m fid}$ [fb]		$\sigma^{\rm MCFM}$ [fb]
Inclusive	$(N_{\text{jet}} \ge 0)$				
$\mu\nu$	γγ	$7.1 + 1.3 \\ -1.2$	7.1 $^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.)		
evy	γγ	4.3 + 1.8 - 1.6	$(\text{stat.})^{+1.9}_{-1.8}$ (syst.) ±0.2	(lumi.)	2.90 ± 0.16
lvy	γγ	$6.1 \begin{array}{c} +1.1 \\ -1.0 \end{array}$	$(stat.) \pm 1.2 (syst.) \pm 0.2$	(lumi.)	
Exclusive	$(N_{\text{jet}} = 0)$				
$\mu \nu$	γγ	3.5 ± 0.9	(stat.) $^{+1.1}_{-1.0}$ (syst.) ± 0.1	(lumi.)	
evy	γγ	1.9 + 1.4 - 1.1	$(\text{stat.}) \stackrel{+1.1}{_{-1.2}}(\text{syst.}) \pm 0.1$	(lumi.)	1.88 ± 0.20
lvy	γγ	$2.9 + 0.8 \\ -0.7$	$(\text{stat.}) \stackrel{+1.0}{_{-0.9}} (\text{syst.}) \pm 0.1$	(lumi.)	
			0	E	1.070-1-41
Limits with			Observed [Tev 4]	Expect	ed [Tev +]
form factor		$f_{ m T0}/\Lambda^4$	$[-0.9, 0.9] \times 10^2$	[-1.2,	$1.2] \times 10^{2}$
exponent n	n = 0	$f_{\rm M2}/\Lambda^4$	$[-0.8, 0.8] \times 10^4$	[-1.1,	$1.1] \times 10^4$
•		$f_{\rm M3}/\Lambda^4$	$[-1.5, 1.4] \times 10^4$	[-1.9,	$1.8] \times 10^4$
		$f_{\rm T0}/\Lambda^4$	$[-7.6, 7.3] \times 10^2$	[-9.6,	$9.5] \times 10^2$
	n = 1	$f_{\rm M2}/\Lambda^4$	$[-4.4, 4.6] \times 10^4$	[-5.7,	$5.9] \times 10^4$
		$f_{\rm M3}/\Lambda^4$	$[-8.9, 8.0] \times 10^4$	[-11.0,	$10.0] \times 10^4$
		$f_{\rm T0}/\Lambda^4$	$[-2.7, 2.6] \times 10^3$	[-3.5,	$3.4] \times 10^{3}$
	<i>n</i> = 2	$f_{\rm M2}/\Lambda^4$	$[-1.3, 1.3] \times 10^5$	[-1.6,	$1.7] \times 10^{5}$
		$f_{\rm M3}/\Lambda^4$	$[-2.9, 2.5] \times 10^5$	[-3.7,	$3.3] \times 10^{5}$

CMS-PAS-SMP-15-008 - February 2016

Definition of $W^{\pm}\gamma\gamma$ Fiducial Region

$$p_{\rm T}^{\gamma} > 25 \,{
m GeV}, \, |\eta^{\gamma}| < 2.5$$

 $p_{\rm T}^{\ell} > 25 \,{
m GeV}, \, |\eta^{\ell}| < 2.5$

Exactly one candidate muon and two candidate photons $m_{\rm T}(\ell, \nu_{\rm (s)}) > 40 \,\text{GeV}$ $\Delta R(\gamma, \gamma) > 0.4 \text{ and } \Delta R(\gamma, \ell) > 0.4$

Signal region expectations $W\gamma\gamma$

Region	jet misID	$Z\gamma\gamma$ + Irreducible	Total Background	Data	Expected signal	
Muon Channel						
Barrel-Barrel	25 ± 6	9.6 ± 1.3	34 ± 6	62	16.5 ± 1.8	
Barrel-Endcap	17 ± 3	1.9 ± 0.4	19 ± 3	26	4.1 ± 0.5	
Endcap-Barrel	21 ± 4	2.5 ± 0.5	24 ± 4	20	4.1 ± 0.5	
Sum	63 ± 11	14 ± 2	77 ± 12	108	25 ± 3	

CMS-PAS-SMP-15-008 - February 2016

Table 5: Systematic and statistical uncertainties affecting the W[±] $\gamma\gamma$ fiducial cross section for events with a leading photon having $p_T > 25$ GeV.

Systematic Uncertainties	$W\gamma\gamma o \mu\gamma\gamma$
Signal Simulation Systematics	$\delta(\sigma_{W^{\pm}\gamma\gamma})$
Simulation Statistics	2.40%
Trigger	0.26%
Photon Identification	2.04%
Muon Identification and Isolation	0.27%
Photon Pixel Seed Electron Veto	
Photon Energy Scale	2.10%
Muon Energy Scale	0.19%
$E_{\rm T}^{\rm miss}$ Scale	1.39%
PDF	1.45%
Renormalization and Factorization	0.77%
Pile-up	0.17%
Total Signal Simulation Systematics	4.38%
Background Systematics	$\delta(\sigma_{W^{\pm}\gamma\gamma})$
Misidentified Jet	37.19%
$Z\gamma\gamma$	5.73%
Other Multiboson Backgrounds	1.02%
Total Background	37.64%
Statistical Uncertainties	$\delta(\sigma_{W^{\pm}\gamma\gamma})$
Signal Region	29.30%
Sidebands	4.39%
Total Statistical	29.60%
Total Systematic	37.89%
Total Luminosity	2.72%

CMS-PAS-SMP-15-008 - February 2016

Definition of Z $\gamma\gamma$ Fiducial Region

 $p_{\rm T}^{\gamma} > 15 \,{
m GeV}, |\eta^{\gamma}| < 2.5$ $p_{\rm T}^{\ell} > 10 \,{
m GeV}, |\eta^{\ell}| < 2.5$

Exactly two candidate leptons and two candidate photons lead $p_{\rm T}^{\gamma} > 20 \,\text{GeV}$ $M_{\ell\ell} > 40 \,\text{GeV}$ $\Delta R(\gamma, \gamma) > 0.4, \Delta R(\gamma, \ell) > 0.4$, and $\Delta R(\ell, \ell) > 0.4$

Signal region expectations $Z\gamma\gamma$

Region	jet misID	Irreducible	Total Background	Data	Expected Signal
		Muor	n Channel		
Barrel-Barrel	28 ± 5	0.4 ± 0.1	29 ± 5	72	47 ± 8
Barrel-Endcap	21 ± 3	0.1 ± 0.1	21 ± 3	29	13 ± 2
Endcap-Barrel	19 ± 3	0.1 ± 0.1	19 ± 3	40	14 ± 3
Sum	68 ± 9	0.6 ± 0.2	68 ± 9	141	73 ± 10
Electron Channel					
Barrel-Barrel	21 ± 4	0.2 ± 0.1	21 ± 4	65	37 ± 6
Barrel-Endcap	21 ± 3	0.1 ± 0.1	21 ± 3	28	9 ± 2
Endcap-Barrel	20 ± 3	0.01 ± 0.01	20 ± 3	24	11 ± 2
Sum	62 ± 8	0.3 ± 0.1	62 ± 8	117	56 ± 8

CMS-PAS-SMP-15-008 - February 2016

Table 6: Systematic and statistical uncertainties affecting the $Z\gamma\gamma$ fiducial cross section for events with a leading photon having $p_T > 15$ GeV.

Systematic Uncertainties	$Z\gamma\gamma ightarrow ee\gamma\gamma$	$Z\gamma\gamma ightarrow \mu\mu\gamma\gamma$	
Signal Simulation Systematics	$\delta(\sigma_{Z\gamma\gamma})$		
Simulation Statistics	3.25%	2.89%	
Dilepton Trigger	1.33%	1.20%	
Photon Identification	2.78%	2.82%	
Muon Identification and Isolation		0.46%	
Electron loose Identification	3.71%		
Photon Conversion Safe Electron Veto	0.76%	0.76%	
Photon and Electron Energy Scale	2.52%	2.62%	
Muon Energy Scale	-	1.60%	
PDF	1.05%	1.11%	
Renormalization and Factorization	0.55%	0.68%	
Pile-up	1.31%	0.43%	
Total Signal Simulation	6.60%	5.46%	
Background Systematics	$\delta(\sigma_{Z\gamma\gamma})$		
Misidentified Jet	15.08%	12.51%	
Other Multiboson Backgrounds	0.21%	0.26%	
Total Background	15.08%	12.51%	
Statistical Uncertainties	$\delta(\sigma_{Z\gamma\gamma})$		
Signal Region	16.54%	13.64%	
Sidebands	1.39%	1.20%	
Total Statistical	16.60%	13.70%	
Total Systematic	16.46%	13.64%	
Total Luminosity	2.60%	2.60%	

CMS-PAS-SMP-15-008 - February 2016

Zyy production

Phys. Rev. D 93, 112002 - Published 2 June 2016

	$e^+e^-\gamma\gamma$	$\mu^+\mu^-\gamma\gamma$	$e^+e^-\gamma\gamma$	$\mu^+\mu^-\gamma\gamma$
	$N_{\rm j}$	$e_{ets} \ge 0$	Nj	$t_{ets} = 0$
$N_{Z\gamma\gamma}^{ m obs}$	43	37	29	22
$N_{Z\gamma\gamma}^{j \to \gamma}$	$5.8 \pm 1.0 \pm 1.4$	$10.9 \pm 1.1 \pm 2.8$	$3.08 \pm 0.73 \pm 0.75$	$6.4\pm0.9\pm1.8$
$N_{Z\gamma\gamma}^{\text{Other BKG}}$	$0.42 \pm 0.08 \pm 0.18$	$0.194 \pm 0.047 \pm 0.097$	$0.24 \pm 0.05 \pm 0.11$	$0.105 \pm 0.028 \pm 0.055$
$N_{Z\gamma\gamma}^{\rm sig}$ (Sherpa)	$25.7\pm0.5\pm1.6$	$29.5 \pm 0.6 \pm 1.7$	$18.9\pm0.5\pm1.5$	$21.8 \pm 0.5 \pm 1.7$

Julia I. Djuvsland (KIP, Heidelberg University)

Zyy production

Phys. Rev. D 93. 112002 - Published 2 June 2016

Cuts	$\ell^+\ell^-\gamma\gamma$	$v\bar{v}\gamma\gamma$		
Lepton	$p_{\rm T}^{\ell} > 25 { m GeV}$	-		
	$ \eta^{\ell} < 2.47$	-		
Boson	$m_{\ell^+\ell^-} > 40 \text{ GeV}$	$p_{\rm T}^{\nu\bar{\nu}} > 110 \text{ GeV}$		
Photon	$E_{\rm T}^{\gamma} > 15 { m GeV}$	$E_{\rm T}^{\gamma} > 22 { m GeV}$		
	$ \eta^{\gamma} <$	2.37		
	$\Delta R(\ell,\gamma) > 0.4$	-		
	$\Delta R(\gamma,\gamma) > 0.4$	$\Delta R(\gamma,\gamma) > 0.4$		
	$\epsilon_h^p <$	0.5		
Jet	$p_{\rm T}^{\rm jet} > 30 {\rm ~GeV}$	$ \eta^{\rm jet} < 4.5$		
	$\Delta R(\text{jet}, \ell/\gamma) > 0.3$	$\Delta R(\text{jet}, \gamma) > 0.3$		
	Inclusive : $N_{\text{jet}} \ge 0$, E	Exclusive : $N_{jet} = 0$	$N_{iata} > 0$	$N_{\text{inter}} = 0$
		Nobs	$\frac{1}{16}$	10
		$\frac{IV_{Z\gamma\gamma}}{IV_{Z\gamma\gamma}}$	40	19
		$N_{Z\gamma\gamma}^{\text{Jets}+\gamma(\gamma)}$	$12.2 \pm 6.7 \pm 1.8$	$2.9 \pm 4.0 \pm 0.4$
		$N_{Z\gamma\gamma}^{\dot{W}(\ell u)\gamma\gamma}$	$3.6\pm0.1\pm3.6$	$1.0\pm0.1\pm1.0$
		$N^{W(ev)\gamma}_{Z\gamma\gamma}$	$10.4 \pm 0.5 \pm 2.1$	$3.47 \pm 0.28 \pm 0.69$
		$N_{Z\gamma\gamma}^{Z(\nu\bar{\nu})\gamma+\text{jets}}$	$0.71 \pm 0.71 \pm 0.90$	$0.71 \pm 0.71 \pm 0.75$
		$N_{Z\gamma\gamma}^{Z(au^+ au^-)\gamma\gamma}$	$0.381 \pm 0.055 \pm 0.027$	$0.141 \pm 0.036 \pm 0.010$
		$N_{Z\gamma\gamma}^{ m bkg}$	$27.2 \pm 6.8 \pm 4.6$	$8.3 \pm 4.1 \pm 1.5$
		$N_{Z\gamma\gamma}^{ m sig}$ (Sherpa)	$7.54 \pm 0.07 \pm 0.34$	$4.80 \pm 0.06 \pm 0.29$

Zyy production

Phys. Rev. D 93, 112002 - Published 2 June 2016

Channel	Measurement [fb]	MCFM Prediction [fb]
	$N_{\rm jets} \ge$	<u>≥</u> 0
$e^+e^-\gamma\gamma$	$6.2^{+1.2}_{-1.1}$ (stat.) ± 0.4 (syst.) ± 0.1 (lumi.)	
$\mu^+\mu^-\gamma\gamma$	$3.83^{+0.95}_{-0.85}$ (stat.) $^{+0.48}_{-0.47}$ (syst.) ± 0.07 (lumi.)	$3.70^{+0.21}_{-0.11}$
$\ell^+\ell^-\gamma\gamma$	$5.07 + 0.73 \\ -0.68 (stat.) + 0.41 \\ -0.38 (syst.) \pm 0.10 (lumi.)$	
$\nu \bar{\nu} \gamma \gamma$	$2.5^{+1.0}_{-0.9}$ (stat.) ± 1.1 (syst.) ± 0.1 (lumi.)	$0.737^{+0.039}_{-0.032}$
	N _{jets} =	= 0
$e^+e^-\gamma\gamma$	$4.6^{+1.0}_{-0.9}(\text{stat.})^{+0.4}_{-0.3}(\text{syst.}) \pm 0.1(\text{lumi.})$	
$\mu^+\mu^-\gamma\gamma$	$2.38^{+0.77}_{-0.67}(\text{stat.})^{+0.33}_{-0.32}(\text{syst.})^{+0.05}_{-0.04}(\text{lumi.})$	$2.91^{+0.23}_{-0.12}$
$\ell^+\ell^-\gamma\gamma$	$3.48^{+0.61}_{-0.56}(\text{stat.})^{+0.29}_{-0.25}(\text{syst.}) \pm 0.07(\text{lumi.})$	
ννγγ	$1.18^{+0.52}_{-0.44}$ (stat.) $^{+0.48}_{-0.49}$ (syst.) ± 0.02 (lumi.)	$0.395^{+0.049}_{-0.037}$

Zγγ production

Phys. Rev. D 93, 112002 - Published 2 June 2016

Channel	Measurement [fb]	Prediction [fb]
$\ell^+\ell^-\gamma\gamma~(m_{\gamma\gamma}>200~{\rm GeV})$	$0.12^{+0.11}_{-0.07}(\text{stat.})^{+0.03}_{-0.01}(\text{syst.})$	$0.0674 \pm 0.0013(\text{stat.}) \pm 0.0053(\text{syst.})$
$\nu \bar{\nu} \gamma \gamma (m_{\gamma \gamma} > 300 \text{ GeV})$	$0.16^{+0.17}_{-0.11}(\text{stat.})^{+0.04}_{-0.01}(\text{syst.})$	$0.0499 \pm 0.0008(\text{stat.}) \pm 0.0062(\text{syst.})$

Table 12: Theoretical VBFNLO SM and observed cross sections in chosen aQGC regions (with the exclusive selection) for the channels studied. The $m_{\gamma\gamma}$ threshold is 200 GeV for the electron and muon channels and is 300 GeV for the neutrino channel. The first uncertainty is statistical, the second is systematic.

n	$\Lambda_{\rm FF}$ [TeV]	Limits 95% C.L.	Observed [TeV ⁻⁴]	Expected [TeV ⁻⁴]
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$f_{M2}/\Lambda^4$	$[-1.6, 1.6] \times 10^4$	$[-1.2, 1.2] \times 10^4$
0		$f_{M3}/\Lambda^4$	$[-2.9, 2.7] \times 10^4$	$[-2.2, 2.2] \times 10^4$
		$f_{T0}/\Lambda^4$	$[-0.86, 1.03] \times 10^2$	$[-0.65, 0.82] \times 10^2$
		$f_{T5}/\Lambda^4$	$[-0.69, 0.68] \times 10^3$	$[-0.52, 0.52] \times 10^3$
		$f_{T9}/\Lambda^4$	$[-0.74, 0.74] \times 10^4$	$[-0.58, 0.59] \times 10^4$
2	5.5	$f_{M2}/\Lambda^4$	$[-1.8, 1.9] \times 10^4$	$[-1.4, 1.5] \times 10^4$
	5.0	$f_{M3}/\Lambda^4$	$[-3.4, 3.3] \times 10^4$	$[-2.6, 2.6] \times 10^4$
	0.7	$f_{T0}/\Lambda^4$	$[-2.3, 2.1] \times 10^3$	$[-1.9, 1.6] \times 10^3$
	0.6	$f_{T5}/\Lambda^4$	$[-2.3, 2.2] \times 10^4$	$[-1.8, 1.8] \times 10^4$
	0.4	$f_{T9}/\Lambda^4$	$[-0.89, 0.86] \times 10^{6}$	$[-0.71, 0.68] \times 10^{6}$



## Zγγ production

Phys. Rev. D 93, 112002 - Published 2 June 2016



Julia I. Djuvsland (KIP, Heidelberg University)



## WWW production

To be published





## WWW production

To be published





### WWW production

To be published



#### Eboli parametrisation used

#### State of the Art in aQGC

April 201	6	CMS			ſ	
		ATLAS	Channel	Limits	∫ <i>L</i> dt	VS
$f_{M,0}/\Lambda^4$		+I	WVγ	[-7.7e+01, 8.1e+01]	19.3 fb ⁻¹	8 TeV
		H	Zγ	[-7.1e+01, 7.5e+01]	19.7 fb ⁻¹	8 TeV
		H-1	Wγ	[-7.7e+01, 7.4e+01]	19.7 fb ⁻¹	8 TeV
		F-I	ss WW	[-3.3e+01, 3.2e+01]	19.4 fb ⁻¹	8 TeV
		1	γγ→WW	[-4.2e+00, 4.2e+00]	24.7 fb ⁻¹	7,8 TeV
$f_{M,1}/\Lambda^4$		HI	WVγ	[-1.3e+02, 1.2e+02]	19.3 fb ⁻¹	8 TeV
		<b>⊢−−−−</b> 1	Zγ	[-1.9e+02, 1.8e+02]	19.7 fb ⁻¹	8 TeV
		<b>⊢−</b> +	Wγ	[-1.2e+02, 1.3e+02]	19.7 fb ⁻¹	8 TeV
		F-I	ss WW	[-4.4e+01, 4.7e+01]	19.4 fb ⁻¹	8 TeV
		Н	γγ→WW	[-1.6e+01, 1.6e+01]	24.7 fb ⁻¹	7,8 TeV
$f_{M,2}/\Lambda^4$			Ζγγ	[-5.1e+02, 5.1e+02]	20.3 fb ⁻¹	8 TeV
		+	Wγγ	[-2.5e+02, 2.5e+02]	20.3 fb ⁻¹	8 TeV
		н	Zγ	[-3.2e+01, 3.1e+01]	19.7 fb ⁻¹	8 TeV
		Н	Wγ	[-2.6e+01, 2.6e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,3}/\Lambda^4$			— Ζγγ	[-9.2e+02, 8.5e+02]	20.3 fb ⁻¹	8 TeV
		łł	Wγγ	[-4.7e+02, 4.4e+02]	20.3 fb ⁻¹	8 TeV
		н	Zγ	[-5.8e+01, 5.9e+01]	19.7 fb ⁻¹	8 TeV
		н	Wγ	[-4.3e+01, 4.4e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,4}/\Lambda^4$		Н	Wγ	[-4.0e+01, 4.0e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,5}/\Lambda^4$		н	Wγ	[-6.5e+01, 6.5e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,6}/\Lambda^4$		<b>⊢</b> −+	Wγ	[-1.3e+02, 1.3e+02]	19.7 fb ⁻¹	8 TeV
		F-1	ss WW	[-6.5e+01, 6.3e+01]	19.4 fb ⁻¹	8 TeV
$f_{M,7}/\Lambda^4$		⊢	Wγ	[-1.6e+02, 1.6e+02]	19.7 fb ⁻¹	8 TeV
· · · ·		F−4	ss WW	[-7.0e+01, 6.6e+01]	19 _. 4 fb ⁻¹	8 TeV
	-1000	0	1000	2000	3000	
			aO	GC Limits @95	% C I	[TeV ⁻⁴ ]
https://twiki.cern.ch/tw	iki/bin/view/	/CMSPublic/PhysicsResults	SMPaTGC		/·· •·	[. <b>~</b> .]

#### Eboli parametrisation used

### State of the Art in aQGC

April 2016	CMS			C	
	ATLAS	Channel	Limits	J <i>L</i> dt	٧s
$f_{T,0} / \Lambda^4$	······	Wγγ	[-3.8e+01, 3.8e+01]	19.4 fb ⁻¹	8 TeV
	F	Ζγγ	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 TeV
	+I	Wγγ	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV
	łl	WVγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 TeV
	H	Ζγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
	<b>⊢−−</b> I	Wγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV
	FI	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV
$f_{T,1}/\Lambda^4$		Wγγ	[-4.6e+01, 4.7e+01]	19.4 fb ⁻¹	8 TeV
	⊢	Ζγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 TeV
	H	Wγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	F-I	ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
$f_{T,2}/\Lambda^4$	<b>⊢−−−−</b>	Ζγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV
	⊢ — — I	Wγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻¹	8 TeV
	FI	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
$f_{T,5} / \Lambda^4$	<b>⊢−−−−</b>	Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV
	⊢-1	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,6} / \Lambda^4$	H	Wγ	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,7}/\Lambda^4$	⊢−−1	Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,8}/\Lambda^4$	Н	Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,9}/\Lambda^4$	H	Ζγγ	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV
	· . ⊢	Ζγ	[-4.0e+00, 4.0e+00]	19.7 fb⁻¹	8 TeV
		•	100	150	
	-50 0 5				r <b>T</b> - \ <i>t</i> -41
	ain/view/CMCDublic/Dby/ciccDccy/taCM/	aQ	GU LIMITS @95	% U.L.	liev i

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC